Arithmetic and prime number decomposition:

\(\mathbb{N} = \{0, 1, 2, 3, \ldots\}\) denotes the set of natural (or positive or non negative) integers. \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}\) denotes the set of all integers endowed with its canonical structure of ring (addition and multiplication). If \(a, b \in \mathbb{Z}\), then \(a\) divides \(b\) (and this is denoted by \(a|b\)) whenever there is an integer \(d\) such that \(b = ad\). \(a\) is called a factor or divisor of \(b\). Clearly, 1 is always a factor of any integer and any integer always divides itself. An integer \(p > 1\) is a prime number if it has no divisors other than 1 and itself. Example of prime numbers are \(\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, \ldots\}\). It is known that there is an infinite number of prime numbers. Moreover the prime number theorem asserts that there are \(O\left(\frac{x}{\ln x}\right)\) prime numbers between 2 and \(x\). The fundamental theorem of arithmetic (see question (1d) below) asserts that each positive integer can be decomposed in a unique way into product of powers of prime numbers. One difficult question is whether it is possible to find a fast algorithm that produces this decomposition for a given integer \(n\). Only very recently did three Indian computer scientists find an algorithm solving this problem in a polynomial time in \(n\). The purpose of this problem is to give a quantum algorithm solving this problem in a time \(O(L) = O((\ln n)^3)\) if \(L\) is the minimum number of binary digits needed to write \(n\).

1. (a) Show that if \(d\) divides both \(a\) and \(b\), then it divides \(ax + by\) for any \(x, y \in \mathbb{Z}\).
 (b) Show that if \(a, b \in \mathbb{N}\), then \(a|b \Rightarrow a \leq b\).
 (c) Show that the relation \(a|b\) is an order relation on \(\mathbb{N}\).
 (Namely (i) \(a|a\), (ii) \(a|b\) and \(b|a \Rightarrow a = b\); (iii) \(a|b\) and \(b|c \Rightarrow a|c\).)
 (d) Prove the fundamental theorem of arithmetic: any integer \(n > 1\) can be decomposed in a unique way into a product of powers of prime numbers, namely

 \[n = \prod_{p \in \mathbb{P}} p^{\alpha_p} = p_1^{\alpha_{p_1}} \cdots p_m^{\alpha_{p_m}}, \]

 where \(\alpha(n) = (\alpha_p)_{p \in \mathbb{P}}\) is a family of natural integers, a finite number of which only being non zero.
 (e) If \(a \in \mathbb{N}\), characterize all its divisors in term of its prime decomposition.

2. Let \(x\) be an integer. For any integer \(n > 1\) show that there is a unique integer \(k \geq 0\) such that \(kn < x < (k + 1)n\). \(k\) is called the division of \(x\) by \(n\). The difference \(x - kn = r\) is called the rest. Show that the decomposition \(x = kn + r\) with \(0 \leq r \leq n - 1\) is unique.

3. Two integers \(x, y \in \mathbb{Z}\) are equal modulo \(n\) (notation \(x \equiv y (\text{mod } n)\)) whenever \(x - y\) is an integer multiple of \(n\).
(a) Show that the relation $x = y \pmod{n}$ is an equivalence relation between integers.

(b) Show that $x = r \pmod{n}$ if r is the rest of the division of x by n.

(c) Show that each equivalence class contains one element $\{0, 1, \ldots, n-1\}$ and only one. The set of such equivalence classes is denoted by \mathbb{Z}_n. How many elements does \mathbb{Z}_n contain?

(d) Show that the equivalence classes of $x+y$ and of xy depends only upon the equivalence classes of x and of y. Hence addition and multiplication modulo n is well defined.

(e) Show that, endowed with addition and multiplication modulo n, \mathbb{Z}_n is a ring. What is the element of $\{0, 1, \ldots, n-1\}$ representing -1?

(f) Given the multiplication table of \mathbb{Z}_{21}.

(g) Give the list of invertible elements of \mathbb{Z}_{21}? Give the solutions of $x^2 = 1 \pmod{21}$ other than ± 1.

4. Given a and b two natural integers, then $\text{gcd}(a,b)$ denotes their greatest common divisor.

(a) If $a = \prod_p p^{\alpha_p}$ and $b = \prod_p p^{\beta_p}$ are the prime decompositions of a and b, give the prime decomposition of $\text{gcd}(a,b)$.

(b) Show that $\text{gcd}(a,b)$ is the smallest positive integer s that can be written as $s = ax + by$ for $x, y \in \mathbb{Z}$. In particular a and b are co-prime if and only if there are $x, y \in \mathbb{Z}$ such that $ax + by = 1$ (Bezout’s theorem).

(Hint : show first that $\text{gcd}(a,b)$ is a divisor of s. Then show, by contradiction, that s is a common divisor of a and b.)

(c) Show that if c divides both a and b, then it divides $\text{gcd}(a,b)$.

5. Two integers a, b are co-prime whenever $\text{gcd}(a,b) = 1$.

(a) Prove that x is invertible \pmod{n} if and only if x and n are co-prime.

(b) Prove that, if a is invertible \pmod{n}, its inverse is unique in \mathbb{Z}_n.

(c) If p if prime, prove that all non zero elements of \mathbb{Z}_p are invertible. In particular \mathbb{Z}_p is a field denoted by \mathbb{F}_p.

(d) Show that, if $n \in \mathbb{N}$ is greater than 1, $(n + 1)$ is always invertible $\pmod{(n^2)}$ and give its inverse.

6. The Euclid algorithm is a way to compute the $\text{gcd}(a,b)$ for $a, b \in \mathbb{N}$. It is enough to assume that $a > b$.

(a) Prove that if r denotes the rest of the division of a by b, $\text{gcd}(a,b) = \text{gcd}(b,r)$.

(Hint : use the result of question (4c).)

(b) Show that replacing a by b and b by r, and iterating this procedure, then one gets a finite sequence $r_1 = r > r_2 > \cdots > r_m$ such that $\text{gcd}(a,b) = \text{gcd}(r_i,r_{i+1}) = r_m$.

(c) Compute $\text{gcd}(2002,1946)$.

(d) Show that $r_{i+2} \leq r_i/2$. (Hint : consider the two cases $r_{i+1} \leq r_1/2$ and $r_{i+1} > r_1/2$.)

