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Christian Houdré∗, Jüri Lember†, Heinrich Matzinger

July 24, 2006

Abstract

Let X1, X2, . . . and Y1, Y2, . . . be two independent sequences of iid Bernoulli random variables with param-
eter 1/2. Let LCIn be the length of the longest increasing sequence which is a subsequence of both finite
sequences X1, . . . , Xn and Y1, . . . , Yn. We prove that, as n goes to infinity, n−1/2(LCIn − n/2) converges
in law to a Brownian functional that we identify.

Résumé
Soient X1, X2, . . . et Y1, Y2, . . . deux suites mutuellement indépendantes de variables aléatoires de Bernoulli
indépendantes, équidistribuées de paramètre 1/2. Soit LCIn la longueur de la plus longue sous-suite
croissante et commune aux deux sous-suites finies X1, . . . , Xn and Y1, . . . , Yn. Nous démontrons que
n−1/2(LCIn − n/2) converge en loi vers une fonctionnelle brownienne que nous identifions.

Version française abrégée
Dans cette Note, nous nous intéressons au problème de déterminer l’ordre des fluctuations de la longueur

de la plus longue sous-suite croissante qui est aussi commune à deux suites binaires indépendantes. Notre
résultat principal est le suivant:

Théorème. Soient X1,X2, . . . ,Xn, . . . et Y1, Y2, . . . , Yn, . . . deux suites indépendantes de variables aléatoires
de Bernoulli iid et de paramètre 1/2. Soit LCIn le maximum des entiers 1 ≤ k ≤ n tels qu’il existe
1 ≤ i1 < i2 < . . . < ik ≤ n et 1 ≤ j1 < j2 < . . . < jk ≤ n avec Xi1 ≤ Xi2 ≤ . . . ≤ Xik , Yj1 ≤ Yj2 ≤ . . . ≤ Yjk

et Xis = Yjs
pour tout s = 1, . . . , k. Alors

LCIn − n/2√
n

=⇒ max
t∈[0,1]

[

min
i=1,2

(

Bi(t) − 1

2
Bi(1)

)]

,

où B1 =
(

B1(t)
)

t∈[0,1]
et B2 =

(

B2(t)
)

t∈[0,1]
sont deux mouvements browniens standards indépendants.

Les motivations et perspectives de notre travail sont à la fois les interactions profondes entre les problèmes
de sous-suites et diverses branches des mathématiques comme la combinatoire algébrique, les matrices
aléatoires, et les polynômes orthogonaux, mais aussi des considérations plus pratiques de bioinformatique.
L’obtention de lois limites, souvent nouvelles, et dans le cadre d’ alphabets finis, de modèles markoviens,
... est en effet une première étape vers le développement de méthodes quantitatives, telles que des tests
statistiques, utilisables en séquencage d’ADN.

1 Introduction: The One Sequence Case

Longest increasing subsequence (LIS) problems have recently enjoyed renewed popularity. This stems mainly
from the work of Baik, Deift and Johansson ([1]) who showed that the limiting law of the fluctuations of the
longest increasing subsequence of a random permutation is the same as the law of the maximal eigenvalue
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of certain random matrix models. This result has led to numerous recent advances, such as the work of
Borodin ([3]) for colored random permutations or the case of finite alphabets random words by Its, Tracy
and Widom ([8], [4], [5]) as well as Johansson ([6]). Related results with links to queueing theory were
also obtained by Baryshnikov ([2]) and further connections with orthogonal polynomials, random matrices,
growth models have since been further investigated by many authors.

A related important open problem, with direct consequences in computational biology (see, e.g. Water-
man [9], [10]), is to find the order of the fluctuations of the length of the longest common subsequence (LCS)
of two or more random sequences.

We obtain below the limiting distribution for the hybrid problem of the longest common and increasing
subsequence (LCIS) of two random binary sequences. We start by presenting the one sequence case, where
the results are known and obtained in the works just cited. Our approach might be worthwhile because of
its simplicity and because it naturally leads and extends to the case of two (or more) sequences.

