Homework 5

There are 10 problems on 2 pages of this homework assignment.

1. Let \(S = \{x_1, x_2, x_3\} \). Let \(i, f, g \in A(S) = S_3 \) be the functions \(i : x_1 \rightarrow x_1, x_2 \rightarrow x_2, x_3 \rightarrow x_3, \)
 \(f : x_1 \rightarrow x_2, x_2 \rightarrow x_3, x_3 \rightarrow x_1, \) and \(g : x_1 \rightarrow x_2, x_2 \rightarrow x_1, x_3 \rightarrow x_3. \)

 (a) Write out all elements of \(S_3 \) in terms of \(i, f, \) and \(g \) in the simplest possible way.

 (b) Write down the product table of \(S_3 \). For convenience, write \(f \circ g \) as \(fg \), etc.

 (c) Prove that \((fg)^2 \neq f^2g^2. \)

 (d) Prove that \(gf = f^{-1}g \) but \(f \neq f^{-1}. \)

 (e) How would your answers above change if \(S = \{a, b, c\} \)?

 (f) If \(h \in S_3 \), prove that \(h^6 = i. \)

2. Let \(S \) be the \(x, y \)-plane and consider \(f, g \in A(S) \) defined by
 \(f(x, y) = (-x, y) \) and \(g(x, y) = (-y, x) \). Define \(G = \{f^ig^j \mid i = 0, 1; j = 0, 1, 2, 3\} \)
 with the product \(* \) of function composition.

 (a) Give a geometric description of \(f \) and \(g \) in terms of their action on \(S. \)

 (b) How many elements does \(G \) have?

 (c) Prove \(f^2 = g^4 = i_S. \)

 (d) Prove that \(f * g \neq g * f. \)

 (e) Prove that \(g * f = f * g^{-1}. \)

 (f) Find a formula for \((f^ig^j) * (f^sg^t) = f^ag^b \) that expresses \(a, b \) in terms of integers \(i, j, s, \)
 and \(t. \)

 (g) Write down the product table of \(G. \)

 (h) Prove that \(G \) is a nonabelian group of order 8. This group is called the dihedral group of
 order 8.

3. Let \(S \) be a nonempty and finite set.

 (a) Prove that if \(f \) is a mapping of \(S \) onto itself, then \(f \) is 1-1.

 (b) Prove that if \(f \) is a 1-1 mapping of \(S \) into itself, then \(f \) is onto.

 (c) Prove that the first statement is not true if \(S \) is infinite.

 (d) Prove that the second statement is not true if \(S \) is infinite.

 (e) Prove that if \(f \) is a 1-1 mapping of \(S \) onto \(S, \) then for some integer \(n > 0, f^n = i_S. \)
 (Recall that \(f^n \) is \(f \) composed with itself \(n \) times, and \(i_S \) is the identity function on \(S. \))

 (f) Suppose that \(|S| = m. \) Find an \(n \) (in terms of \(m \)) for the previous problem that works
 for all \(f \in S_m. \)
4. Let \(f, g \in A(S) \). (Recall that \(A(S) \) is the set of all 1-1 mappings from a nonempty \(S \) onto itself.)

 (a) Prove that \((fg)^2 = f^2g^2\) if and only if \(fg = gf \).

 (b) Prove that \((fg)^{-1} = g^{-1}f^{-1}\).

 (c) Prove that if \(fg = gf \), then \((fg)^{-1} = f^{-1}g^{-1}\).

 (d) Prove that if \(|S| \geq 3\), then there exists \(f, g \in A(S) \) such that \(fg \neq gf \).

5. Let \(Z_n^* = \mathbb{Z}_n \setminus \{0\} \). Prove, from the definitions, that \(Z_n^* \) is a group under multiplication if and only if \(n \geq 2 \) is a prime. Hint: see ICA 10, problems # 2 – 9.

6. Let \(G \) be a group with identity \(e \). For \(a \in G \), the inverse of \(a \) is denoted \(a^{-1} \).

 (a) Prove that \((a^{-1})^{-1} = a\) for all \(a \in G \).

 (b) Prove that the identity \(e \in G \) is unique.

 (c) Prove that \((ab)^{-1} = b^{-1}a^{-1}\) for all \(a, b \in G \).

 (d) Prove that for all \(a \in G \), \(a^{-1} \) is unique.

 (e) Prove that if \(ab = ac \), then \(b = c \) for all \(a, b, c \in G \).

 (f) Prove that if \(ba = ca \), then \(b = c \) for all \(a, b, c \in G \).

7. Let \(G \) be a finite group with identity \(e \in G \).

 (a) Prove that for all \(a \in G \) there exists \(n \in \mathbb{N} \) with \(n > 0 \) such that \(a^n = e \).

 (b) Prove that there exists \(m \in \mathbb{N} \) with \(m > 0 \) such that \(a^m = e \) for all \(a \in G \).

8. Prove that a group of order 5 or less is abelian.

9. Let \(G \) be a group.

 (a) Let \(a, b \in G \). Find an expression for \((ab)^{-1}\) in terms of \(a^{-1} \) and \(b^{-1} \). Prove your answer is correct.

 (b) Suppose that \(a = a^{-1} \) for every \(a \in G \). Prove that \(G \) is abelian.

10. If \(G \) is a finite group of even order, show that there must be an element \(a \neq e \) such that \(a = a^{-1} \). Hint: What does \((a^{-1})^{-1}\) equal?