1. (10 points) Let V be a vector space of dimension 10, and let $T \in \mathcal{L}(V)$ with $\dim \ker T \geq 6$. Show that T has at most 5 distinct eigenvalues.

2. (10 points) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by

$$T(x_1, x_2, x_3) = (2x_1 + x_2 + x_3, x_1 + 2x_2 + x_3, x_1 + x_2 + 2x_3)$$

Find all eigenvalues of T. Is T diagonalizable? (Hint: first show that T is diagonalizable iff $T + I$ is diagonalizable, then consider the matrix whose entries are all 1.)
3. (10 points) Let V be an inner product space, and let $u, v \in V$. Show that $||u|| = ||v||$ iff $||au + bv|| = ||bu + av||$ for all $a, b \in \mathbb{R}$.

4. (10 points) Let $\mathcal{P}_2(\mathbb{R})$ denote the vector space of real polynomials of degree at most 2, with inner product $\langle p, q \rangle := \int_0^1 p(x)q(x) \, dx$. Apply the Gram-Schmidt procedure to obtain an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$ from the basis

$$\{x^2, x, 1\}$$
5. (10 points) Let \(a, b, c, d \) be positive real numbers. Show that \((a + b + c + d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \geq 16.\)

6. (10 points) Let \(V \) be a vector space, \(T \in \mathcal{L}(V) \), and suppose \(u, v \in V \) are eigenvectors of \(T \) such that \(u + v \) is also an eigenvector of \(T \). Show that \(u, v \) are eigenvectors of \(T \) corresponding to the same eigenvalue.
Use this page for additional work