(e) Show then that if a requires L binary digits to be written, then the Euclid algorithm can be achieved in $m = O(L)$ steps. If one assumes that each step (divide-and-rest operations) requires $O(L^2)$ elementary computer operations, then what is its cost in computer time?
(f) How can one use the Euclid algorithm to find efficiently two integers x, y such that $\gcd(a, b) = ax + by$? What is the cost of this problem?

(g) Show that the Euclid algorithm can also been used to compute efficiently the inverse of $a \pmod{n}$, whenever a and n are co-prime.

7. The Chinese remainder theorem: let m_1, \ldots, m_k be pairwise co-prime positive integers. Let a_1, \ldots, a_k be integers.

(a) Prove that there is $x \in \mathbb{Z}$ such that $x \equiv a_1 \pmod{m_1}, \ldots, x \equiv a_k \pmod{m_k}$.

(b) Show that two such solutions are equal mod$(m_1 \cdots m_k)$.

8. The Euler φ-function gives, for $n \in \mathbb{N}$, the number $\varphi(n)$ of positive integers co-prime to n.

(a) Show that $\varphi(n) < n$.

(b) If p is prime, what is $\varphi(p)$?

(c) If $\alpha \in \mathbb{N}$ and $p \in \mathbb{P}$, compute $\varphi(p^\alpha)$.

(d) If $a, b \in \mathbb{N}$ are co-prime, show that $\varphi(ab) = \varphi(a)\varphi(b)$.

(Hint: use the Chinese remainder theorem.)

(e) Prove that

$$n = \sum_{d | n} \varphi(d).$$

(Hint: prove it for powers of prime numbers, then use the factorization property)

9. Let n be a positive integer and let $1 < x < n - 1$ be a solution of $x^2 = 1 \pmod{n}$.

(a) Then show that $x \neq \pm 1 \pmod{n}$.

(b) Show that at least one of $\gcd(x - 1, n)$ and $\gcd(x + 1, n)$ is a non trivial factor of n.

(c) If n can be expressed with L binary digits, show that computing $\gcd(x \pm 1, n)$ can be performed in $O(L^3)$ operations.

10. Let $n = p_1^{a_1} \cdots p_m^{a_m}$ be a factorized integer. Let $x \in \{2, \ldots, n - 2\}$ be chosen at random (namely with uniform probability) among the integers co-prime to n. Then let r be the order of x, namely r is the smallest non zero integer such that $x^r = 1 \pmod{n}$.

(a) What is the number of such x’s? What is the probability of choosing x then?

(b) Prove that the probability that $x^{r/2} \neq -1 \pmod{n}$ is larger than or equal to $1 - 1/2^m$.

11. Give now an algorithm, using the quantum order finding method to find one non trivial factor of n with no more than $O(L^3)$ operations if L is the number of binary digits needed to express n.
Arithmetic and prime number decomposition:

In this problem \mathbb{N}_+ denotes the set of non zero positive integers.

1. (a) If d divides both a and b there are integers a', b' such that $a = da'$ and $b = db'$. Thus $ax + by = d(a'x + b'y)$ for any pair $x, y \in \mathbb{Z}$. Since $a'x + b'y$ is an integer, it follows that d divides $ax + by$.

(b) If $a, b \in \mathbb{N}_+$ are positive integers such that $a|b$ then, there is $d \in \mathbb{Z}$ such that $b = ad$. Thus d must be positive as well. Since $b \neq 0$ then $d \geq 1$ so that $a \leq ad = b$.

(c) All integers will be assumed in \mathbb{N}_+. It is clear that $a|a$ since $a = a \cdot 1$ and $1 \in \mathbb{N}_+$. Moreover if $a|b$ and $b|a$ then there are $d, d' \in \mathbb{N}_+$ such that $b = ad$ and $a = bd'$. It follows that $a = add'$ so that $dd' = 1$ which happens only if $d = d' = 1$. Hence $a = b$.

(d) If n is prime, then there is nothing to be proved. If n is not prime, then let m_1 be a non trivial divisor of n, that is $1 < m_1 < n$, so that $n = m_1 n_1$ for some $n_1 \in \mathbb{N}_+, n_1 > 1$. By recursion, it is possible to get a decreasing sequence $m_1 > m_2 > \cdots > m_k > 1$ such that $m_{i+1}|m_i$ and therefore $n = m_k n_k$ for some $n_k \in \mathbb{N}_+$. This sequence must terminate, so that m_k has no other divisor than 1 and itself, namely m_k is prime. Therefore $1 < n_k < n$. Replacing now n by n_k leads to a decomposition of n into a product of prime numbers. If p is such prime, p appears in general several times. Let $\alpha_p \in \mathbb{N}$ be this occurrence number. Then p^{α_p} is a divisor of n. Therefore setting $\alpha_p = 0$ if p never occur in this decomposition, n can be written as

$$n = \prod_{p \in \mathcal{P}} p^{\alpha_p}.$$

Let now $n = \prod_{p \in \mathcal{P}} p^{\beta_p}$ be another such decomposition. Then if $p \in \mathcal{P}$ occurs with $\alpha_p > 0$, then n/p^{α_p} is an integer, so that $\beta_p \geq \alpha_p$. By the same argument, exchanging the roles of the two decompositions, $\alpha_p \geq \beta_p$ also, so that $\alpha_p = \beta_p$. This proves the uniqueness.

(e) It follows from the previous argument that if m divides n, its prime number decomposition $m = \prod_{p \in \mathcal{P}} p^{\beta_p}$ must satisfy $\beta_p \leq \alpha_p$ for all prime p. Conversely, if $0 \leq \beta_p \leq \alpha_p$ for all prime p, then m divides n.
2. Given \(n > 1 \) and \(x \in \mathbb{Z} \), there is a largest \(k \in \mathbb{Z} \) such that \(kn \leq x \). Then, by the very definition of the maximum, \((k+1)n > x\). It follows that \(x = kn + r \) where \(r = x - kn \) so that \(0 \leq r < n \). This prove the existence. If \(x = kn + r = k'n + r' \) with \(0 \leq r, r' < n \), then let choose them so that \(r \leq r' \). It follows that \(r' - r = (k-k')n \) and that \(0 \leq r' - r < r' < n \). Thus the only possibility is \(k = k' \) so that \(r = r' \). This prove uniqueness.

