Solutions are to be written on the board.

1. Let $m > 1$ be an integer and $H_m = \{mx \mid x \in \mathbb{Z}\}$. Prove that H_m is a subgroup of $(\mathbb{Z}, +)$.

2. Let G be a group with identity e and $H = \{a \in G \mid a^2 = e\}$.

 (a) Prove that if G is abelian, then H is a subgroup of G.

 (b) Is the statement true if G is nonabelian? Justify your answer.

3. Let (G, \ast) be a group and H a nonempty subset of G that is closed under \ast.

 (a) Prove that if H is finite, then H is a subgroup of G.

 (b) Is H a subgroup of G if G is finite? Justify your answer.

 (c) What about if G is infinite? Justify your answer.

4. Let (G, \ast) and (H, \circ) be two groups. Prove that if $\phi : G \to H$ is an isomorphism, then the inverse function ϕ^{-1} is an isomorphism from H to G.

5. Let G, H, and K be three groups. Prove that if $\phi : G \to H$ and $\psi : H \to K$ are isomorphisms, then the composition $\psi \circ \phi : G \to K$ is an isomorphism.

6. Let \mathcal{G} be the set of all groups. Define a relation on \mathcal{G} where $G \simeq G'$ if and only if G is isomorphic to G' for all $G, G' \in \mathcal{G}$. Prove that this is an equivalence relation.

7. Let (G, \ast) be a group. Define a binary operation \circ on G by $a \circ b = b \ast a$.

 (a) Prove that (G, \circ) is a group.

 (b) Prove that (G, \ast) and (G, \circ) are isomorphic.