Module 13: Review of Elementary Differential Equations II

Question 1. Suppose \(\lambda > 0 \). Which of these is a pair of linearly independent solutions for \(Y'' - \lambda^2 Y = 0 \) on \([0, \pi]\)?

a. \(\exp(\lambda x) \) and \(\exp(-\lambda x) \),

b. \(\sin(\lambda x) \) and \(\cos(\lambda x) \),

c. \(\sinh(\lambda x) \) and \(\cosh(\lambda x) \),

d. \(\sinh(\lambda x) \) and \(\sinh(\lambda (\pi - x)) \)
Question 2. Suppose $\lambda > 0$. Which of these is a pair of linearly independent solutions for $Y'' + \lambda^2 Y = 0$ on $[0, \pi]$?

- e. $\exp(\lambda x)$ and $\exp(-\lambda x)$,
- f. $\sin(\lambda x)$ and $\cos(\lambda x)$,
- g. $\sinh(\lambda x)$ and $\cosh(\lambda x)$,
- d. $\sinh(\lambda x)$ and $\sinh(\lambda (\pi - x))$
Question 3. Suppose $\lambda > 0$. Which of these is a bounded solution for

$$Y'' - \lambda^2 Y = 0 \text{ on } [0, \infty)?$$

a. $\exp(\lambda x)$

b. $\exp(-\lambda x)$

c. $\sinh(\lambda x)$

d. $\cosh(\lambda x)$

There are two issues here: which is a solution and which is bounded on the specified interval.
Question 4. Which of these is a bounded solution on the interval [0, 5] for the differential equation
\[r^2 R''(r) + r R'(r) - 9 R(r) = 0 \]?

a. \(\exp(3 \, r) \)
b. \(r^3 \)
c. \(\sin(3 \, r) \)
d. \(\exp(-3 \, r) \)
e. \(1/r^3 \)
f. \(\cosh(3 \, r) \)
Question 5. If \(u(x, y) = \)

\[
\sum_{p} a_p \sin(px) \sinh(py) + \sum_{p} b_p \sin(px) \sinh(p(\pi - y))
\]

and

\[
u(x,0) = 0, \quad u(x, \pi) = \sin(2x)
\]

what are the \(a_p \)'s and \(b_p \)'s?

We have two pieces of information.
\[\sum a_p \sin(px) \sinh(py) + \sum b_p \sin(px) \sinh(p(\pi - y)) \]

\[u(x,0) = 0, \quad u(x, \pi) = \sin(2x) \]

The first of these implies that all the \(b_p \)'s = 0, and the second implies that all the \(a_p \)'s = 0, except \(a_2 = 1/\sinh(2\pi) \).
Graph of $\sin(2x) \sinh(2y) / \sinh(2\pi)$
Question 6. If \(u(r, \theta) = \)

\[\sum_p a_p \sin(p \theta) r^p + \sum_p b_p \cos(p \theta) r^p \]

and

\[u(1, \theta) = 1 + 3 \cos(3 \theta) + 5 \sin(2 \theta) \]

then what is \(u(r, \theta), \ u(0,0), \ \text{and} \ u(1/2, \pi/4)? \)
\[
\sum_{p} a_p \sin(p \theta) r^p + \sum_{p} b_p \cos(p \theta) r^p
\]

\[u(1, \theta) = 1 + 3 \cos(3 \theta) + 5 \sin(2 \theta)\]

This implies that all \(a_p\)'s = 0 and \(b_p\)'s = 0

except \(b_0 = 1, b_3 = 3,\) and \(a_2 = 5.\)
\[u(r, \theta) = 1 + 3 \, r^3 \cos(3 \, \theta) + 5 \, r^2 \sin(2 \, \theta) \]

\[u(0,0) = 1 \quad \text{and} \quad u(1/2, \pi/4) = 1 - 3/8 \sqrt{2} + 5/4. \]
Question 7. What are all the eigenvalues of the self-adjoint, Sturm-Liouville Problem

\[y'' = \mu y, \text{ with } y(0) = y(1) = 0 \]

We break the problem into two cases.

First, suppose that \(\mu > 0 \).

Take \(\mu = \lambda^2 \). Thus, we seek numbers \(\lambda \) such that

\[y'' = \lambda^2 y \text{ with } y(0) = y(1) = 0. \]
\[y'' = \lambda^2 y \] with \(y(0) = y(1) = 0 \).

has general solutions of the form
\[y(x) = A \exp(\lambda x) + B \exp(-\lambda x). \]

\[y(0) = 0 \implies 0 = A + B. \]

\[y(1) = 0 \implies 0 = A \exp(\lambda) + B \exp(-\lambda). \]

Thus \(A = 0 = B \).
\[y'' = \mu \, y, \text{ with } y(0) = y(1) = 0? \]

Second case: \(\mu < 0 \). Take \(\mu = -\lambda^2 \).

\[y'' = -\lambda^2 \, y \text{ with } y(0) = y(1) = 0. \]

General solution is
\[y(x) = A \sin(\lambda \, x) + B \cos(\lambda \, x). \]

\[y(0) = 0 \Rightarrow 0 = B. \]
\[y(1) = 0 \Rightarrow 0 = A \sin(\lambda). \]

\[0 = \sin(\lambda) \quad \text{so that} \quad \lambda = n \, \pi \text{ and } \mu = -n^2 \, \pi^2. \]
Eigenvalues are \(- n^2 \pi^2\) and eigenfunctions are \(\sin(n \pi x)\).

Surprised?

Assignment: See Maple Worksheet

In this Module 13 we have
1. Examined bounded solutions for Sturm-Liouville Problems,
2. Found eigenvalues for a Sturm-Liouville Problem, and
3. Identified coefficients of trigonometric series.