Quantum Information \& Quantum Computing
 Final Exam
 May 1st, 2007, 11 :00am-2 :40pm, Skiles 246

First Name : \qquad

Name : \qquad

Gatech Id \# : \qquad
e-mail : \qquad

Quantum circuits I : Give the expression of the unitary matrices representing the 1-qubit gates denotes by X, Y, Z, H, S, T.

$$
X=
$$

$$
Y=
$$

$$
Z=
$$

$$
S=
$$

$$
T=
$$

Quantum circuits II : Give the design and the action of the Toffoli gates for input given in the digital basis. Give the corresponding unitary matrice $U_{\text {Toff }}$

Toffoli gate

$$
U_{T o f f}=
$$

Quantum circuit III Compute the outpout of the circuit given in Fig. 1 below. (Details of this computation will be appreciated.)

Fig. 1 - What is the output $|\phi\rangle$?.

Quantum circuit IV Show that the circuit given in Fig. 1 below gives the Fourier transform for 3 -qubits.

Fig. 2 - Fourier circuit for 3-qubits?

Quantum Mechanics I : (i) Give the expression of the matrix $X \otimes Y \otimes Z$

$$
X \otimes Y \otimes Z=
$$

(ii) Give the expression of the 2-qubit Bell state $\left|\beta_{00}\right\rangle$.

$$
\left|\beta_{00}\right\rangle=
$$

(iii) Compute the partial trace (over the 2nd qubit) of the pure state $\left|\beta_{00}\right\rangle\left\langle\beta_{00}\right|$

$$
\operatorname{Tr}_{2}\left(\left|\beta_{00}\right\rangle\left\langle\beta_{00}\right|\right)=
$$

Quantum operation :

Fig. 3 - The cnot gate as a quantum operation.

1. Show that $U_{C N O T}=P_{0} \otimes I+P_{1} \otimes X$, if $P_{x}=|x\rangle\langle x|$.
2. Compute the CNOT quantum operation \mathcal{E} given by Fig. 3 above.

The Steane code :

Steane proposed a quantum codes encoding one qubit out of seven qubits, instead of nine for the Schor code. It uses two linear classical codes C_{1}, C_{2} with $C_{2}=C_{1}^{\perp} \subset C_{1}$ corresponding to the generator matrices G_{1}, G_{2} and parity check matrices H_{1}, H_{2} as follows

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{Z}_{2}^{4} \stackrel{G_{1}}{\longleftrightarrow} \mathbb{Z}_{2}^{7} \stackrel{H_{1}}{\longrightarrow} \mathbb{Z}_{2}^{3} \longrightarrow 0 \\
& 0 \longleftarrow \mathbb{Z}_{2}^{4} \stackrel{H_{2}}{\longleftrightarrow} \mathbb{Z}_{2}^{7} \stackrel{G_{2}}{\leftrightarrows} \mathbb{Z}_{2}^{3} \longleftarrow 0
\end{aligned}
$$

where the code C_{2} is obtained from C_{1} by transposing all arrows giving $H_{2}=G_{1}^{t}, G_{2}=H_{1}^{t}$, so that $C_{2}=\operatorname{Ker} H_{2}=\operatorname{Ker} G_{1}^{t}=\operatorname{Im} G_{1}^{\perp}=C_{1}^{\perp}$. As a reminder, $C_{i}=\operatorname{Im} G_{i}=\operatorname{Ker} H_{i}$ for $i=1,2$. The Steane code is constructed with a matrix H_{1} of the form $\left[\mathbf{1}_{3} \mid A\right]$ where A is a 3×4 matrix with entries in \mathbb{Z}_{2}.

1. The classical codes C_{1}, C_{2} :

(a) Show that G_{1} has the form $G_{1}=\left[\begin{array}{c}A \\ \mathbf{1}_{4}\end{array}\right]$. (Hint : compute $\operatorname{Ker} H_{1}$, namely the solutions in \mathbb{Z}_{2}^{7} of the equation $H_{1} x=0$.)
(b) Compute then H_{2}, G_{2} in terms of the matrix A.
(c) Show that $C_{2} \subset C_{1}$ if and only if $A A^{t}=\mathbf{1}_{3}$
(d) The matrix H_{1} is built so that its column are made of the binary digits of the numbers $1, \cdots, 2^{3}-1$. Show that if H_{1} is presented in the form $\left[1_{3} \mid A\right]$, then A can be chosen as

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

(e) Show that $A A^{t}=\mathbf{1}_{3}$
(f) What are the dimensions of C_{1} and C_{2}. How many points have these two $Z M_{2}$-vector spaces? Show that C_{1} / C_{2} is a vector space over \mathbb{Z}_{2} of dimension 1 . How many points are in such a space?
(g) Show that $\Pi=A^{t} A$ is a projector, namely $\Pi^{2}=\Pi$. (Hint : use $A A^{t}=\mathbf{1}_{3}$.)
(h) Show that if $y \in \mathbb{Z}_{2}^{4}$ satisfies $\Pi y=0$ then $x_{0}=G_{1} y \in C_{1}$ does not belong to C_{2}. Conclude that $C_{1} / C_{2}=\left\{a\left[x_{0}\right] ; a=0,1\right\}$ where $x_{0}+C_{2}=\left[x_{0}\right]$ is the class of x_{0} in C_{1} / C_{2}. Compute explicitely the components of x_{0}.

2. The quantum Steane code :

(a) The quantum code space defined by the Steane code is the complex Hilbert subspace of the 7 -qubits Hilbert space defined by the basis $\left\{|0\rangle_{S},|1\rangle_{S}\right\}$ with

$$
|a\rangle_{S}=\frac{1}{\sqrt{\left|C_{2}\right|}} \sum_{y \in C_{2}}\left|a x_{0}+y\right\rangle \quad a=0,1
$$

Show that y can be written as $y_{1} w_{1}+y_{2} w_{2}+y_{3} w_{3}$ where $y_{i}=0,1$ and the w_{i} 's are the columns of matrix G_{1} (namely the code words for C_{1}).
(b) Using the same idea than is the Shor code, design a quantum circuit starting with $|a\rangle$ and producing $\left|a x_{0}\right\rangle$ in the 7 -qubits space.
(c) What quantum gate produces $(|0\rangle+|1\rangle) / \sqrt{2}$?
(d) Give a simple quantum circuit producing $\left|a x_{0}+w_{1}\right\rangle$? Same question with w_{2}, w_{3}.
(e) Conclude that the circuit of Fig. 4 below produces the Steane code out of the input $|a\rangle, a=0,1$.

Fig. 4 - A quantum circuit for the Steane code

