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Section 13:  Adjoint Operators

Not every bounded linear mapping is self adjoint. You know this
from your experience with matrices. Never mind. They all have adjoints!

Suppose that A is a bounded linear transformation on E.  Fix z in E
and define L by L(x) = <Ax, z> for all x in E.  L is a bounded linear function
from E to CI.  By the Riesz Theorem, there is y in E such that L(x) = <x,y> for
all x in E.  Consider this pairing of z and y: for each z there is only one y. We
define the adjoint of A by pairing this y with z.

Definition If A is a bounded linear function on E then the adjoint of A, A*,
is the function on E such that <Ax, z > = <x, A*z> for all x  in the domain of
A.

Observations
(1) A* is a function from E to E that is linear and bounded.
(2) N(A*) = R(A)⊥

(3) If Ax = ∑
p=1

∞
 λp <x, φp> φp

for all x then A*(y) =  ∑
p=1

∞
 λp* <y, φp> φp .

Theorem 26  Suppose that K is a continuous function on [0,1]x[0,1] to R, so
that K(x,y) = K(y,x)*. Suppose also that A is defined by

A(f)(x) = ∫
0

1

 K(x,y)f(y) dy.

Then A is self adjoint. Moreover, if M = lub{<Ax, x>: |x| = 1} and m =
glb{<Ax ,x>: |x| = 1} and λ is an eigenvalue for A then m ≤ λ ≤ M.

Assignment
(13.1) Suppose that K is a continuous function from [0,1]x[0,1] to CI.  If 

A(f)(x) = ∫
0

1

 K(x,y) f(y) dy

then A is a bounded, linear function from all of L2[0,1].  Moreover, A* is
given by

A*(g)(u) = ∫
0

1

 H(u,v) g(v) dv,
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where H(u,v) = K(v,u)*,  so that A is self-adjoint if K(x,y) = K(y,x)*.

(13.2) Let K(x,y) = 


1

2(y-x) - 
1
4  if x < y

1
2(x-y) - 

1
4  if y < x

.

Define A(f)(x) = ∫
0

1

 K(x,y) f(y) dy

(a) Show that A is a bounded, linear function from L2[0,1] to L2[0,1].
(b) Show that A* = A.
(c) Show that these are equivalent:

(a) g = A(f)
(b) g′′ = f, g(0) + g(1) = 0, g′(0) + g′(1) = 0.

(d) Find the eigenvalues and eigenfunctions for A.
ans: λn = - 1/[(2n+1) π]2, fn(x) = cos((2n+1)π x) and sin((2n+1)π x)

(e) Show that A has the property that if {λp}
∞
p=1

 is the sequence of

eigenvalues then limpλp = 0.

MAPLE remark: Likely, by now, the reader is aware that what analysts call
the adjoint of an operator is different from what one often sees in texts on
linear algebra that is called the adjoint of a matrix. We persist. But, we take
note that the linear algebra package in MAPLE follows the notation of the
linear algebra texts, just as we follow the precedence of Hilbert space texts.
Perhaps this MAPLE exercise will give understanding to the two
"adjoints".

> with(linalg):
> A:=array([[1,2],[3,4]]);
> Ajoint:=adjoint(A); Apose:=transpose(A);
> evalm(A &* Ajoint)/det(A);
> dotprod(evalm(A &* vector([a,b])),vector([x,y])) - 

dotprod(vector([a,b]),evalm(Apose &* vector([x,y])));
> simplify(");

Thus, the transpose is the adjoint of these notes. Here is a complex
example.

> A:=array([[1+I,2+3*I],[3-2*I,4]]);
> Ajoint:=adjoint(A);
  Apose:=transpose(A);
  Aconjpose:=transpose(map(evalc,map(conjugate,A)));
> evalm(A &* Ajoint)/det(A);
> dotprod(evalm(A &* vector([a,b])),vector([x,y]))

- dotprod(vector([a,b]), evalm(Aconjpose &* vector([x,y])));
> simplify(");
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Section 14: Compact Sets

During the next portion of the notes, we will begin an investigation of
linear, compact operators.  In order to do this study, there are several ideas
about number sets that should be remembered: what is a bounded number
set, what is a compact number set, what is a sequentially compact number
set, and what is a totally bounded number set. These notions carry over to
normed spaces, too

Definitions  A set S is bounded if there is a number b such that if x is in S
then |x| ≤ b.

A set C is compact if every open covering of C has a finite subcovering.

A set C is sequentially compact  provided that if {sp} is a sequence with
values in C then there is a subsequence of {sp} that converges and has limit
in C.

A set S is totally bounded if, for each positive number c, there is a finite set

of points {xp}
n
p=1 such that S is contained in ∪p Dc(xp). ( Here, and in the

remainder of the notes, Dc(s) represents the open disk with center s and
radius c.)