Let X := (X1,X2, . . .) ∈ {0, 1}N be an infinite binary sequence. Let LIn be the length of the longest
increasing subsequence of X1,X2, . . . ,Xn, i.e. LIn is the maximal k ≤ n such that there exists an increasing
sequence of natural numbers 1 ≤ i1 < i2 < . . . < ik ≤ n such that Xi1 ≤ Xi2 ≤ . . . ≤ Xik . Let bk be

the number of ones in the finite sequence X1,X2, . . . ,Xk, in other words, let b0 := 0, bk :=
∑k

i=1 Xi, and
let also ak be the number of zeros in the sequence X1,X2, . . . ,Xk. Clearly, ak = k − bk. Next, for every
0 ≤ k ≤ n, an increasing subsequence of X1,X2, . . . ,Xn can be constructed by taking all the zeros up to
(including) Xk, and then by taking all the ones between (and including) Xk+1 and Xn. The number of zeros
up to time k is equal to ak, while the number of ones from Xk to Xn is equal to bn − bk. The maximum
over k = 0, . . . , n of the length of all the subsequences obtained in this way is LIn. In other words,

LIn = max
k=0,...,n

(ak + (bn − bk)) = bn + max
k=0,...,n

(k − 2bk) .

Letting Zi := 1 − 2Xi, it is then clear that ak − bk = k − 2bk =
∑k

i=1 Zi, and so setting S0 = 0, Sk =
∑k

i=1 Zi, k ≥ 1, gives

LIn =
n

2
− Sn

2
+ max

k=0,...,n
Sk. (1.1)

Using (1.1) and the reflection principle, one easily shows that ELIn = n/2 +
√

2n/π + o(
√

n) and that
VarLIn = 3n/4 − 2n/π + o(n). Moreover, Donsker’s theorem and the continuous mapping theorem yield

LIn − n/2√
n

=⇒ −B(1)

2
+ max

t∈[0,1]
B(t), (1.2)

where ”=⇒” stands for convergence in law. The above limiting law is well known and connected to a theorem
of Pitman (see [7]). Its density can also be derived ”by hand” and is given by: 16x2e−2x2

/
√

2π, x > 0.

2 The Two Sequence Case

Let X1,X2, . . . and Y1, Y2, . . . be two binary sequences, and let

Xn := (X1, . . . ,Xn), Y n := (Y1, . . . , Yn).

Denote by LCIn the length of the longest common increasing subsequence which is contained in both Xn

and Y n. In other words, LCIn is the maximum over the ks that satisfy the following condition: there exist
1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ n such that

Xi1 ≤ Xi2 ≤ . . . ≤ Xik , Yj1 ≤ Yj2 ≤ . . . ≤ Yjk

and Xis = Yjs
for all s = 1, . . . , k. Let N1 (resp. N2) be the number of zeros in Xn (resp. in Y n). Let

T 1
k denote the location of the kth zero in the sequence (X1,X2, . . .), i.e. T 1

k is defined recursively by the
equations

T 1
0 = 0, T 1

1 = min{t : Xt = 0}, T 1
k+1 = min{t > T 1

k : Xt = 0}.
In a similar way define T 2

k to be the location of the kth zero in the sequence (Y1, Y2, . . .). Let

g1 : {0, . . . , N1} → N (resp.g2 : {0, . . . ,N2} → N)
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be the maximum number of ones contained in any increasing subsequence of Xn(resp. of Y n) which contains
exactly k zeros. Hence, g1(k) =

∑n
i>T 1

k

Xi, k = 0, . . . ,N1, g2(k) =
∑n

i>T 2

k

Yi, k = 0, . . . ,N2, and, in

particular, gi(0) = n − Ni. Thus, g1(k) + k (resp. g2(k) + k) is the length of the longest increasing
subsequence of Xn (resp. Y n) that contains exactly k zeros and mini=1,2 gi(k) + k is the length of the
longest common increasing subsequence with exactly k zeros. Since a common subsequence of X and Y can
contain at most N1 ∧ N2 zeros, we have the following useful relation:

LCIn = max
k=0,...,N1∧N2

[

min
i=1,2

(gi(k) + k)

]

. (2.1)