3. (a) Clearly \(x = x \pmod{n} \) since \(x - x = 0 = 0 \cdot n \). Moreover if \(x = y \pmod{n} \) then \(x - y = kn \) for some \(k \in \mathbb{Z} \), so that \(y - z = -kn \) showing that \(y = x \pmod{n} \). Hence the relation is symmetric. If now \(x = y \pmod{n} \) and \(y = z \pmod{n} \), then there are \(k, l \in \mathbb{Z} \) such that \(x - y = kn, y - z = ln \). Hence \(x - z = (k+l)n \) so that \(x = z \pmod{n} \). Therefore the relation is also transitive, namely it is an equivalence relation.

(b) If \(x = kn + r \) is the result of the euclidean division of \(x \) by \(n \), then \(x - r = k \cdot n \) namely \(x = r \pmod{n} \).

(c) The previous question shows that any \(x \in \mathbb{Z} \) is equivalent \(\pmod{n} \) to its rest, namely to an element of the finite set \(\{0, 1, \ldots, n - 1\} \). On the other hand if both \(r \) and \(r' \) belong to this set, either \(r \leq r' \) so that \(0 \leq r' - r \leq n - 1 \), or \(r' \leq r \) so that \(0 \leq r - r' \leq n - 1 \). In both cases, \(r = r' \pmod{n} \) implies \(r = r' \). Therefore \(x \) is equivalent to one and only one element of this set. This shows that the set \(\mathbb{Z}_n \) of equivalent classes \(\pmod{n} \) is bijectively represented by \(\{0, 1, \ldots, n - 1\} \), in particular \(\mathbb{Z}_n \) contains exactly \(n \) elements.

(d) If \(x, y \in \mathbb{Z} \), with \(x = kn + r \) and \(y = ln + s \) where \(0 \leq r, s \leq n - 1 \), then \(x + y = (k + l)n + r + s \) \pmod{n} \). Thus the equivalence class \([x + y] \) of \(x + y \) depends only upon the equivalence class of the sum \(r + s \) of the rests namely of the equivalence classes \([x] \) of \(x \) and \([y] \) of \(y \). Note that either \(r + s < n \) and \(r + s \) is the representative of \(x + y \), or \(n \leq r + s \leq 2n - 2 \) and then \(0 \leq r + s - n \leq n - 1 \) is the representative of \(x + y \).

(e) The previous question shows that there is a well defined addition \(([x], [y]) \in \mathbb{Z}_n \times \mathbb{Z}_n \mapsto [x] + [y] \in \mathbb{Z}_n \) where \([x + y]\) is represented by \(r + s - \epsilon_{r,s}n \) \pmod{n} \) \(\{0, 1\} \) if \(r \) and \(s \) are the rests of the euclidean division of \(x \) and \(y \) by \(n \) respectively. This is an abelian group law, because

i. it is associative : \((x) + [y] + [z] = [x + y] + [z] = ((x + y) + z) = [x + (y + z)] = [x] + [y + z] = [x] + ([y] + [z])^2 \), where the associativity of the addition in \(\mathbb{Z} \) has been used;

ii. the equivalent class of 0, represented by 0 in \(\{0, 1, \cdots, n-1\} \) is the neutral element since \([x] + [0] = [x + 0] = [x] \);

iii. every element has an opposite, \((-x) = -[x] \) since \([x] + [-x] = [x - x] = [0] = 0 \); in particular \(-[1] = [n - 1] \) so that \(n - 1 \) is the representative of \(-[1] \) in \(\{0, 1, \cdots, n-1\} \);

iv. it is abelian since \([x] + [y] = [x + y] = [y + x] = [y] + [x] \), using the commutativity of the sum in \(\mathbb{Z} \);

The addition in base \(n \) is using an algorithm based on this remark.

This is equivalent to say that \(([x] + [y]) + [z] \) is represented by \(r + s - \epsilon_{r,s}n + t - \epsilon_{r,s,t}n = r + s + t \pmod{n} \), if \(t \) is the rest of the euclidean division of \(z \) by \(n \), whereas \([x] + ([y] + [z]) \) is represented by \(r + s + t - \epsilon_{r,s}rn - \epsilon_{r,s,t}tn = r + s + t \pmod{n} \). Thus \(([x] + [y]) + [z] = [x] + ([y] + [z]) \)
In very much the same way, there is a multiplication defined by \(([x], [y]) \in \mathbb{Z}_n \times \mathbb{Z}_n \mapsto [x] \cdot [y] := [xy] \in \mathbb{Z}_n \). For indeed, \(xy = (kn + r)(ln + s) = (kln + ks + rl)n + sr = rs \, (\text{mod } n) \), so that the equivalence class of \(xy \) depends only upon the rests \(r,s \) of their euclidean division by \(n \), namely upon their equivalence classes. By the same type of argument, this multiplication satisfies

i. it is associative: \(([x] \cdot [y]) \cdot [z] = [xy] \cdot [z] = ([xy]z) = [x(yz)] = [x] \cdot ([y] \cdot [z]) \)

where the associativity of the product in \(\mathbb{Z} \) has been used;

ii. the equivalent class of 1, represented by 1 in \(\{0, 1, \ldots, n-1\} \) is the neutral element since \([x] \cdot [1] = [x1] = [x] \);

iii. it is abelian since \([x] \cdot [y] = [xy] = [yx] = [y] \cdot [x] \), using the commutativity of the product in \(\mathbb{Z} \);

iv. it is distributive with respect to the sum \([x] \cdot ([y] + [z]) = [xy] + [xz] = [x(y+z)] = [xy + xz] == [xy] + [xz] = [x] \cdot [y] + [x] \cdot [z] \), where the distributivity of the product with respect to the sum in \(\mathbb{Z} \) has been used;

Therefore \(\mathbb{Z}_n \) is an abelian ring with \(-1\) being represented by \(n-1 \) in \(\{0, 1, \ldots, n-1\} \).

