1. Show that if a rational function is symmetric, then it is a quotient of two symmetric polynomials.

2. Let \(n \in \mathbb{N} \) be odd.
 i) If \(K/\mathbb{Q} \) is finite, show that \(K \) contains a primitive \(n \)th root of 1 iff \(K \) contains all \((2n) \)th roots of 1.
 ii) Show that \(i = \sqrt{-1} \notin \mathbb{Q}(\zeta_n) \).

3. Show that in a finite field, every element can be written as a sum of exactly two squares.

4. Let \(G \) be a finite abelian group, and \(p \) a prime dividing \(|G|\). Show that for all \(n \gg 0 \), \(\mathbb{Z}/p^n \mathbb{Z} \otimes \mathbb{Z}G \) is isomorphic to the Sylow \(p \)-subgroup of \(G \).