Let 1 ≤ k ≤ Ni. Between k − 1 and k, the function gi decreases by the number of ones located between
T i

k−1 and T i
k. This number is equal to Zi

k := T i
k − T i

k−1 − 1, k = 1, . . . ,Ni. Thus, for i = 1, 2, it follows that

gi(k) − gi(k − 1) = −Zi
k, k = 1, . . . ,Ni. (2.2)

Moreover, recall that gi(0) = n − Ni, and thus for any k ≥ 1,

gi(k) = n − Ni −
k
∑

j=1

Zi
j , i = 1, 2. (2.3)

Assume now that the sequences X1,X2, . . . and Y1, Y2, . . . are independent of each other. Let also the Xks
as well as the Yks be iid Bernoulli random variables with parameter 1/2. In this case, T i

1, T
i
2, . . . , T

i
k, . . . are

Pascal (negative binomial) random variables with respective parameters 1, 2, . . . , k, . . . and 1/2 and, as such
each T i

k is the sum of k iid geometric random variables with parameter 1/2. Now, for i = 1, 2, Zi
1 + 1, Zi

2 +
1, Zi

3 + 1 . . . is the corresponding sequence of iid geometric random variables with parameter 1/2. Hence
Zi

1, Z
i
2, Z

i
3 . . . , is a sequence of iid random variables with E(Zi

1) = 1 and VarZi
1 = 2. Moreover the sequences

Z1
1 , Z1

2 , Z1
3 . . . and Z2

1 , Z2
2 , Z2

3 . . . are also independent. We use the sequence Zi
1, Z

i
2, Z

i
3 . . . to approximate

a standard Brownian motion. Let k = 0, . . . , n and t = k/n, and let B̂i
n(t) := −∑tn

j=1(Z
i
j − 1)/

√
2n. For

t ∈ (k/n, (k + 1)/n), k = 0, 1, . . . , n − 1, again define B̂i
n(t) by linear interpolation. By (2.2) and (2.3), it

thus follows that gi(k) + k = gi(0) −∑k
j=1(Z

i
j − 1) = n − Ni +

√
2nB̂i

n (k/n). Hence, by (2.1)

LCIn = max
0≤k≤N1∧N2

[(

n − N1 +
√

2nB̂1
n

(

k

n

))

∧
(

n − N2 +
√

2nB̂2
n

(

k

n

))]

. (2.4)

Note that

T i
k =

k
∑

j=1

(Zi
j + 1) =

k
∑

j=1

(Zi
j − 1) + 2k = −

√
2nB̂i

n

(

k

n

)

+ 2k. (2.5)

Moreover, Ni is a binomial random variable with parameters n and 1/2, and thus for n large it is highly
concentrated around its mean n/2.

The next theorem states that this setting an analogue of (1.2) hold, i.e. n−1/2(LCIn −n/2) converges in
law to a Brownian functional. This implies that LIn as well as the stochastically smaller random variable
LCIn have the same order of fluctuation. Intuitively, to better understand this result, note that it is very
likely that, in both sequences, the first n/2 terms contains around n/4 zeroes, and the last n/2 terms contains
around n/4 ones. When this is the case, the longest common subsequence is at least n/2. However, since
by (1.2), LIn is equivalent to n/2, the stochastically smaller random variable LCIn should have the same
property.

Theorem 2.1 Let X1,X2, . . . ,Xn, . . . and Y1, Y2, . . . , Yn, . . . be two independent sequences of iid Bernoulli

random variables with parameter 1/2. Then

LCIn − n/2√
n

=⇒ max
t∈[0,1]

[

min
i=1,2

(

Bi(t) − 1

2
Bi(1)

)]

, (2.6)

where B1 =
(

B1(t)
)

t∈[0,1]
and B2 =

(

B2(t)
)

t∈[0,1]
are two independent standard Brownian motions.
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Proof. By the self-similarity property of Brownian motion, to prove (2.6) it suffices to show that

LCIn − n/2√
2n

⇒ max
t∈[0, 1

2
]

[

min
i=1,2

(

Bi(t) − 1

2
Bi

(

1

2

))]

. (2.7)

Next, for ak, bk reals,

| max
k=1,...,n

(ak ∧ bk) − max
k=1,...,n

((ak + c) ∧ (bk + d)) | ≤ max
k=1,...,n

|(ak ∧ bk) − ((ak + c)∧ (bk + d))| ≤ |c| ∨ |d|.
(2.8)

By (2.4),

Dn :=
LCIn − n/2√

2n
= max

0≤k≤N1∧N2

[(

n/2 − N1√
2n

+ B̂1
n

(

k

n

))

∧
(

n/2 − N2√
2n

+ B̂2
n

(

k

n

))]

.