(f) The multiplication table of \(\mathbb{Z}_{21} \) is given below. It is useless to put 0 in it since 0 \(\cdot [x] = 0 \) for all \(x \)'s. To simplify it, it has been remarked that \(-[x] \cdot [y] = [x] \cdot [-y] = -[x] \cdot [y] \) and that \(-[x] \cdot -[y] = [x] \cdot [y] \). Thus it is useless to give the column and the lines corresponding to \(-[x]\). On the other hand the representatives of \(-1, -2, \ldots, -10 \) are respectively 20, 19, \ldots, 11. Thus it is sufficient to represent only the numbers 1, 2, \ldots, 10. At last, commutativity implies that the table is symmetric with respect to the main diagonal : for this reason, the lower part of the table below has not been filled.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 4 & 6 & 8 & 10 & -9 & -7 & -5 & -3 & -1 \\
3 & 9 & -9 & -6 & -3 & 0 & 3 & 6 & 9 & \\
4 & -5 & -1 & 3 & 7 & -10 & -6 & -2 & \\
5 & 4 & 9 & -7 & -2 & 3 & 8 & \\
6 & -6 & 0 & 6 & -9 & -3 & \\
7 & 7 & -7 & 0 & 7 & \\
8 & 1 & 9 & -4 & \\
9 & -3 & 6 & \\
10 & & & & -5 & \\
\end{array}
\]

- Multiplication table for \(\mathbb{Z}_{21} \) -

Remark : this table shows that \(\mathbb{Z}_{21} \) has divisors of zero, such as \(\pm 3, \pm 6, \pm 9, \pm 7 \).

(g) The list of invertible elements of \(\mathbb{Z}_{21} \) can be read on the previous table:

\[
1, 2, 4, 8, -5, -10, -1, -2, -4, -8, 5, 10.
\]

These are all numbers co-prime to 21 (with no common divisor with 21, namely that are not divisible by 3 or 7). It is to be remarked that \(2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = -5, 2^5 = -10, 2^6 = 1 \) so that this group is made of numbers of the form \(\pm 2^k \).
4. (a) If \(a = \prod_{p \in \mathcal{P}} p^{\alpha_p} \) and \(b = \prod_{p \in \mathcal{P}} p^{\beta_p} \) are the prime decompositions of \(a \) and \(b \) respectively, then \(\gcd(a, b) = \prod_{p \in \mathcal{P}} p^\gamma_p \) where \(\gamma_p = \min \{ \alpha_p, \beta_p \} \) for all \(p \)'s.

(b) Let \(s \) be the smallest positive (non zero) integer of the form \(ax + by \) for \(x, y \in \mathbb{Z} \).

(i) Then (cf. (1.a)), \(\gcd(a, b) \) divides both \(a \) and \(b \) and thus it divides \(s \).

(ii) On the other hand, if \(s > a \) then \(1 \leq s - a = a(x - 1) + by \) is smaller than \(s \) and is also of the form \(ax' + by' \). This is impossible since \(s \) is the smallest such number. Hence \(1 \leq s \leq a \). Then the euclidean division of \(a \) by \(s \) gives \(a = ks + r \) for some \(k \geq 1 \) and \(0 \leq r \leq s - 1 \). Then \(r = a(1 - kx) - by \) is of the form \(ax' + by' \), so that, since \(0 \leq r < s \) it must vanish. Hence \(s \) divides \(a \). The same argument shows that it also divided \(b \). Thus \(s \) is a common divisor of \(a, b \) and therefore \(s \) divides \(\gcd(a, b) \).

Since the relation \(a|b \) is an order, it follows from (i) and (ii) that \(s = \gcd(a, b) \). As a consequence

Theorem 1 (Bezout) \(a, b \in \mathbb{N}_* \) are co-prime if and only if there are \(x, y \in \mathbb{Z} \) such that \(ax + by = 1 \)

Proof: For if \(a \) and \(b \) are co-prime, \(\gcd(a, b) = 1 \) and, from the previous argument, there are \(x, y \in \mathbb{Z} \) such that \(ax + by = 1 \). Conversely, if such a pair \(x, y \) exists, 1 is the smallest nonzero positive integer of the from \(ax + by \), so that the previous argument shows that \(1 = \gcd(a, b) \) which means that \(a \) and \(b \) are co-prime. \(\square \)

(c) If \(c \) divides both \(a \) and \(b \), then it divides \(ax + by \) for any \(x, y \in \mathbb{Z} \) (cf. question (1.a)). By the previous argument it then divides \(\gcd(a, b) \).

5. (a) By Bezout’s theorem, \(x \) and \(n \) are co-prime if and only if there are \(m, y \in \mathbb{Z} \) such that \(xy + mn = 1 \) This is equivalent to \(xy = 1 \pmod{n} \), namely to \(x \) being invertible modulo \(n \).

(b) The inverse of \(x \) in a ring is always unique. For if \(y \) and \(y' \) are two such inverses, then \(xy = yx = 1 \) and \(xy' = y'x = 1 \). Thus \(y' = y'(xy) = (y'x)y = y \).

(c) If \(p \) is a prime number, then all non zero elements of \(\mathbb{Z}_p \), that is all elements of \(\{1, 2, \ldots, p - 1\} \), are prime with respect to \(p \), so that there are all invertible modulo \(p \). Thus \(\mathbb{Z}_p \) is a finite field (it is denoted by \(\mathbb{F}_p \)).

(d) If \(n > 1 \) then \(n^2 - 1 = (n - 1)(n + 1) \) so that \((n + 1)(n - 1) = -1 \pmod{n^2} \). Hence \(n + 1 \) is invertible modulo \(n^2 \) and its inverse is the class modulo \(n^2 \) of \(-1\).

Second Proof: using Bezout’s theorem, \(1 = (n + 1) \cdot 1 + (-1) \cdot n \) implies that \(n \) and \(n + 1 \) are co-prime. Thus \(n + 1 \) is co-prime to \(n^2 \) and is therefore invertible modulo \(n^2 \).

6. Let \(a, b \in \mathbb{N}_* \). If \(a = b \) then \(\gcd(a, b) = a = b \) so that there is nothing to compute. Therefore one can assume \(a > b \) for otherwise it is enough to change the names of \(a \) and \(b \).
(a) Let then \(r \) be the rest of the euclidean division of \(a \) by \(b \), namely \(a = kb + r \) with \(0 \leq r \leq b - 1 \). Since \(r = a - kb \) it follows from (1.a) that \(\gcd(a, b) \) divides \(r \). Thus it divides both \(b \) and \(r \) so that, thanks to (4.c) above, \(\gcd(a, b) | \gcd(b, r) \). Conversely, since \(a = kb + r \), \(\gcd(b, r) \) divides also \(a \) so that, by (4.c) again, \(\gcd(b, r) | \gcd(a, b) \). Hence \(\gcd(a, b) = \gcd(b, r) \). If \(r = 0 \) then \(\gcd(a, b) = b \).

