See Lecture 3 notes on solving S-O L RR w/CC that are HOMOGENEOUS.

Recurrence relations
Consider a nonhomogeneous S-O L RR w/CC with constants \(r, s \) and \(f(n) \neq 0; \)
\[
a_n = ra_{n-1} + sa_{n-2} + f(n)
\]

A particular solution of \(a_n \) is some function \(p_n \) such that \(p_n = rp_{n-1} + sp_{n-2} + f(n) \).
The associated homogeneous recurrence for \(a_n \) is \(a'_n = ra'_{n-1} + sa'_{n-2} \) which has a general solution \(q_n \) (constants \(c_1, c_2 \) still unspecified) using the characteristic polynomial method.

Theorem 1 The sol'n to \(a_n = ra_{n-1} + sa_{n-2} + f(n) \), a nonhomogeneous S-O L RR w/CC, is
\[
a_n = p_n + q_n
\]
where \(p_n \) is a particular solution for \(a_n \) and \(q_n \) is the general solution for \(a'_n = ra'_{n-1} + sa'_{n-2} \).
The initial conditions for \(a_n \) determine the constants in the solution.

How to solve NONhomogeneous S-O L RR w/CC
Step -1: Check that all conditions (S-O, L, CC) are satisfied; \(a_n = ra_{n-1} + sa_{n-2} + f(n) \).
Step 0: GUESS the form of the particular solution based on \(f(n) \).
Step 1: Find a particular solution \(p_n \) to \(a_n \), ignoring initial conditions.
Step 2: Write down the associated homogeneous recurrence \(a'_n = ra'_{n-1} + sa'_{n-2} \).
Step 3: Find the (general) solution \(q_n \) to \(a'_n \), ignoring initial conditions.
Step 4: Write down the solution \(a_n = p_n + q_n \) with constants \(c_1, c_2 \).
Step 5: Solve for \(c_1 \) and \(c_2 \) using the initial conditions for \(a_n \).
Step 6: Write down the complete solution for \(a_n \).

Generating functions
The generating function for the sequence \(a_0, a_1, a_2, \ldots \) is the formal power series
\[
\sum_{i=0}^{\infty} a_i x^i.
\]
Generating functions can be added, multiplied, even differentiated. A couple of examples:
\[
\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i; \quad \frac{1}{1-ax} = \sum_{i=0}^{\infty} a^i x^i; \quad \frac{1}{(1-x)^2} = \sum_{i=0}^{\infty} (i+1)x^i
\]