1. Prove the following proposition directly from this definition:

Definition: If \(x \in \mathbb{R}, x > 0 \), then \(\log x = \int_1^x \frac{dt}{t} \).

Proposition: The function \(\log : \{ x \in \mathbb{R} : x > 0 \} \to \mathbb{R} \) is differentiable with \(\frac{d\log x}{dx} = \frac{1}{x} \), it is strictly increasing, assumes all values in \(\mathbb{R} \), and satisfies the rules:

(a) \(\log xy = \log x + \log y \) if \(x, y > 0 \),
(b) \(\log \frac{x}{y} = \log x - \log y \) if \(x, y > 0 \),
(c) \(\log x^n = n \log x \) if \(x > 0, n \) an integer.

2. Prove the following proposition directly from this definition:

Definition: \(\exp \) is the inverse function of \(\log \), that is \(\exp(x) = y \) means \(x = \log y \).

Proposition: The function \(\exp : \mathbb{R} \to \{ x \in \mathbb{R} : x > 0 \} \) is differentiable, with \(\frac{d\exp(x)}{dx} = \exp(x) \). It is strictly increasing, assumes all positive values, and satisfies the rules:

(a) \(\exp(x) \cdot \exp(y) = \exp(x + y) \) if \(x, y \in \mathbb{R} \),
(b) \(\frac{\exp(x)}{\exp(y)} = \exp(x - y) \) if \(x, y \in \mathbb{R} \),
(c) \(\exp(nx) = (\exp(x))^n \) if \(x \in \mathbb{R}, n \) an integer.

3. Prove the following proposition directly from this definition:

Definition: If \(x, n \in \mathbb{R}, x > 0 \), then \(x^n = \exp(n \log x) \).

Proposition: For \(x, y, n, m \in \mathbb{R}, x, y > 0 \), we have:

(a) \(x^n \cdot x^m = x^{n+m} \),
(b) \(\frac{x^n}{x^m} = x^{n-m} \),
(c) \((x^n)^m = x^{nm} \),
(d) \((xy)^n = x^ny^n \),
(e) \(\frac{d}{dx} x^n = nx^{n-1} \).

4. **Definition:** \(e = \exp(1) \).

Can the exponential function \(e^x \) be derived from scratch, starting with the function \(x^n \) for fixed \(n \in \mathbb{N} \)?

(a) Does any positive number have a unique positive \(n \)th root?
(b) Can rational powers \(x^{m/n} \) be defined appropriately?
(c) Does this extend to irrational powers?
(d) Based on this, for fixed \(a \in \mathbb{R} \), is the function \(a^x \) differentiable?
(e) Does there exist some \(a \in \mathbb{R} \) such that \(\frac{da^x}{dx} = a^x \)?