Georgia Tech

MATH, PHYSICS & COMPUTING MATH 4782BDU,BDG, PHys 4782A, CS4803QIC

QUANTUM INFORMATION & QUANTUM COMPUTING

Final Exam

May 1st, 2007, 11 :00am-2 :40pm, Skiles 246

First	Name :	
-------	--------	--

Name : _____

Gatech Id # : _____

e-mail : _____

Quantum circuits I : Give the expression of the unitary matrices representing the 1-qubit gates denotes by X, Y, Z, H, S, T.

X =

$$Y =$$

Z =

$$S =$$

$$T =$$

Quantum circuits II : Give the design and the action of the Toffoli gates for input given in the digital basis. Give the corresponding unitary matrice U_{Toff}

Toffoli gate

$U_{Toff} =$

Quantum circuit III Compute the outpout of the circuit given in Fig. 1 below. (*Details of this computation will be appreciated.*)

FIG. 1 – What is the output $|\phi\rangle$?.

Quantum circuit IV Show that the circuit given in Fig. 1 below gives the Fourier transform for 3-qubits.

FIG. 2 – Fourier circuit for 3-qubits?

Quantum Mechanics I : (i) Give the expression of the matrix $X \otimes Y \otimes Z$

$$X \otimes Y \otimes Z =$$

(ii) Give the expression of the 2-qubit Bell state $|\beta_{00}\rangle$.

$$|\beta_{00}\rangle =$$

(iii) Compute the partial trace (over the 2nd qubit) of the pure state $|\beta_{00}\rangle\langle\beta_{00}|$

$$\mathrm{Tr}_2\left(|\beta_{00}\rangle\langle\beta_{00}|\right) =$$

Quantum operation :

FIG. 3 – The CNOT gate as a quantum operation.

1. Show that $U_{CNOT} = P_0 \otimes I + P_1 \otimes X$, if $P_x = |x\rangle \langle x|$.

2. Compute the CNOT quantum operation $\boldsymbol{\mathcal{E}}$ given by Fig. 3 above.

The Steane code :

Steane proposed a quantum codes encoding one qubit out of seven qubits, instead of nine for the Schor code. It uses two linear classical codes C_1, C_2 with $C_2 = C_1^{\perp} \subset C_1$ corresponding to the generator matrices G_1, G_2 and parity check matrices H_1, H_2 as follows

$$0 \longrightarrow \mathbb{Z}_2^4 \xrightarrow{G_1} \mathbb{Z}_2^7 \xrightarrow{H_1} \mathbb{Z}_2^3 \longrightarrow 0$$
$$0 \longleftarrow \mathbb{Z}_2^4 \xleftarrow{H_2} \mathbb{Z}_2^7 \xleftarrow{G_2} \mathbb{Z}_2^3 \longleftarrow 0$$

where the code C_2 is obtained from C_1 by transposing all arrows giving $H_2 = G_1^t$, $G_2 = H_1^t$, so that $C_2 = \text{Ker}H_2 = \text{Ker}G_1^t = \text{Im}G_1^{\perp} = C_1^{\perp}$. As a reminder, $C_i = \text{Im}G_i = KerH_i$ for i = 1, 2. The Steane code is constructed with a matrix H_1 of the form $[\mathbf{1}_3|A]$ where A is a 3×4 matrix with entries in \mathbb{Z}_2 .

- 1. The classical codes C_1, C_2 :
 - (a) Show that G_1 has the form $G_1 = \begin{bmatrix} A \\ \mathbf{1}_4 \end{bmatrix}$. (*Hint : compute* Ker H_1 , namely the solutions in \mathbb{Z}_2^7 of the equation $H_1 x = 0$.)
 - (b) Compute then H_2, G_2 in terms of the matrix A.
 - (c) Show that $C_2 \subset C_1$ if and only if $AA^t = \mathbf{1}_3$
 - (d) The matrix H_1 is built so that its column are made of the binary digits of the numbers $1, \dots, 2^3 1$. Show that if H_1 is presented in the form $[\mathbf{1}_3|A]$, then A can be chosen as

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{array} \right]$$

- (e) Show that $AA^t = \mathbf{1}_3$
- (f) What are the dimensions of C_1 and C_2 . How many points have these two ZM_2 -vector spaces? Show that C_1/C_2 is a vector space over \mathbb{Z}_2 of dimension 1. How many points are in such a space?
- (g) Show that $\Pi = A^t A$ is a projector, namely $\Pi^2 = \Pi$. (*Hint* : use $AA^t = \mathbf{1}_3$.)
- (h) Show that if $y \in \mathbb{Z}_2^4$ satisfies $\Pi y = 0$ then $x_0 = G_1 y \in C_1$ does not belong to C_2 . Conclude that $C_1/C_2 = \{a[x_0]; a = 0, 1\}$ where $x_0 + C_2 = [x_0]$ is the class of x_0 in C_1/C_2 . Compute explicitly the components of x_0 .

2. The quantum Steane code :

(a) The quantum code space defined by the Steane code is the complex Hilbert subspace of the 7-qubits Hilbert space defined by the basis $\{|0\rangle_S, |1\rangle_S\}$ with

$$|a\rangle_{S} = \frac{1}{\sqrt{|C_{2}|}} \sum_{y \in C_{2}} |ax_{0} + y\rangle$$
 $a = 0, 1.$

Show that y can be written as $y_1w_1 + y_2w_2 + y_3w_3$ where $y_i = 0, 1$ and the w_i 's are the columns of matrix G_1 (namely the code words for C_1).

- (b) Using the same idea than is the Shor code, design a quantum circuit starting with $|a\rangle$ and producing $|ax_0\rangle$ in the 7-qubits space.
- (c) What quantum gate produces $(|0\rangle + |1\rangle)/\sqrt{2}$?
- (d) Give a simple quantum circuit producing $|ax_0 + w_1\rangle$? Same question with w_2, w_3 .
- (e) Conclude that the circuit of Fig. 4 below produces the Steane code out of the input $|a\rangle$, a = 0, 1.

FIG. 4 - A quantum circuit for the Steane code