(b) If \(r \neq 0 \), then \(1 \leq r \leq b - 1 \). Then we set \(r_{-1} = a, r_0 = b, r_1 = r \). Let the sequence \(r_{-1} > r_0 > r_1 > \cdots > r_j > 0 \) be defined so that \(\gcd(r_{i-1}, r_i) = \gcd(a, b) \) for \(i = 0, 1, \cdots, j \). Then let \(r_{j+1} \) be the rest of the division of \(r_{j-1} \) by \(r_j \). The previous argument shows that either \(r_{j+1} = 0 \), and then \(\gcd(a, b) = r_j \), or \(0 < r_{j+1} < r_j \) and, thanks to (6a), \(\gcd(r_j, r_{j+1}) = \gcd(a, b) \). Since all the \(r_j \)'s are integers, this process must terminate after a finite number of steps. If \(m \) is the number of such steps, \(\gcd(a, b) = r_m \).

(c) As an example, let us compute \(\gcd(2002, 1946) \). Dividing \(2002 \) by \(1946 \) gives

\[
\begin{align*}
r_{-1} &= 2002, \quad r_0 = 1946, \quad 2002 = 1946 \times 1 + 56, \quad \Rightarrow \quad r_1 = 56. \\
1946 &= 56 \times 34 + 42, \quad \Rightarrow \quad r_2 = 42. \\
56 &= 42 \times 1 + 14, \quad \Rightarrow \quad r_3 = 14. \\
42 &= 14 \times 3, \quad \Rightarrow \quad \gcd(2002, 1946) = 14.
\end{align*}
\]

This result can be checked: \(2002 = 143 \times 14 \) whereas \(1946 = 139 \times 14 \). Then \(143 = 11 \times 13 \) while \(139 \) is a prime number. (This because \(139 \) is not divisible by \(2, 3, 5, 7, 11 \), as can be checked directly, and therefore, since \(11 \times 13 = 143 > 139 \), there is no need to check whether it is divisible by other primes. Hence 14 is indeed the \(\gcd(2002, 1946) \).)

(d) The sequence \(a = r_{-1} > b = r_0 > r_1 > \cdots > r_m \) satisfies \(r_i/2 \geq r_{i+2} \) for \(i = -1, 0, \cdots, m - 2 \). For indeed, either \(r_{i+1} \leq r_i/2 \), then \(r_{i+2} < r_{i+1} \leq r_i/2 \), or \(r_{i+1} > r_i/2 \), then \(1 \leq r_i/r_{i+1} < 2 \). In the latter case, the euclidean division of \(r_i \) by \(r_{i+1} \) gives \(r_i = r_{i+1} + r_{i+2} > r_i/2 + r_{i+2} \), leading to \(0 \leq r_{i+2} < r_i/2 \).

(e) It follows from the previous result that \(r_m < r_{m-2}/2^l \) for all \(l \) such that \(m - 2l \geq 1 \). Then if \(m \) is even, choose \(l = m/2 \) so that \(r_m < b/2^{m/2} < a/2^{m/2} \). If \(m \) is odd, choose \(l = (m + 1)/2 \) leading to \(r_m < a/2^{(m+1)/2} < a/2^{m/2} \). In both cases

\[
m < 2 \ln_2(a) \leq 2L.
\]

Therefore the computer time required for running this algorithm is \(O(L^3) \), since each step of the Euclidean algorithm requires \(O(L^2) \) elementary operations.

(f) To get the pair \(x, y \in \mathbb{Z} \) such that \(ax + by = \gcd(a, b) \) it is enough to start at the end of the Euclid algorithm and run it backward. Let us treat first the previous example in (6c):

\[
\begin{align*}
14 &= 56 - 42 \times 1, \\
42 &= 1946 - 56 \times 34, \quad \Rightarrow \quad 14 = -1946 \times 1 + 56 \times 35 \\
56 &= 2002 - 1946 \times 1, \quad \Rightarrow \quad 14 = -1946 \times 36 + 2002 \times 35
\end{align*}
\]
In the general case, the recursion goes as follows:

\[r_{-1} = a, \quad r_0 = b, \quad r_j = r_{j+1} \times k_{j+1} + r_{j+2}, \]

where all numbers are in \(\mathbb{N} \), and \(0 < r_{j+2} < r_{j+1} \), as long as \(j \leq m - 2 \). The process terminates when \(j = m - 1 \) for which \(r_{m-1} = k_m r_m \) (which can be interpreted as saying that \(r_{m+1} = 0 \)). Then \(r_m = \gcd(a, b) \). This can be written in matrix form as follows:

\[
\begin{bmatrix}
 r_j \\
 r_{j+1}
\end{bmatrix} =
\begin{bmatrix}
 k_{j+1} & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 r_{j+1} \\
 r_{j+2}
\end{bmatrix},
\]

leading to

\[
\begin{bmatrix}
 a \\
 b
\end{bmatrix} =
\begin{bmatrix}
 k_0 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 k_1 & 1 \\
 1 & 0
\end{bmatrix}
\ldots
\begin{bmatrix}
 k_{m} & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 \gcd(a, b) \\
 0
\end{bmatrix}.
\]

Since all matrices are invertible (their determinant is \(-1\)), and since

\[
\begin{bmatrix}
 k & 1 \\
 1 & 0
\end{bmatrix}^{-1} =
\begin{bmatrix}
 0 & 1 \\
 1 & -k
\end{bmatrix},
\]

it follows that

\[
\begin{bmatrix}
 \gcd(a, b) \\
 0
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\
 1 & -k_0
\end{bmatrix}
\ldots
\begin{bmatrix}
 0 & 1 \\
 1 & -k_0
\end{bmatrix}
= \begin{bmatrix} x & y \\ y' & x' \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}. \tag{1}
\]

Thus \(\gcd(a, b) = ax + by \) while \(ay' + bx' = 0 \). Algorithmically, the product of these \(m + 1 \) matrices can be done recursively. For indeed, setting, for \(0 \leq j \leq m \)

\[
(-1)^j
\begin{bmatrix}
 -p_j' & q_j' \\
 p_j & -q_j
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\
 1 & -k_j
\end{bmatrix}
\ldots
\begin{bmatrix}
 0 & 1 \\
 1 & -k_0
\end{bmatrix},
\]

it follows, by recursion that

\[
p_{-1} = 0, \quad q_{-1} = 1, \quad p_0 = 1, \quad q_0 = k_0, \quad p_j' = p_{j-1}, \quad q_j' = q_{j-1},
\]

\[
p_{j+1} = k_{j+1} p_j + p_{j-1}, \quad q_{j+1} = k_{j+1} q_j + q_{j-1}.
\]