Let

γi
n :=

n/2 − Ni√
2n

+
1

2
B̂i

n

(

Ni

n

)

, i = 1, 2.

So

Dn = max
0≤k≤N1∧N2

[(

γ1
n − 1

2
B̂1

n

(

N1

n

)

+ B̂1
n

(

k

n

))

∧
(

γ2
n − 1

2
B̂2

n

(

N2

n

)

+ B̂2
n

(

k

n

))]

.

Let

Un := max
0≤k≤N1∧N2

[(

−1

2
B̂1

n

(

N1

n

)

+ B̂1
n

(

k

n

))

∧
(

−1

2
B̂2

n

(

N2

n

)

+ B̂2
n

(

k

n

))]

.

By (2.8),
|Dn − Un| ≤ |γ1

n| ∨ |γ2
n|. (2.9)

Let

Vn := max
0≤k≤N1∧N2

[(

−1

2
B̂1

n

(

1

2

)

+ B̂1
n

(

k

n

))

∧
(

−1

2
B̂2

n

(

1

2

)

+ B̂2
n

(

k

n

))]

.

By (2.8),

|Un − Vn| ≤
1

2

∣

∣

∣

∣

B̂1
n

(

1

2

)

− B̂1
n

(

N1

n

)∣

∣

∣

∣

∨ 1

2

∣

∣

∣

∣

B̂2
n

(

1

2

)

− B̂2
n

(

N2

n

)∣

∣

∣

∣

. (2.10)

Let

Xn := max
0≤t≤1/2

[(

−1

2
B̂1

n

(

1

2

)

+ B̂1
n(t)

)

∧
(

−1

2
B̂2

n

(

1

2

)

+ B̂2
n(t)

)]

.

Hence,

Vn − Xn ≤ max
t∈

h

1

2
,
N1

n

i

(

B̂1
n(t) − B̂1

n

(

1

2

))

∨ max
t∈

h

1

2
,
N2

n

i

(

B̂2
n(t) − B̂2

n

(

1

2

))

. (2.11)

In the following, let i = 1, 2 be fixed, and let us skip it from the notation. By the very definition of B̂n,

max
t∈[ 1

2
, N

n
]

(

B̂n(t) − B̂n

(

1

2

))

= max
k=pn/2q,...,N

(

B̂n

(

k

n

)

− B̂n

(

1

2

))

∨ 0.

Let m = ⌈n/2⌉, where ⌈·⌉ is the usual ceiling (or greatest integer) function. Then, B̂n(k/n) − B̂n(1/2) =
∑k

j=m ξj/
√

2n, where

ξm =
√

2n

(

B̂n

(m

n

)

− B̂n

(

1

2

))

, ξm+1 = Zm+1 − 1, ξm+2 = Zm+2 − 1, . . . , ξk = Zk − 1.

4



Clearly, ξm = 0, if n is even, and ξm = 1
2(Zi

m − 1) otherwise. Let Cn :=
{

∣

∣

N
n − 1

2

∣

∣ ≤ lnn√
n

}

, then

P

(

max
t∈[ 1

2
, N

n
]

∣

∣

∣

∣

B̂n(t) − B̂n

(

1

2

)∣

∣

∣

∣

> ε

)

= P



 max
k=m,...,N

1√
2n

∣

∣

∣

∣

∣

∣

k
∑

j=m

ξj

∣

∣

∣

∣

∣

∣

> ε





≤ P



 max
k=m,...,n/2+

√
n lnn

1√
n

∣

∣

∣

∣

∣

∣

k
∑

j=m

ξj

∣

∣

∣

∣

∣

∣

> ε



+ P(Cc
n)

≤ ln n

ε2
√

n
+ P(Cc

n),

by Kolmogorov’ss inequality. Next, P(Cc
n) → 0. Indeed, N ∼ Bin(n, 1/2) and so,

P(Cc
n) = P(|N − n/2| >

√
n log n) ≤ 2e−2n(log n)2/n = 2e−2(log n)2 .