Examples

(1) Unbounded sets are not totally bounded.

(2) In L2, cl(D1(0)) - - the closed unit disk - - is not totally bounded. Here's
why:  Let c = 2/2. Since ||ei - ej  || = 2, then any collection of disks of
radius less than 2/2 which covers all of cl(D1(0)) must be infinite.

(3) In R3, cl(D1(0)) is totally bounded.  Here's why:  Suppose that K is a
positive integer.  Choose points F such that if {a,b,c} is one of them then
each of a, b, and c has the form m/k where m is an integer and -k ≤ m ≤ k.
For example, if k = 3, then {a,b,c} might be {2/3, 1/3, -2/3}.  If {x,y,z} is any
point in cl(D1(0)), then there is a point {a,b,c} in F such that

||{x,y,z} - {a,b,c}||2 < 
3

 k2 .

Thus, if c > 0, choose k such that

   
3

 k2  < c  or   
3

c   < k.

We cover cl(D1(0)) by disks with radius c and centers at the points of F.

(4) (0,1) and [0,∞) are not sequentially compact.



49

Remark: In finite dimensions, if S is a set, then these are equivalent:
(a) S is compact,
(b) S is sequentially compact, and
(c) S is closed and bounded.

Our use of these ideas is illustrated in the next Theorem 27. To show the
generality, we reference Introductory Real Analysis, by Kolmogorov and
Fomin (translated by Richard Silverman) and published by Dover. In a
section numbered 11.2, they prove a Theorem 2: A metric space is compact
if and only if it is totally bounded and complete.

Theorem 27 If S is a subset of the Hilbert space {E, < , >}, then these are
equivalent:
(a) S is sequentially compact, and
(b) S is closed and totally bounded.

Suggestion of Proof:
a⇒b Prove S is closed.  Suppose lim up = v, each up is in S.  Sequential
compactness implies that v is in S.

To prove that S is totally bounded:  Suppose ε > 0. Pick u1;  if S is not
contained in Dε(u1) pick u2 in S but not in Dε(u1).  If there are an infinite
number of such disks then continue this process.  This produces an infinite
sequence {up} such that |up-uq| > ε.  S being sequentially compact implies
that this sequence has a subsequence that converges.  This is a
contradiction and there must be only a finite number of such disks.
b⇒a  Suppose that S is totally bounded and that {up} is an infinite sequence
with values in S.  A convergent subsequence will be extracted.  Choose a
finite number of disks with radius 1 that cover S.  An infinite subsequence
of u lies in one of these.  Call it u1(p).  Cover this disk containing u1 with a
finite number of disks with radius 1/2.  An infinite subsequence of u1  lies in
one of them, call this u2(p).  ETC.  Then |un(n) - um(m)| < 1/n for all m > n.
This is a subsequence of u that converges.  Since the space is complete, the
sequence has a limit.  If the set is closed, the limit is in S.

Remark
Insight into the geometric structure of a sequentially compact set in L 2 is
gained by realizing that, while a sequentially compact set in L 2 may be
infinite dimensional, it can contain no open set.

Assignment
(1) List four points {a,b} such that if 0 < x < 1, 0 < y < 1, then

    ||{x,y} - {a,b}||  <   
1
2

for at least  one of the four {a,b}.
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(2) Show that the Hilbert cube is totally bounded. The Hilbert cube consist of

points {xp} in L2 such that |xn| ≤ 
1
2n.

(Hint: if c > 0,  
1
2n < c/2, and x is in the cube, then there is xn and rn such

that x = xn + rn, |rn| < c/2, and xn is in D1(0) ∩ Rn.  This last set is totally
bounded.)

MAPLE remark: The compact sets in Rn are precisely the closed and
bounded sets. That is, a set in Rn is compact if and only if it is closed and
bounded. In a Hilbert space, every sequentially compact set is closed and
bounded, but there are closed and bounded sets that are not sequentially
compact. In fact, the closed unit disk is such an example. The following
syntax verifies that the sequence

2 sin(nπx),    n= 1, 2, 3, ...
in an infinite sequence in L2[0,1] in the unit disk, any two are orthogonal,
and the distance between any two is the square-root of two.

> int(2*sin(n*Pi*x)^2,x=0..1);
> int(2*sin(n*Pi*x)*sin(m*Pi*x),x=0..1);
> int(2*(sin(n*Pi*x)-sin(m*Pi*x))^2,x=0..1);
> simplify(");
> sqrt(simplify((4*n^3*m-4*n*m^3)/(n*m*(n^2-m^2))));

Note the relationship between this example and Example 2 of this
section.