Therefore, starting from \(p_{-1} = 0, q_{-1} = 1, p_0 = 1, q_0 = k_0 \), at each step of the Euclidian algorithm, the computation of \(k_j \) gives \(p_j \geq 0 \) and \(q_j \geq 0 \). This leads to storing \(p_j, q_j, p_{j-1}, q_{j-1}, r_{j-1} \) in a memory, while \(O(L^2) \) elementary operations are required at each step. Since \(m = O(L) \), the algorithm requires also \(O(L^3) \) elementary operations. The algorithm ends whenever \(r_{m+1} = 0 \) leading to \(x = (-1)^{m-1} p_m, y = (-1)^m q_m \). It is worth remarking that the determinant of the product of the first \(j + 1 \) matrices is \((-1)^{j+1} \), so that

\[
q_j p_{j-1} - q_{j-1} p_j = (-1)^{j-1},
\]

showing that \(q_j \) and \(p_j \) are co-prime. In particular, eq. (1) leads to \(a q_m - b p_m = 0 \), namely \(\frac{a}{b} = \frac{q_m}{p_m} \). Since the last fraction is irreducible, it follows that \(\frac{a}{b} = \frac{q_m}{p_m} \) for \(s = \gcd(a, b) \). This is the interpretation of the last two elements of the product of \(m + 1 \) matrices.

(g) If \(a \) and \(n \) are co-prime, the previous algorithm produces \(x, y \in \mathbb{Z} \) such that \(1 = \gcd(a, n) = ax + ny \). In particular \(ax \equiv 1 \pmod{n} \), showing that \(x \) is the inverse of \(a \) modulo \(n \).

7. The Chinese remainder theorem :

(a) Let \(M = m_1 m_2 \cdots m_k \) and let \(M_i = M/m_i \). Then, because the \(m_j \)'s are mutually co-prime, \(M_i \) and \(m_i \) are co-prime. Therefore, \(M_i \) is invertible modulo \(m_i \). Let then \(1 \leq N_j < m_i \) be the inverse of \(M_i \) modulo \(m_i \). Then, if \(j \neq i \), \(M_j N_j = 0 \pmod{m_i} \).
because m_i is a divisor of M_j. On the other hand, $M_i N_i = 1 \pmod{m_i}$. Therefore the number $x = \sum_{i=1}^{k} a_i M_i N_i$ is a solution of the Chinese remainder equation:

$$x = \sum_{i=1}^{k} a_i M_i N_i \quad \Rightarrow \quad x = a_i \pmod{m_i}.$$

(b) Let x, y be two such solutions. Then $x - y = l_1 m_1 = l_2 m_2 = \cdots = l_k m_k$ for some $l_j \in \mathbb{Z}$. Since m_1 and m_2 are co-prime, it follows that m_2 is a divisor of l_1 so that $x - y = r_2 m_1 m_2$ for some $r_2 \in \mathbb{Z}$. By recursion, if it has been proved that $x - y = r_j m_1 m_2 \cdots m_j$ for some $r_j \in \mathbb{Z}$, then $x - y = r_{j+1} m_1 m_2 \cdots m_{j+1}$ implies that m_{j+1} also divides r_j because it does not divides $m_1 m_2 \cdots m_j$. Thus $r_j = r_{j+1} m_{j+1}$ for some $r_{j+1} \in \mathbb{Z}$.

Hence, for $j = k$ this gives $x - y = r M$, namely $x - y = 0 \pmod{M}$.

8. The Euler φ-function gives, for $n \in \mathbb{N}$, the number $\varphi(n)$ of positive integers co-prime to n. Therefore, $\varphi(1) = 1$ and, if $n > 1$, $\varphi(n)$ is nothing but the number of invertible elements of \mathbb{Z}_n.

(a) If $n > 1$, the number of invertible elements in \mathbb{Z}_n is smaller than or equal to $n - 1$. Thus $\varphi(n) < n$.

(b) If $p > 1$ is a prime number, all non zero elements of $\mathbb{F}_p = \mathbb{Z}_p$ are invertible, that is $p \in \mathcal{P} \quad \Rightarrow \quad \varphi(p) = p - 1$.

(c) In the ring \mathbb{Z}_{p^α}, the elements that are not co-prime to p^α are the multiple of p. There are $p^{\alpha-1}$ such elements. Therefore

$$p \in \mathcal{P} \quad \Rightarrow \quad \varphi(p^\alpha) = p^\alpha - p^{\alpha-1} = p^{\alpha-1}(p - 1).$$

(d) Let $a, b \in \mathbb{N}_*$ be co-prime. If x is co-prime to ab, it must be co-prime to a and to b.

Therefore there are invertible elements $x_a \in \mathbb{Z}_a$ and $x_b \in \mathbb{Z}_b$ such that $x = x_a \pmod{a}$ and $x = x_b \pmod{b}$. This pair is unique. Conversely if x is not co-prime to ab, at least one of the divisor of either a or b divides x. Therefore either x_a or x_b is not invertible.

On the other hand given a pair $(x_a, x_b) \in \mathbb{Z}_a \times \mathbb{Z}_b$ of invertible elements, the Chinese remainder theorem shows that there is a unique $x \in \mathbb{Z}_{ab}$ satisfying $x = x_a \pmod{a}$ and $x = x_b \pmod{b}$. By the previous argument, x is invertible modulo ab. Therefore there is a bijection between the set of invertible elements in \mathbb{Z}_{ab} and the set of pairs $(x_a, x_b) \in \mathbb{Z}_a \times \mathbb{Z}_b$ of invertible elements. Hence the number of invertible elements of \mathbb{Z}_{ab} is the product of the number of invertible elements of \mathbb{Z}_a and of \mathbb{Z}_b. This shows that $\varphi(ab) = \varphi(a) \varphi(b)$.

(e) Erratum : in the original problem the relation should be read

$$n = \sum_{d \mid n} \varphi(d).$$

Let p be a prime number. If $\alpha > 0$, all divisors of p^α are of the form p^β for $0 \leq \beta \leq \alpha$.

