Section 23: The Deficiency of A

We have examined the paradigm whereby A can be written as

\[A(x) = \sum_{p=1}^{\infty} \lambda_p < x, \phi_p > \theta_p \]

in case \(\{ \lambda_p \} \to 0 \) or in case \(\{ \lambda_p \} \to \infty \). We now examine the special case that \(\{ \frac{1}{\lambda_p} \} \) is bounded.

Remark: It goes without saying that we are supposing that no \(\lambda_p \) is zero. It may be that \(\{ \phi_p \} \) is not a maximal orthonormal family. Then A could be extended to all of E by making the value zero at the extension of the \(\phi_p \)'s to a maximal orthonormal family. In that case, we can characterize the null space of this extension of A:

\[N(A) = \{ x: < x, \phi_p > = 0 \text{ if } \lambda_p \neq 0 \} \]

Theorem. Suppose that A can be written in the paradigm of (23.1) and that R(A) represents the range of A. Then, these are equivalent:

1. \(\{ \frac{1}{\lambda_p} \} \) is a bounded sequence,
2. \(R(A) = \{ y: y = \sum_{\lambda_p \neq 0} < y, \theta_p > \theta_p \} \).
3. \(R(A) = \text{perp}(N(A^*)) \), where \(\text{perp}(N(A^*)) \) is the collection of vectors perpendicular to the nullspace of A*.
4. \(R(A) \) is closed.

Suggestions for a proof:

1 => 2. Suppose (1). Let

\[S = \{ y: y = \sum_{\lambda_p \neq 0} < y, \theta_p > \theta_p \} \].

It is clear that the range of A is contained in S. To see that the range of A is S, suppose y is in S. Let

\[x = \sum_{\lambda_p \neq 0} \frac{1}{\lambda_p} < y, \theta_p > \phi_p \].

Because of (1), x is in E. Also, Ax = y.

2 => 3. Recall that
\[A^*(z) = \sum_{p=1}^{\infty} \lambda_p \cdot \langle z, \theta_p \rangle \cdot \phi_p. \]

Also, as in the Remark above

(23.2) \[N(A^*) = \{ z: \langle z, \theta_p \rangle = 0 \text{ if } \lambda_p \neq 0 \}. \]

And,

\[\text{perp}(N(A^*)) = \{ w: \langle w, \theta_p \rangle = 0 \text{ if } \lambda_p = 0 \}. \]

First we show that \(\text{perp}(N(A^*)) \) is contained in \(R(A) \). Suppose that \(w \) is in \(\text{perp}(N(A^*)) \). Then

\[w = \sum_p < w, \theta_p > \cdot \lambda_p = \sum_{\lambda_p \neq 0} < w, \theta_p >. \]

To see that this \(w \) is in \(R(A) \), we need to produce \(x \) so that \(A(x) = w \). As above, choose \(x = \sum_{\lambda_p \neq 0} \frac{1}{\lambda_p} < y, \theta_p > \cdot \theta_p. \)

As before \(Ax = w \). Thus, \(\text{perp}(N(A^*)) \) is contained in \(R(A) \).

Finally, we show that \(R(A) \) is contained in \(\text{perp}(N(A^*)) \). Suppose that \(y \) is in \(R(A) \) and \(z \) is in \(N(A^*) \). Then \(y \) is a combination of the \(\theta_p \)'s

\[< y, z > = \sum_{\lambda_p \neq 0} < y, \theta_p > \cdot \lambda_p = \sum_{\lambda_p \neq 0} < y, \theta_p > < \theta_p, z > = 0 \] by equation (23.2).

Thus, \(y \) is in \(\text{perp}(N(A^*)) \), completing the outline for \(2 \Rightarrow 3 \).

(3) = (4) This follows because \(\text{perp}(N(A^*)) \) is closed.

(4) \(\Rightarrow \) (1) Suppose that \(\{ 1/\lambda_p \} \) is unbounded. Then

\[A^{(-1)} = \sum_p \frac{1}{\lambda_p} < z, \theta_p > \cdot \phi_p \]

is an unbounded operator. Consequently, \(A^{(-1)} \) cannot have domain all of \(E \). Thus, there is \(z \) in \(E \) so that \(z \) is not in the domain of \(A^{(-1)} \) or, what is the same, \(z \) is not in the \(R(A) \). Let \(y_n \) be defined as follows:

\[y_n = \sum_{p=1}^{n} \frac{1}{\lambda_p} < z, \theta_p > \cdot \phi_p. \]

Then, \(A(y_n) \) is in the range of \(A \) and is seen to be

\[A(y_n) = \sum_{p=1}^{n} 1 < z, \theta_p > \cdot \theta_p. \]
Consequently, \(A(y_n) \) is a sequence in \(\text{R}(A) \) that has limit \(z \) which is not in \(\text{R}(A) \). Thus, \(\text{R}(A) \) is not closed. This is a contradiction.

This finishes an outline for a proof of the Theorem.

Definition. There are two numbers associated with \(A \):

\[
\eta(A) = \text{the dimension of the kernel of } A.
\]

and

\[
\delta(A) = \text{the dimension of the kernel of } A^*.
\]

We call the number \(\delta(A) \) the *deficiency of \(A \).* In a sense, this number measures how much the range of \(A \) is deficient in filling \(E \).

Examples:
1. If \(A \) is given by the simple paradigm,
 \[
 A(x) = \sum_{p=1}^{\infty} \lambda_p < x, \phi_p > \phi_p ,
 \]
then \(\eta(A) \) is the number of \(\lambda_p \)'s such that \(\lambda_p = 0 \), and \(\delta(A) = \eta(A) \).

2. If \(A \) is the right shift operator
 \[
 A(x) = \sum_{p=1}^{\infty} \lambda_p < x, \phi_p > \phi_{p+1} ,
 \]
so that
 \[
 A^*(x) = \sum_{p=1}^{\infty} \lambda_p^* < x, \phi_{p+1} > \phi_p ,
 \]
then \(\eta(A) = 0 \) and \(\delta(A) = 1 \).

3. We compute \(\eta(A) \) and \(\delta(A) \) for
 \[
 K[f](x) = \int_{0}^{1} \cos(\pi (x-y)) f(y) \, dy.
 \]
First, imagine \(K \) in the simple paradigm noting that the range of \(K \) is two dimensional and
 \[
 K[\cos(\pi y)](x) = \frac{\cos(\pi x)}{2} \text{ and } K[\sin(\pi y)](x) = \frac{\sin(\pi x)}{2}.
 \]
Hence, \(\eta(A) \) in \(L^2[0, 1] \) is \(\infty \). Also, \(\delta(A) = \infty \), since \(K = K^* \).
4. We compute $\eta(K)$ for

$$K[f](x) = x \int_0^x f(y) \, dy - \int_0^x y f(y) \, dy = \int_0^x (x - y) f(y) \, dy$$

Suppose f is in the kernel of K. Then $K[f](x) = 0$. Taking the derivative with respect to x, we see that

$$0 = \frac{\partial}{\partial x} K[f](x) = \int_0^x f(y) \, dy,$$

and

$$0 = \frac{\partial^2}{\partial x^2} K[f](x) = f(x).$$

Thus, f is zero and the null space of A must be zero. Hence $\eta(A) = 0$.

77