See Lecture 2 notes on recursively defined sequences.

Recurrence relations

A second-order linear recurrence relation with constant coefficients has the form

\[a_n = ra_{n-1} + sa_{n-2} + f(n) \]

where \(r \) and \(s \) are constants and \(f(n) \) is some function of the integer \(n \). If \(f(n) = 0 \), the relation is **homogeneous**. Otherwise, it’s **nonhomogeneous**.

Characteristic polynomial

The recurrence relation \(a_n = ra_{n-1} + sa_{n-2} \) has a characteristic polynomial:

\[p(x) = x^2 - rx - s. \]

The roots of \(p(x) \) are called the characteristic roots of \(a_n \).

Theorem 1 Let \(x_1 \) and \(x_2 \) be the roots of the polynomial \(p(x) = x^2 - rx - s \), and let \(a_n = ra_{n-1} + sa_{n-2}, n \geq 2 \), be a homogeneous (!) second-order linear recurrence relation with constant coefficients. The solution to the recurrence relation \(a_n \) is

\[a_n = \begin{cases}
 c_1 x_1^n + c_2 x_2^n & \text{if } x_1 \neq x_2 \\
 c_1 x^n + c_2 n x^n & \text{if } x_1 = x_2 = x.
\end{cases} \]

The particular constants \(c_1 \) and \(c_2 \) are determined by the sequence’s initial conditions.

How to solve HOMOGENEOUS S-O L RR w/CC

Step -1: Check that the recurrence relation actually is second-order, linear, homogeneous, with constant coefficients.

Step 0: Find the characteristic polynomial \(p(x) \) for \(a_n \).

Step 1: Find the roots \(x_1, x_2 \) of \(p(x) \). Are they distinct?!!

Step 2: Depending on \(x_1 = x_2 \) or not, write down the solution with constants \(c_1, c_2 \).

Step 3: Solve for \(c_1 \) and \(c_2 \) using the initial conditions.

Step 4: Write down the complete solution for \(a_n \).