For $\beta = 0$, $\varphi(p^0) = 1$. Thus, thanks to (8c),
\[\sum_{d|d|n} \varphi(d) = 1 + \sum_{\beta=1}^{\alpha} \varphi(p^\beta) = 1 + (p - 1)(1 + p + \cdots + p^{\alpha - 1}) = 1 + p^\alpha - 1 = p^\alpha. \]

Let \(n > 1 \) have the prime factorization \(n = \prod_{p \in \mathcal{P}} p^{\alpha_p} \). Any divisor of \(n \) is a unique product of the form \(d = \prod_{p \in \mathcal{P}} p^{\beta_p} \) with \(0 \leq \beta_p \leq \alpha_p \). Thus \(\varphi(d) = \prod_{p \in \mathcal{P}} \varphi(p^{\beta_p}) \). Hence, using the previous result,

\[\sum_{d|d|n} \varphi(d) = \sum_{0 \leq \beta_p \leq \alpha_p, \forall p \in \mathcal{P}} \prod_{p \in \mathcal{P}} \varphi(p^{\beta_p}) = \prod_{p \in \mathcal{P}} \sum_{\beta_p=0}^{\alpha_p} \varphi(p^{\beta_p}) = \prod_{p \in \mathcal{P}} p^{\alpha_p}. \]

9. Let \(n \) be a positive integer and let \(1 < x < n - 1 \) be a solution of \(x^2 = 1 \pmod{n} \).

(a) By definition, \(x \not\equiv 1 \pmod{n} \), because \(1 < x < n - 1 \). Since \(x \not\equiv -1 \pmod{n} \) as well.

(b) The equation \(x^2 = 1 \pmod{n} \) can be written as \((x - 1)(x + 1) = 0 \pmod{n} \), namely either \((x - 1) \) or \((x + 1) \) has a non trivial common divisor with \(n \). Thus one of the two gcd\((x \pm 1, n)\) is a non trivial factor of \(n \).

(c) Using the Euclid algorithm, computing gcd\((x \pm 1, n)\) requires \(O(L^3) \) elementary operations, whenever \(L \) is the minimal number of binary digits required to express \(n \).

10. Let \(n = p_1^{\alpha_1} \cdots p_m^{\alpha_m} \) be a factorized integer. Let \(x \in \{2, \ldots, n - 2\} \) be chosen at random (namely with uniform probability) among the integers co-prime to \(n \). Then let \(r \) be the order of \(x \), namely \(r \) is the smallest non zero positive integer such that \(x^r = 1 \pmod{n} \).

Let \(G_x \) be the set of \(r \in \mathbb{Z} \) such that \(x^r = 1 \pmod{n} \). \(G_x \) is not empty nor reduced to \(\{0\} \). This is because the sequence \(\{1, x, x^2, \ldots, x^r, \ldots\} \) is contained in the group of invertible elements of \(\mathbb{Z}_n \) which is finite: thus there are at least two integers \(s \neq t \) such that \(x^s = x^t \pmod{n} \); since \(x \) is invertible \(\pmod{n} \), it follows that \(x^{s-t} = 1 \pmod{n} \). Thus \(0 \neq t - s \in G_x \). If \(r, r' \in G_x \), then \(r + r' \in G_x \) and \(-r \in G_x \), showing that \(G_x \) is a subgroup of \(\mathbb{Z} \). Therefore there is \(r > 0 \) such that \(G_x = r\mathbb{Z} \) and \(r \) is precisely the order of \(x \).

(a) The question is meaningful only if \(n > 2 \), in which case \(-1 \neq 1 \pmod{n} \). Since \(x \) is any invertible element of \(\mathbb{Z}_n \) not equal to \(\pm 1 \), there are \(\varphi(n) - 2 \) such numbers. Therefore the probability of choosing \(x \) is \(1/(\varphi(n) - 2) \).

(b) Erratum : the answer to this question requires more steps than just a few lines answers. Three important results are needed

i. the little Fermat theorem which asserts that if \(p \) is prime and \(a \in \mathbb{N} \) then \(a^p = a \pmod{p} \);

ii. the Euler theorem, generalizing the little Fermat one, namely if \(a \) and \(n \) are co-prime, then \(a^{\varphi(n)} = 1 \pmod{n} \);

iii. if \(p \) is an odd prime, and if \(a > 0 \), then the group \(\mathbb{Z}_{p^a}^* \) of invertible elements of \(\mathbb{Z}_{p^a} \) is cyclic, namely there is \(g \in \mathbb{Z}_{p^a}^* \) such that \(\{1, g, g^2, \ldots, g^{r-1}\} = \mathbb{Z}_{p^a}^* \) for some \(r > 1 \) (\(g \) is called a generator); such an \(r \) is necessarily the number of invertible elements, so that \(r = \varphi(p^a) \).

The proofs of the results \((10(b)i) \otimes (10(b)ii)\) can be found below in Appendix 1. The proof of \((10(b)iii)\) is more difficult and can be found in books of number theory.
By the Euler theorem, since \(x \) is co-prime to \(n \), \(x^\varphi(n) = 1 \pmod{n} \). Therefore \(\varphi(n) \in G_x \) namely, it is a multiple of \(r \). If now \(p \) is an odd prime, let \(d \geq 1 \) be the largest integer such that \(2^d \) divides \(p-1 \) (for instance \(p = 17 \) gives \(p-1 = 16 = 2^4 \)). Thus \(d \) is also the largest integer such that \(2^d \) divides \(\varphi(p^\alpha) \).

We claim that a randomly chosen element \(x \in \mathbb{Z}_{p^\alpha}^* \) has an order \(r \) that is divisible by \(2^d \) with probability exactly \(1/2 \).

For indeed, by (10(b)iii) above, there is a generator \(g \) of the group \(\mathbb{Z}_{p^\alpha}^* \). Thus \(x = g^k \) for some \(0 \leq k \leq \varphi(p^\alpha) - 1 \). If \(r \) is its order, then \(g^{kr} = 1 \pmod{p^\alpha} \) so that \(kr \in G_x \).

Since the order of \(g \) is \(\varphi(p^\alpha) \), it follows that \(\varphi(p^\alpha) \) divides \(kr \). If \(k \) is odd, then automatically \(2^d \) divides \(r \). If \(k \) is even, then

\[
x^{\varphi(p^\alpha)/2} = g^{k\varphi(p^\alpha)/2} = \left(g^{\varphi(p^\alpha)}\right)^{k/2} = 1^{k/2} = 1 \pmod{p^\alpha}.
\]

In particular \(\varphi(p^\alpha)/2 \in G_x \) so that \(r \) divides \(\varphi(p^\alpha)/2 \). Hence, \(2^d \) cannot divide \(r \). Thus for \(x = g^k \) with \(k \) odd, \(2^d \) divides \(r \), whereas for \(x = g^k \) with \(k \) even, \(2^d \) does not divide \(r \). This shows that exactly half of the \(x \)'s have their order divisible by \(2^d \).

