Let $r, n \in \mathbb{N}$ with $0 \leq r \leq n$.

Permutations

A permutation of a set of n DISTINCT objects is an ORDERED arrangement of them. The number of permutations of n objects is $n!$.

An r-permutation of n objects is a permutation of r of the n objects.

The number of r-permutations of n objects is denoted $P(n, r)$.

For $n \geq 1$, the value $P(n, r)$ is defined by $P(n, 0) = 1$ and for $r > 0$,

$$P(n, r) = n(n-1)(n-2)\ldots(n-r+1) = \prod_{i=0}^{r-1} (n-i) = \frac{n!}{(n-r)!}$$

Suppose there are r marbles, each of a DIFFERENT color, and n NUMBERED boxes. The number of ways to place the r marbles in the n boxes (with at most one marble per box) is $P(n, r)$.

Combinations

A combination, or more precisely an r-combination, of a set of n DISTINCT objects is an UNORDERED subset containing r elements.

The number of r combinations of n objects is denoted ${n \choose r}$, which is read “n choose r.”

The notation ${n \choose r}$ is also called a binomial coefficient. (More on this in Section 7.7.)

For $n \geq 0$, the value of n choose r is

$${n \choose r} = \frac{n!}{r!(n-r)!}.$$

Suppose there are r marbles, of the SAME color, and n NUMBERED boxes. The number of ways to place the r marbles in the n boxes (with at most one marble per box) is ${n \choose r}$.

Why does n choose r have the same value as n choose $(n-r)$?