CHAPTER I. INTEGRAL EQUATIONS

SECTION 1.1 GEOMETRY AND ONE TYPE OF LINEAR FUNCTION

Most often, freshman and sophomore mathematics is a study of the calculus of \mathbb{R}^n, likely with $n = 1, 2, \text{ or } 3$. Instead of working in the space \mathbb{R}^n, we now work in a space of functions on a finite interval. Most often, we will take that interval to be $[0,1]$. Of course, we will not work in the class of all functions on $[0,1]$; rather we ask that the linear space should consist of functions f for which

$$
\int_0^1 |f(x)|^2 \, dx < \infty.
$$

Then, we have an inner product space as we did in the finite dimensional calculus. This space is called $L^2([0,1])$. The dot product of two functions is given by

$$
<f, g> = \int_0^1 f(x) g(x) \, dx
$$

and the norm of f is defined in terms of the dot product:

$$
||f||^2 = \int_0^1 |f(x)|^2 \, dx.
$$

It does not seem appropriate to study in detail the nature of $L^2[0,1]$ at this time. Rather, suffice it to say that the space is large enough to contain all continuous functions - even functions which are continuous except at a finite number of places. The interested student can find what $L^2[0,1]$ is by looking in standard books in Real Analysis.

Having an inner product space, we can now decide if f and g in the space are perpendicular. The distance and the angle between f and g are given by the same formulas as we understood from the finite dimensional calculus: the distance from f to g is $||f - g||$ and the angle α between f and g satisfies

$$
\cos(\alpha) = \frac{<f, g>}{||f|| \cdot ||g||}
$$

provided neither f nor g is zero.

Suppose $\{f_p\}_{p=1}^\infty$ is a sequence of functions in $L^2([0,1])$. It is
valuable to consider the possible meanings for \(\lim_p f_p(x) = g(x) \). There are at least three meanings.

The sequence \(f_p \) converges point-wise to \(g \) at each \(x \) in \([0,1]\) provided that for each \(x \) in \([0,1]\),

\[
\lim_p f_p(x) = g(x).
\]

The sequence converges to \(g \) uniformly on \([0,1]\) provided that

\[
\lim_p \sup_x |f_p(x) - g(x)| = 0.
\]

And, the sequence converges to \(g \) in norm if

\[
\lim_p ||f_p - g|| = 0.
\]

An understanding of these three modes of convergence should be sought. These are ideas that re-occur in mathematics. In class, we will give examples to contrast these methods of convergence.

A type of integral equation will be studied in this section. For example, given a function called the kernel

\[
K: [0,1] \times [0,1] \rightarrow \mathbb{R}
\]

and a function \(f: [0,1] \rightarrow \mathbb{R} \), we seek a function \(y \) such that for each \(x \) in \([0,1]\),

\[
y(x) = \int_0^1 K(x,t) y(t) \, dt + f(x).
\]

Such equations are called Fredholm equations of the second kind. An equation of the form

\[
0 = \int_0^1 K(x,t) y(t) \, dt + f(x)
\]

is a Fredholm equation of the first kind.

The requirements in this section on \(K \) and \(f \) will be that

\[
\int_0^1 \int_0^1 |K(x,t)|^2 \, dx \, dt < \infty \quad \text{and} \quad \int_0^1 |f(x)|^2 \, dx < \infty.
\]

These requirements are met if \(K \) and \(f \) are continuous.
For simplicity, we denote by \(K \) the linear function given by

\[
K(y)(x) = \int_0^1 K(x,t) y(t) \, dt.
\]

Note that \(K \) has a domain large enough to contain all functions \(y \) which are continuous on \([0,1]\). Also, if \(y \) is continuous then \(K(y) \) is a function and its value at \(x \) is denoted \(K(y)(x) \). In spoken conversation, it is not so easy to distinguish the number valued function \(K \) and the function valued \(K \). The bold character will be used in these notes to denoted the latter.

It is well to note the resemblence of this function \(K \) to the multiplication of a matrix \(A \) by a vector \(u \):

\[
A(u)(p) = \sum_{q=1}^{\infty} A(p,q) u(q).
\]

This formula has the same form as that for \(K \) given above. The analogy should be instructive.

