Quantum Information \& Quantum Computing

Final Exam
April 30th, 2004

First Name : \qquad

Name : \qquad

Gatech Id \# : \qquad
e-mail : \qquad

Quantum circuits I : Give the expression of the unitary matrices representing the 1-qubit gates denotes by X, Y, Z, H, S, T.

$$
X=
$$

$$
Y=
$$

$$
Z=
$$

$$
S=
$$

$$
T=
$$

Quantum circuits II : Give the design and the action of the Clot and the Toffoli gates for input given in the digital basis. Give the corresponding unitary matrices $U_{C N O T}$ and $U_{\text {Toff }}$.

CNOT gate

$U_{C N O T}=$

Toffoli gate

$$
U_{T o f f}=
$$

Quantum circuit III Compute the outpout of the circuit given in Fig. 1 below.

Fig. 1 - What is the output $|\phi\rangle$?.

Quantum circuit IV Explain and justify what is the algorithm produced by the circuit given in Fig. 2 below.

Fig. 2 - A 3-qubits circuit

Quantum Mechanics I : (i) Give the expression of the matrix $Z \otimes X \otimes X$

$$
X \otimes Y \otimes Z=
$$

(ii) Give the expression of the 2-qubit Bell state $\left|\beta_{00}\right\rangle$.

$$
\left|\beta_{00}\right\rangle=
$$

(iii) Compute the partial trace (over the 2nd qubit) of the pure state $\left|\beta_{00}\right\rangle\left\langle\beta_{00}\right|$

$$
\operatorname{Tr}_{2}\left(\left|\beta_{00}\right\rangle\left\langle\beta_{00}\right|\right)=
$$

Quantum Mechanics II : In a 2-qubits system, let X_{i}, Y_{i}, Z_{i} be the Pauli matrices acting on the qubit $i \in\{1,2\}$. Then H denotes the operator $H=-J\left(X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2}\right)-B\left(Z_{1}+Z_{2}\right)$ with $J, B>0$.

1. Compute the states $H\left|x_{1}, x_{2}\right\rangle$, if $\left|x_{1}, x_{2}\right\rangle$ denotes the computational basis.
2. Compute the eigenvalues of H .
3. Give the smallest eigenvalue (the so-called groundstate energy) as a function of B
4. Give an orthonormal basis of eigenvectors of H.

Quantum Measurement I :

1. What are the three mathematical properties characterizing a density matrix?
2. Which one of the following ρ_{i} 's is a density matrix? (Explain why)

$$
\rho_{1}=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \quad \rho_{2}=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
+1 & 1
\end{array}\right] \quad \rho_{3}=\frac{1}{3}\left[\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right] \quad \rho_{4}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

Quantum Measurement II :

1. What is the mathematical definition of a measurement process \underline{M} ? In particular
(a) what is an outcome?
(b) what is a measurement operator?
(c) what property the measurement operator must satisfy?
2. Let \underline{M} be a measurement process :
(a) what is the probability of an outcome if the initial state before measurement is given by the density matrix ρ ?
(b) what is the density matrix after measurement if an outcome has been obtained?
(c) what is the density matrix after measurement in absence of outcome?
3. What is the mathematical definition of a quantum operation? (Hint : give the definition of complete positivity)
4. Given a measurement process \underline{M}, what is the quantum operation associated with it?
5. Let $H=H^{\dagger}$ be a selfadjoint operator and let $f: \mathbb{R} \mapsto \mathbb{C}$ be a function. What are the conditions on the function f to make \mathfrak{L} below a quantum operation?

$$
\mathfrak{L}(\rho)=\int_{-\infty}^{+\infty} d t f(t) e^{\imath t H} \rho e^{-\imath t H}
$$

Quantum measurement III :

Fig. 3 - The cnot gate as a quantum operation.

1. Compute $U_{C N O T}|x 0\rangle$.
2. If ρ is a 2×2 density matrix shown below describing the first qubit state, what is the density matrix $\hat{\rho}$ of the input shown in Fig. 3 above? (Hint : use the matrices $|x y\rangle\left\langle x^{\prime} y^{\prime}\right|$ to express the result.)

$$
\rho=\frac{1}{3}\left[\begin{array}{ll}
\rho_{00} & \rho_{01} \\
\rho_{10} & \rho_{11}
\end{array}\right]
$$

3. Compute $U_{C N O T} \hat{\rho} U_{C N O T}^{\dagger}$. (Hint : use the matrices $|x y\rangle\left\langle x^{\prime} y^{\prime}\right|$ to express the result.)
4. Compute the CNOT quantum operation \mathcal{E} given by Fig. 3 above (Hint : use partial trace and express the result using $P_{x}=|x\rangle\langle x|$ where $x \in\{0,1\}$.)
5. Compute \mathcal{E}_{1} shown below and compare with \mathcal{E}

$$
\mathcal{E}_{1}(\rho)=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{\imath \theta Z} \rho e^{-\imath \theta Z}
$$

The Shor code :

Fig. 4 - Encoding circuit for the Shor 9-qubit code.

Coding one qubit with nine qubit through the Shor code can be represented by the circuit designed in Fig. 4 above. If $i=1, \cdots, 9$ index the qubit from top to bottom, let X_{i}, Z_{i} denote the Pauli matrices acting on the i-th qubit.

1. Compute the output whenever $|\psi\rangle=|0\rangle$ or $|1\rangle$.(the corresponding output will be denotes by $\left|0_{L}\right\rangle$ and $\left|1_{L}\right\rangle$ respectively.)
2. Show that the syndrome measurement for detecting bit flip errors on either of the top three qubits corresponds to measuring the observables $Z_{1} Z_{2}$ and $Z_{2} Z_{3}$. Indicate how to detect bit flips of other qubits.
3. Let $m \in\{0,1,2,3\}$ be the outcome of the previous measurement, where $m=0$ if no qubit has been flipped and $m=i \in\{1,2,3\}$ if the qubit i (or if the two qubits in $\{1,2,3\} \backslash\{i\}$) has been flipped. Give the corresponding eigenvalues of the pair $\left\{Z_{1} Z_{2}, Z_{2} Z_{3}\right\}$ for each values of m.
4. Describe how to recover from a bit flip by using m and the observables X_{1}, X_{2}, X_{3}.
5. Show that the syndrome measurement for detecting phase fip errors corresponds to measuring the observables $X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}$ and $X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}$.
6. Show that the operators $X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}$ and $X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}$ commute with the Z_{i}. Conclude that there is aprojective measurement process that detects both bit flips and phase flips.
7. Show that recovery from a phase flip on any of the first three qubits, may be accomplished by applying the operator $Z_{1} Z_{2} Z_{3}$.
