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Introduction

We studied two different approaches to interpreting high dimensional
data sets: community detection and non-linear dimension reduction.
Under community detection, we reviewed spectral clustering as pre-
sented in [3]. We also examined the diffusion maps algorithm, a non-
linear dimension reduction technique, as presented in [1, 2].

Both algorithms were implemented and run in Python on synthetic data
sets. We explored the efficacy of the algorithms on data sets of different
sizes.

Graphs and Neighborhoods

Fig. 1: Construction of a 2-nearest

neighbors graph

A similarity graph can be constructed on a
data set to encode information about a data
set. There are several ways to do this:

• The complete neighborhood graph:
Connect every pair of vertices and weight
with a kernel

• k nearest neighbors: Connect a vertex
with it’s k nearest neighbors, see Figure
1. Optionally weight edges

• ε-neighborhood: Connect two vertices if
they are within ε of each other

Markov Chains
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Fig. 2: A simple Markov chain

A Markov chain is a stochastic model that has a
set of states and transition probabilities between
them. Markov chains can be used to infer global
information about a system, like the stationary
distribution, by studying local transition proba-
bilities.

We can construct a transition matrix for the
Markov chain in Figure 2.

M =

 0 0.3 0.4
0.4 0 0
0.6 0.7 0.6


.

Diffusion Maps

The diffusion maps algorithm is a non-linear dimension reduction technique used
to recover the underlying manifold geometry of a data set. Let X be the data
set, µ a measure on X, and suppose we have a kernel function k : X × X → R
that describes similarity or affinity between points. We can normalize k

p(x, y) =
k(x, y)

d(x)
where d(x) =

∫
X

k(x, y) dµ(y)

to a transition kernel p for a Markov chain on X, and define the diffusion operator

Pf(x) =

∫
X

p(x, y)f(y) dµ(y)

Spectral analysis of P and its powers can be used to construct an embedding of
the data points into a lower dimensional space. In particular, P has a discrete
set of eigenvalues λi and eigenfunctions ψi. We use eigenfunctions corresponding
to the largest eigenvalues to define the family of diffusion maps:

Ψt(x) = (λt1ψ1(x), λt2ψ2(x), · · · , λtsψs(x))

Fig. 3: Left: n = 5000 points generated along a Swiss Roll, Right: The embedding generated by the algorithm

The implementation uses k-nearest neighbors with a Gaussian kernel to construct
the similarity graph and uses this to compute the low dimensional embedding.

Fig. 4: The diffusion maps algorithm on n = 800 points

Running this algorithm with a small number of points does not work as well
- there is less information encoded in the similarity graph due to the smaller
number of neighbors.

Spectral Clustering

Spectral clustering is a community detection technique that uses the
eigenvectors of a graph Laplacian to cluster a data set. We define the
unnormalized and normalized Laplacians:

L = D −W and Lrw = I −D−1W

where D is the degree matrix and W is the weight matrix for the
similarity graph. We use the first few eigenvectors of the Laplacian to
cluster the data points.

Fig. 5: Left: n = 1000 data points generated around two half-moons, Right: Clusters generated by algorithms

Our implementation uses the normalized spectral clustering algorithm
by Shi and Malik as presented in [3]. The algorithm uses k-nearest
neighbors with a Gaussian kernel to construct a similarity graph.

Fig. 6: The eigenvalues

of the Laplacian

Spectral clustering more accurately identifies rele-
vant structures in the data set and clusters accord-
ingly; a less sophisticated algorithm would not be
able to identify the half-moons in Figure 5.

The eigengaps of the Laplacian provide a heuristic
for the ideal number of clusters to make - as seen
in Figure 6, 2 is optimal for the half-moons data
set in Figure 5.
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