In order to understand \(K^* \), one must consider \(\langle K(f), g \rangle \) and seek \(K^* \) such that \(\langle Kf, g \rangle = \langle f, K^*g \rangle \).

\[
\langle K(f), g \rangle = \int_0^1 K(f)(x) \, g(x) \, dx
\]

\[
= \int_0^1 \int_0^1 K(x,t) f(t) \, g(x) \, dt \, dx.
\]

An examination of these last equations leads one to guess that \(K^* \) is given by

\[
K^*(g)(t) = \int_0^1 K(x,t) \, g(x) \, dx,
\]

or, keeping \(t \) as the variable of integration,

\[
K^*(g)(x) = \int_0^1 K(t,x) \, g(t) \, dt,
\]

Those last equations verified that

\[
\langle K(f), g \rangle = \langle f, K^*(g) \rangle.
\]
Care had to be taken to watch whether the "variable of integration" is t or x in the integrals involved.

In summary, if K is the kernel associated with the linear operator K, then the kernel associated with K^* is given by $K^*(x,y) = K(y,x)$. It is of value to compare how to get K^* from K with the process of how to get A^* from A:

$$A^*_{p,q} = A_{q,p}.$$

Consistent with the rather standard notation we have adopted above, it is clear that a briefer representation of the equation

$$\frac{1}{y(x)} = \int_0^1 K(x,t) y(t) \, dt + f(x)$$

is the concise equation $y = K(y) + f$, or $(1 - K)y = f$.

EXAMPLE: Suppose that

$$K(x,t) = \begin{cases} (x-t)^2 & \text{if } 0 < x < t < 1 \\ 0 & \text{if } 0 < t < x < 1 \end{cases}.$$

To get K^*, let's use other letters for the argument of K^* and K to avoid confusion. Suppose that $0 < u < v < 1$. Then, $K^*(u,v) = K(v,u) = 0$. In a similar manner, $K^*(u,v) = (u-v)^2$ if $0 < v < u < 1$. Note that K^* is not K.

$$K^*(x,t) = \begin{cases} 0 & \text{if } 0 < x < t < 1 \\ (x-t)^2 & \text{if } 0 < t < x < 1 \end{cases}.$$

The discussion of this example has been algebraic to this point. Consider this geometric notion that is suggested by the alternate name for "self-adjoint", namely, some call K "symmetric" if $K(x,t) = K(t,x)$. The geometric name suggests a picture and the picture is the graph of K. The K of this example is not symmetric in x and t. Its graph is not symmetric about the line $x = t$. The function K is different from the function K^*.

EXERCISE 2.1:

1. (a) Find the distance from $\sin(\pi x)$ to $\cos(\pi x)$ in $L^2[0,1]$ and $L^2[-1,1]$.
 Ans: $1, \sqrt{2}$

(b) Find the angle between $\sin(\pi x)$ and $\cos(\pi x)$ in $L^2[0,1]$ and $L^2[-1,1]$.
 Ans: $\pi/2, \pi/2$.

2. Repeat 1. (a) and (b) for x and x^2.
 Ans: $1/\sqrt{30}$, $4/\sqrt{15}$, $\arccos(\sqrt{15}/4)$, $\pi/2$.

3. Suppose $K(x,t) = 1 + 2x^2t^2$ on $[0,1] \times [0,1]$ and $y(x) = 3 - x$. Compute $K(y)$ and $K^*(y)$.
 Ans: $(5+3x)/2$, $(15+14x^2)/6$.

4. Suppose $K(x,t) = \begin{cases}
 x \ t \ 	ext{if} \ 0 < x < t < 1 \\
 x \ t^2 \ 	ext{if} \ 0 < t < x < 1
\end{cases}$.
 For $y(x) = 3 - x$, compute $K(y)$ and $K^*(y)$.
 Ans: $K[y](x) = -\frac{x^5}{4} + \frac{4x^4}{3} - \frac{3x^3}{2} + \frac{7x}{6}$.