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Abstract: We give new examples of noncommutative manifolds that are less standard
than the NC-torus or Moyal deformations ofRn. They arise naturally from basic consid-
erations of noncommutative differential topology and have non-trivial global features.

The new examples include the instanton algebra and the NC-4-spheresS4
θ . We con-

struct the noncommutative algebrasA = C∞(S4
θ ) of functions on NC-spheres as solu-

tions to the vanishing, chj (e) = 0,j < 2, of the Chern character in the cyclic homology
of A of an idempotente ∈ M4(A), e2 = e, e = e∗. We describe the universal non-
commutative space obtained from this equation as a noncommutative Grassmannian as
well as the corresponding notion of admissible morphisms. This space Gr contains the
suspension of a NC-3-sphereS3

θ distinct from quantum group deformations SUq(2) of
SU(2).

We then construct the noncommutative geometry ofS4
θ as given by a spectral triple

(A,H,D) and check all axioms of noncommutative manifolds. In a previous paper it
was shown that for any Riemannian metricgµν onS4 whose volume form

√
g d4x is the

same as the one for the round metric, the corresponding Dirac operator gives a solution
to the following quartic equation,〈(

e − 1

2

)
[D, e]4

〉
= γ5,

where〈 〉 is the projection on the commutant of 4× 4 matrices.
We shall show how to construct the Dirac operatorD on the noncommutative 4-

spheresS4
θ so that the previous equation continues to hold without any change.

Finally, we show that any compact Riemannian spin manifold whose isometry group
has rankr ≥ 2 admits isospectral deformations to noncommutative geometries.
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1. Introduction

It is important to have available examples of noncommutative manifolds that are less
standard than the NC-torus [4,13] or the old Moyal deformation ofRn whose algebra
is boring. This is particularly so in view of the upsurge of activity in the interaction
between string theory and noncommutative geometry started in [11,22,25]. The new
examples should arise naturally, have non-trivial global features (and also pass the test
of noncommutative manifolds as defined in [8]).

This paper will provide and analyse such very natural new examples, including the
instanton algebra and the NC-4-spheresS4

θ , obtained from basic considerations of non-
commutative differential topology.

We shall also show quite generally that any compact Riemannian spin manifold whose
isometry group has rankr ≥ 2 admits isospectral deformations to noncommutative
geometries.

A noncommutative geometry is described by a spectral triple

(A,H,D), (1.1)

whereA is a noncommutative algebra with involution∗, acting in the Hilbert spaceH
whileD is a self-adjoint operator with compact resolvent and such that,

[D, a] is bounded∀ a ∈ A. (1.2)

The operatorD plays in general the role of the Dirac operator [19] in ordinary Riemannian
geometry. It specifies both the metric on the state space ofA by

d(ϕ,ψ) = Sup{|ϕ(a) − ψ(a)|; ‖[D, a]‖ ≤ 1} (1.3)

and theK-homology fundamental class (cf. [6]). What holds things together in this
spectral point of view of NCG is the nontriviality of the pairing between theK-theory
of the algebraA and theK-homology class ofD, given in the even case by

[e] ∈ K0(A) → IndexD+
e ∈ Z. (1.4)

Here[e] is the class of an idempotent

e ∈ Mr(A), e2 = e, e = e∗ (1.5)

in the algebra ofr × r matrices overA, and

D+
e = e D+e , (1.6)

whereD+ = D (
1+γ

2 ) is the restriction ofD to the rangeH+ of 1+γ
2 andγ is theZ/2

grading ofH in the even case; thusD is of the form,

D =
[

0 D∗+
D+ 0

]
, γ =

[
1 0
0 −1

]
. (1.7)

The cornerstone of the general theory is an operator theoretic index formula [6,12,16]
which expresses the above index pairing (1.4) by explicitlocal cyclic cocycles on the
algebraA. These local formulas become extremely simple in the special case where
only the top component of the Chern character Ch(e) in cyclic homology fails to vanish.
(This is easy to understand in the analogous simpler case of ordinary manifolds since
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the Atiyah–Singer index formula gives the integral of the product of the Chern character
Ch(E), of the bundleE over the manifoldM, by the index class; if the only component
of Ch(E) is chn, n = 1

2 dimM, only the 0-dimensional component of the index class is
involved in the index formula.)

Under this assumption the index formula reduces indeed to the following,

IndexD+
e = (−1)m

∫
− γ

(
e − 1

2

)
[D, e]2m D−2m, (1.8)

provided the components chj (e) all vanish forj < m. Hereγ is theZ/2 grading ofH
as above, the resolvent ofD is of order 1

2m (i.e. its characteristic valuesµk are 0(k− 1
2m ))

and
∫− is the coefficient of the logarithmic divergency in the ordinary operator trace [15,

26].
We began in [10] to investigate the algebraic relations implied by the vanishing,

chj (e) = 0 j < m, (1.9)

of the Chern character ofe in the cyclic homology ofA. Note that this vanishing at the
chain level is a much stronger condition than the vanishing of the usual Chern differential
form.

Form = 1 (andr = 2 in (1.5)) we found commutative solutions withA = C∞(S2)

as the algebra generated by the matrix components,

eij , e = [eij ] ∈ M2(A). (1.10)

In fact, form = 1 the commutativity is imposed by the relationse2 = e, e = e∗ and
ch0(e) = 0.

For m = 2 (andr = 4 in (1.5)) we also found commutative solutions withA =
C∞(S4) whereS4 appears as quaternionic projective space but the computations of [10]
used an “Ansatz” and did not analyse the general solution. In particular this left open the
possibility of a noncommutative solution form = 2 (andr = 4). We shall show in this
paper that such noncommutative solutions do exist and provide very natural examples of
NC 4-spheresS4

θ . We shall also describe the noncommutative space associated to (1.9)
for m = 2 (andr = 4) as a noncommutative Grassmannian as well as the corresponding
notion of admissible morphisms. This space Gr contains our NC 4-spheresS4

θ as the
suspension of a NC 3-sphereS3

θ distinct from quantum group deformations SUq(2) of
SU(2).