Thus,

max
t∈[ 1

2
, N

n
]

(

B̂n(t) − B̂n

(

1

2

))

P→ 0, (2.12)

implying that Vn − Xn
P→ 0. Now,

Xn − Vn ≤ max
t∈

h

N1

n
, 1
2

i

(

B̂1
n(t) − B̂1

n

(

N1

n

))

∨ max
t∈

h

N2

n
, 1
2

i

(

B̂2
n(t) − B̂2

n

(

N2

n

))

. (2.13)

To prove that

max
t∈[N

n
, 1
2
]

(

B̂n(t) − B̂n

(

N

n

))

P→ 0, (2.14)

we use similar arguments, since

P

(

max
t∈[N

n
, 1
2
]

∣

∣

∣

∣

B̂n(t) − B̂n

(

N

n

)∣

∣

∣

∣

> ε

)

= P



 max
k=N,...,m

1√
2n

∣

∣

∣

∣

∣

∣

k
∑

j=N

ξj

∣

∣

∣

∣

∣

∣

> ε





≤ P



 max
k=n/2−

√
n lnn,...,m

1√
2n

∣

∣

∣

∣

∣

∣

k
∑

j=n/2−
√

n lnn

ξj

∣

∣

∣

∣

∣

∣

> ε





+ P(Cc
n) −→ 0.

Hence, Xn − Vn
P→ 0, and so |Xn − Vn| P→ 0. Together, the convergence results (2.12) and (2.14) imply that

|Un − Vn| P→ 0. Let us next prove that γi
n

P→ 0. Again, we skip i from the notation. From (2.5),

n/2 − N√
2n

=
n − TN

2
√

2n
− 1

2
B̂n

(

N

n

)

,

and

γn =
n/2 − N√

2n
+

1

2
B̂n

(

N

n

)

=
n − TN

2
√

2n
.

Now, TN is the location of the last zero in X1, . . . ,Xn, and so P(n − TN = j) = 2−j+1, if j = 0, . . . , n − 1
while P(n − TN = n) = 2−n. Hence, for any ε > 0,

P(|n − TN | > 2ε
√

2n) = P(n − TN > 2ε
√

2n) ≤
(

1

2

)2ε
√

2n

→ 0.

The convergence of γn
P→ 0 follows. Hence, |Dn − Un| P→ 0, |Un − Vn| P→ 0 and |Xn − Vn| P→ 0 and so

|Dn − Xn| P→ 0. (2.15)
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Let Y i, i = 1, 2 be a C[0, 1]-valued random element so that

Y i
n(t) := −1

2
B̂i

n

(

1

2

)

+ B̂i
n(t), i = 1, 2.

Since B̂i
n ⇒ Bi, it follows that Y i

n ⇒ Bi − 2−1Bi (1/2), i = 1, 2. Let Yn := (Y 1
n , Y 2

n ). Then Yn is a
C[0, 1] × C[0, 1]-valued random element. Since Y 1

n and Y 2
n as well as B1 and B2 are independent, Yn ⇒

(B1, B2). Appealing twice to the continuous mapping theorem shows that

Xn = max
t∈[0, 1

2
]

(

Y 1
n (t) ∧ Y 2

n (t)
)

⇒ max
t∈[0, 1

2
]

[(

B1(t) − 1

2
B1

(

1

2

))

∧
(

B2(t) − 1

2
B2

(

1

2

))]

.

By (2.15), Dn converges in distribution to the same limit.
It would be interesting to find a more explicit representation for the law of the limiting distribution

obtained in the above theorem, in other words for the law of

max
t∈[0,1]

1√
2

[

B1(t) − 1

2
B1(1) −

∣

∣B2(t) − 1

2
B2(1)

∣

∣

]

.

Note also that the proof of the above theorem can be easily extended to an arbitray, but fixed, number k of
random sequences leading to the functional maxt∈[0,1]

[

mini=1,...,k

(

Bi(t) − Bi(1)/2
)]

.
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