Exam 1 is on **Wednesday, February 2nd**. It will cover Part I, Sec 5.1 – 5.4 and 8.2.

See Lecture 5 notes on algorithmic complexity.

How to show \(f = \mathcal{O}(g) \) **from the definition**

Step 0: Scratch work.

Step 1: Write down a **specific** integer \(n_0 \) (usually positive) and a **specific** real number \(c \).

Step 2: Demonstrate that \(|f(n)| \leq c|g(n)| \) for all \(n \geq n_0 \).

How to show \(f \neq \mathcal{O}(g) \) **from the definition**

Step 0: Scratch work.

Step 1: Write down an **arbitrary** integer \(n_0 \) (could be restricted to positive) and an **arbitrary** real number \(c \).

Step 2: Assume that \(|f(n)| \leq c|g(n)| \) for all \(n \geq n_0 \).

Step 3: Using this assumption, derived some contradiction.

Step 4: Conclude that \(f \) cannot be Big Oh of \(g \).

How to show \(f \preceq g \) **from the definition**

Step 1: Show \(f = \mathcal{O}(g) \) from the definition.

Step 2: Show \(g \neq \mathcal{O}(f) \) from the definition.

How to show \(f \asymp g \) **from the definition**

Step 1: Show \(f = \mathcal{O}(g) \) from the definition.

Step 2: Show \(g = \mathcal{O}(f) \) from the definition.

Alternatively . . .

Theorem 1 Let \(f, g : \mathbb{N} \to \mathbb{R} \) be functions.

1. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \), then \(f \prec g \).

2. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(g \prec f \).

3. If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \) for some \(L \in \mathbb{R}, L \neq 0 \), then \(f \asymp g \).