CHAPTER I. INTEGRAL EQUATIONS
A COMPRENDIUM OF PROBLEMS

I. Consider the problem

\[y(x) = \int_{-1}^{1} \left(\frac{1}{2} + x t \right) y(t) \, dt + f(x). \]

(a) Explain how you know this problem is in the second alternative.

ans: \(y(x) = c \) is a non-trivial solution to the non-homogeneous problem.

(b) Find linearly independent solutions for the equation \(y = K(y) \).

(c) Let \(f_1(x) = 3x - 1 \) and \(f_2(x) = 3x^2 - 1 \). For one of these there is a solution to the equation \(y = K(y) + f \), for the other there is not. Which has a solution?

ans: \(3x^2 - 1 \).

(d) For the \(f \) for which there is a solution, find two.

ans: \(3x^2 - 1 + 7 \) and \(3x^2 - 1 + 11 \).

II Consider the problem

\[y(x) = \int_{0}^{1} x^2 t^2 y(t) \, dt + f(x). \]

(a) Show that the associated \(K \) is small in both senses of this section.

(b) Compute \(\phi_2 \) where \(f(x) = 1 \).

ans: \(\frac{2}{5}x^2 + 1 \)

(c) Give an estimate for how much \(\phi_2 \) differs from the solution \(y \) of \(y = K(y) + f \).

ans: error \(\leq \frac{1}{2425^2} \)

(d) Using the kernel \(k \) for \(K \), compute the kernel \(k_2 \) for \(K^2 \) and \(k_3 \) for \(K^3 \).

ans: \(k_2(x,t) = x^2 t^2 / 5 \).

(e) Compute the kernel for the resolvent of this problem.

ans: \(r(x,t) = \frac{5x^2 t^2}{4} \)

(f) What is the solution for \(y = K y + f \) in case \(f(x) = 1 \).

ans: \(y(x) = 1 + \frac{5}{12}x^2 \)

III. Consider the problem

\[y(x) = \int_{0}^{1} x t^3 y(t) \, dt + x^2. \]

(a) Compute the associated approximations \(\phi_0 \), \(\phi_1 \), \(\phi_2 \) and \(\phi_3 \).

ans: \(\phi_1(x) = x^2 + x/6 \)
(b) Give an estimate for how much ϕ_3 differs from the solution.
(c) Give the kernel for the resolvent of this problem.
\[\text{ans: } r(x,t) = \frac{5xt^3}{4} \]
(d) Using the resolvent, give the solution to this problem.
\[\text{ans: } y(x) = x^2 + \frac{5x}{24} \]
(e) Using the fact that the kernel of the problem separates, solve the equation.

IV. Suppose that \(K(x,t) = \begin{cases} 1-t & \text{if } x < t \\ 1-x & \text{if } t < x \end{cases} \)
(a) Show that \(\left| K(x,t) \right| dt < 1 \) for all \(x \) in \([0,1]\).
(b) Solve the problem \(y = K[y] + 1 \). \[\text{ans: } y(x) = \frac{\cos(x)}{\cos(1)} \]

V. a. Find a nontrivial solution for \(y = K[y] \) in \(L^2[0,1] \) where
\[K(x,t) = 1 + \cos(\pi x) \cos(\pi t) \]
b. Find a nontrivial solution for \(z = K^*[z] \).
c. What condition must hold on \(f \) in order that
\[y = K[y] + f \]
shall have a solution. Does \(f(x) = 3x^2 \) meet this condition.
\[\text{ans: } \text{Constant functions are nontrivial solutions for both equations and the equation of IV(c) has a solution provided} \]
\[\int_0^1 f(t) dt = 0. \]
The function \(3x^2 \) does not meet this condition.