Homework 3

due Feb 13th

There are 13 problems on 2 pages of this homework assignment.

1. Fix an integer \(n \geq 2 \). Prove the following rules of modular arithmetic for all \(a, b, c, d \in \mathbb{Z} \).
 (a) If \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(a + c \equiv b + d \pmod{n} \). \textit{Addition}
 (b) If \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(a - c \equiv b - d \pmod{n} \). \textit{Subtraction}
 (c) If \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(ac \equiv bd \pmod{n} \). \textit{Multiplication}

2. Fix an integer \(n \geq 2 \). Disprove: For all \(a, b, c \in \mathbb{Z} \), if \(ac \equiv bc \pmod{n} \), then \(a \equiv b \pmod{n} \).
 \textit{There is NO general division rule in modular arithmetic!}

3. Let \(n \in \mathbb{Z} \). Prove that \(a^2 \equiv (a - n)^2 \pmod{n} \) for all integers \(a \) using modular arithmetic.

4. (a) Let \(R \) be the relation defined on \(\mathbb{Z} \) by \(a R b \) if \(a + b \) is even. Show that \(R \) is an equivalence relation and determine the distinct equivalence classes.
 (b) Consider the relation \(S \) where “even” is replaced by “odd” above. Which properties of an equivalence relation does \(S \) possess?

5. Fix integers \(x, y, \) and \(n \geq 2 \). Let \(R \) be the relation on \(\mathbb{Z} \) defined by \(ax + by \equiv 0 \pmod{n} \).
 Give well-justified answers to the questions: under what conditions on \(x \) and \(y \) is \(R \)…
 (a) \ldots reflexive?
 (b) \ldots symmetric?
 (c) \ldots transitive?
 (d) \ldots an equivalence relation?
 \textit{Hint: see Problems 8.29, 8.30, 8.33, 8.34, 8.35 in the textbook.}

6. Let \(n \geq 2 \) be an integer. Define a relation \(R \) on \(\mathbb{Z} \) by \(a R b \) if and only if \(a^2 \equiv b^2 \pmod{n} \).
 (a) Prove that \(R \) is an equivalence relation when \(n = 5 \) and determine the distinct equivalence classes.
 (b) In general, under what conditions on \(n \) is \(R \) an equivalence relation? Prove that your answer is correct.
 (c) When \(R \) is an equivalence relation, what are the equivalence classes? Your answer should be in the form \([a] = \{ b \in \mathbb{Z} \mid A \} \) where \(a \) is the representative element (as a function of \(n \)) and \(A \) is the criteria that \(b \) must satisfy to be in the set \([a] \).

7. Find the smallest equivalence relation on the set \(\{a, b, c, d, e\} \) that contains the relation \(\{(a, b), (a, c), (d, e)\} \).
 What does “smallest” mean here?
8. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if $ad = bc$.

(a) Prove that R is an equivalence relation.
(b) What is the equivalence class of $(1, 2)$ under this relation?
(c) Are there finitely many equivalence classes? Justify your answer.
(d) Give a description of each different equivalence class.

9. Let R be a relation from a set A to a set B. The inverse relation from B to A, denoted by R^{-1}, is the set of ordered pairs $\{(b, a) \mid (a, b) \in R\}$.

(a) Prove that a relation R on a set A is symmetric if and only if $R = R^{-1}$.
(b) Prove that a relation R on a set A is antisymmetric if and only if $R \cap R^{-1}$ is a subset of the diagonal relation $\Delta = \{(a, a) \mid a \in A\}$.

10. Suppose that R and S are equivalence relations on the nonempty set A. Prove or disprove:

(a) $R \cup S$ is an equivalence relation.
(b) $R \cap S$ is an equivalence relation.

11. Let R, S, and T be relations on \mathbb{Z} defined as:

- $a R b$ if and only if $a \equiv b \pmod{2}$,
- $a S b$ if and only if $a \equiv b \pmod{3}$,
- and $a T b$ if and only if $a \equiv b \pmod{6}$

(a) List the equivalence classes for R, for S, and for T.
(b) If $R \cup S$ is an equivalence relation, find its equivalence classes.
(c) If $R \cap S$ is an equivalence relation, find its equivalence classes.

12. A partition P_1 is called a refinement of the partition P_2 if every set in P_1 is a subset of one of the sets in P_2. Show that the partition formed from the congruence classes modulo 6 is a refinement of the partition formed from the congruence classes modulo 3.

13. Prove that propositional equivalence is an equivalence relation on the set of all compound propositions. Hint: Let C be the set of all compound propositions. For $p, q \in C$, define a relation R on C by $p R q$ if and only if $p \leftrightarrow q$ is a tautology.