Let now \(n = p_1^{\alpha_1} \cdots p_m^{\alpha_m} \) be an odd positive integer. Let \(x \) be a randomly chosen invertible element of \(\mathbb{Z}_n \) and let \(r \) be its order. We claim that with probability larger than or equal to \(1 - 1/2^m \) \(r \) is even and \(x^{r/2} \neq -1 \pmod{n} \).

By the Chinese remainder theorem, any \(x \in \mathbb{Z}_n^* \) can be associated with \((x_1, \ldots, x_m) \in \mathbb{Z}_{p_1^{\alpha_1}}^* \times \cdots \times \mathbb{Z}_{p_m^{\alpha_m}}^* \) in a unique way, such that \(x = x_j \pmod{p_j^{\alpha_j}} \). Thus counting the \(x \)'s is equivalent to counting such \(x_j \)'s. From the definition of the order \(r \) of \(x \), it follows that \(x^r = 1 \pmod{n} \) implies \(x_j^r = 1 \pmod{p_j^{\alpha_j}} \). Thus the order \(r_j \) of \(x_j \) divides \(r \). As before let \(d \) (resp. \(d_j \)) be the largest positive integer such that \(2^d \) (resp. \(2^{d_j} \)) divides \(r \) (resp. \(r_j \)). Then two cases occur for \(x \) not satisfying the claim : (i) either \(r \) is odd, in which case each \(r_j \) must be odd, so that \(d_j = 0 \) and \(r_j \) is odd for all \(j \)'s ; (ii) or \(r \) is even and \(x^{r/2} = -1 \pmod{n} \); then \(x^{r/2} = -1 \pmod{p_j^{\alpha_j}} \) for all \(j \)'s so that \(r/2 \notin G_{x_j} \), which means that \(r \) is not divisible by \(r_j \). Since \(r_j \) divides \(r \), the only possibility is that \(d_j = d \), for all \(j \)'s. This occur with probability exactly \(1/2 \) for each \(j \). Therefore in both cases, all the \(d_j \)'s are equal to \(d \). By the previous claim above, at most half of the \(x_j \)'s chosen in \(\mathbb{Z}_{p_j^{\alpha_j}}^* \) are divisible by \(2^d \) and not by \(2^{d+1} \). For either \(d \) is the largest integer such that \(2^d \) divides \(p_j - 1 \), in which case exactly half of the \(x_j \) have \(d_j = d \), or it is not and at most half of the \(x_j \)'s have \(d_j = d \). Thus altogether, the fraction of the \(x \)'s for which either \(r \) is odd or \(r \) is even but \(x^{r/2} = -1 \pmod{n} \) is at most \((1/2)^m\).

11. This gives an algorithm to compute the prime number factorization of \(n \).

(i) if \(n \) is even, then return the factor 2 and change n into \(n/2 \).
(ii) check whether \(n = a^b \) for some \(a \leq 2 \) and \(b \leq 2 \) and return \(a \) (this can be done by using a special algorithm).
(iii) choose randomly \(x \) between 1 and \(n - 1 \). If \(\gcd(x, n) > 1 \) then return the factor \(\gcd(x, n) \) and replace \(n \) by \(n/\gcd(x, n) \).
(iv) Otherwise, use the order finding algorithm to compute the order r of x.
(v) if r is even and $x^{r/2} \neq -1 \pmod{n}$, then compute $\gcd(x^{r/2} \pm 1, n)$ and test which is a non trivial factor. Then return this factor and divides n by this factor. Otherwise, choose another x.
(vi) if everything fails, then n is a prime number.

1 Appendix: two theorems of Arithmetic

In this Section the three results needed in (10b) will be proved.

Theorem 2 (Little Fermat Theorem) If p is a prime number and $a \in \mathbb{N}$ then $a^p = a \pmod{p}$.

Proof: (i) first we claim that, if $0 < k < p$ is an integer, then p divides $\left(\begin{array}{c} p \\ k \end{array} \right)$. This is because
\[
p(p-1) \cdots (p-k+1) = \left(\begin{array}{c} p \\ k \end{array} \right) k(k-1) \cdots 1.
\]
Since $k \geq 1$ the left hand side is divisible by p. Since p is prime and $k < p$ the term $k(k-1) \cdots 1$ is not divisible by p, leading to the conclusion.

(ii) To prove the theorem, we proceed by induction on a. For $a = 1$, the result is obvious. Suppose the theorem is true for a. Then, using the binomial formula:
\[
(a + 1)^p = \sum_{k=0}^{p} \left(\begin{array}{c} p \\ k \end{array} \right) a^k.
\]
All terms corresponding to $k \neq 0, p$ are divisible by p. Thus, using the induction hypothesis, $(a + 1)^p = 1 + a^p = 1 + a \pmod{p}$. Hence $a + 1$ satisfies also the theorem. \square

Theorem 3 (Euler) If a and n are co-prime integers, then $a^{\phi(n)} = 1 \pmod{n}$.

Proof: (i) Let p be a prime number. By induction on α the theorem is true for $n = p^\alpha$. For indeed, if $\alpha = 1$, this is the little Fermat theorem 2. If, by induction, the result holds for some $\alpha \geq 1$, then
\[
a^{\phi(p^\alpha)} = 1 + kp^\alpha,
\]
for some $k \in \mathbb{Z}$. Thus, using (8c),
\[
ap^{\phi(p^{\alpha+1})} = a^{p^{\alpha}(p-1)}
\]
\[
= a^{p^{\phi(p^\alpha)}}
\]
\[
= (1 + kp^{\alpha})^p
\]
\[
= 1 + \sum_{j=1}^{p} \left(\begin{array}{c} p \\ k \end{array} \right) k^j p^{j\alpha}.
\]
Using the proof of Theorem 2, all terms in the last sum are divisible by $p^{\alpha+1}$, so that
\[
ap^{\phi(p^{\alpha+1})} = 1 \pmod{p^{\alpha+1}}.
\]
\square