Our next task will be to analyse the metrics (i.e. the operatorsD) on our solutions
of Eq. (1.9). In [10] it was shown that for any Riemannian metricgµν on S4 whose
volume form

√
g d4x is the same as the one for the round metric, the corresponding

Dirac operator gives a solution to the following quartic equation,〈(
e − 1

2

)
[D, e]4

〉
= γ5, (1.11)

where〈 〉 is the projection on the commutant of 4× 4 matrices (recall thate ∈ M4(A)

is a 4× 4 matrix).
We shall show in this paper how to construct the Dirac operator on the noncommu-

tative 4-spheresS4
θ so that Eq. (1.11) continues to hold without any change. Combining

this Eq. (1.11) with the index formula gives a quantization of the volume,∫
− ds4 ∈ N ds = D−1 (1.12)
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and fixes (in a givenK-homology class for the operatorD) the leading term of the
spectral action [3],

Trace

(
f

(
D

!

))
= !4

2

∫
− ds4 + · · · . (1.13)

Since the next term is the Hilbert-Einstein action in the usual Riemannian case [3,18,
17], it is very natural to compare various solutions (commutative or not) of (1.11) using
this action.

2. Components of the Chern Character and the Instanton Algebra

Let A be an algebra (overC) and

e ∈ Mr(A), e2 = e (2.1)

be an idempotent. The component chn(e) of the (reduced) Chern character ofe is an
element of

A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
2n

, (2.2)

whereA = A/C1 is the quotient ofA by the scalar multiples of the unit 1. The formula
for chn(e) is (with λn a normalization constant),

chn(e) = λn
∑ (

ei0i1 − 1

2
δi0i1

)
⊗ ẽi1i2 ⊗ ẽi2i3 · · · ⊗ ẽi2ni0, (2.3)

whereδij is the usual Kronecker symbol and only the classẽik ik+1 ∈ A is used in the
formula. The crucial property of the components chn(e) is that they define acycle in the
(b, B) bicomplex of cyclic homology [5,20],

B chn(e) = b chn+1(e). (2.4)

For any pair of integersm, r we let Am,r be the universal algebra associated to the
relations,

chj (e) = 0 ∀ j < m. (2.5)

More precisely we letAm,r be generated by ther2 elementseij ; i, j ∈ {1, . . . , r} and
we first impose the relations

e2 = e, e = [eij ]. (2.6)

An admissible homomorphism,

ρ : Am,r → B, (2.7)

to an arbitrary algebraB, is given by theρ(eij ) ∈ B which fulfill

ρ(e)2 = ρ(e), (2.8)
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and chj (ρ(e)) = 0 for j < m, thus∑ (
ρ(ei0i1) − 1

2
δi0i1

)
⊗ ρ̃(ei1i2) ⊗ · · · ⊗ ˜ρ(ei2j i0) = 0, (2.9)

where the symbol∼ means that only the class inB matters. We defineAm,r as the
quotient of the algebra defined by (2.6) by the intersection of kernels of all admissible
morphismsρ.

Elements of the algebraAm,r can be represented as polynomials in the generators
eij and to prove that such a polynomialP(eij ) is non-zero inAm,r one must construct
a solution to the above equations for whichP(eij ) �= 0. To get aC∗ algebra we endow
Am,r with the involution given by,

(eij )
∗ = eji (2.10)

which means thate = e∗ in Mr(A). We define a norm by,

‖P ‖ = Sup‖(π(P ))‖, (2.11)

whereπ ranges through all representations of the above equations in Hilbert space. Such
aπ is given by a Hilbert spaceH and a self-adjoint idempotent,

E ∈ Mr(L(H)), E2 = E, E = E∗ (2.12)

such that (2.9) holds forB = L(H).
One checks that for any polynomialP(eij ) the quantity (2.11), i.e. the supremum of

the norms,

‖P(Eij )‖ (2.13)

is finite.
We letAm,r be theC∗ algebra obtained as the completion ofAm,r for the above

norm.
To get familiar with the (a priori noncommutative) spaces Grm,r such that,

Am,r = C(Grm,r ) (2.14)

we shall first recall from [10] what happens in the simplest casem = 1, r = 2.

One hase =
[
e11 e12
e21 e22

]
and the condition (2.7) just means that

e11 + e22 = 1 (2.15)

while (2.6) means that

e2
11 + e12 e21 = e11, e11e12 + e12e22 = e12,

e21e11 + e22 e21 = e21, e21e12 + e2
22 = e22.

(2.16)

By (2.15) we gete11−e2
11 = e22−e2

22, so that (2.16) shows thate12 e21 = e21e12. We
also see thate12 ande21 both commute withe11. This shows thatA1,2 is commutative and
allows to check that Gr1,2 = S2 is the 2-sphere. Thus Gr1,2 is an ordinary commutative
space.
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Next, we move on to the casem = 2, r = 4. We shall show now that Gr2,4 is a non-
commutative space. It differs from standard NC-Grassmannians and its very interesting
structure will be analysed elsewhere. Note that the notion of admissible morphism is a
non trivial piece of structure on Gr2,4 since the identity map is not admissible.

We can first reformulate the construction of [10] Sect. XI and get an admissible
surjection,

A2,4
σ−→ C(S4), (2.17)

whereS4 appears naturally as quaternionic projective space,S4 = P1(H). Let us recall
from [10] that the equality,

E(x) =
[
t q

q 1 − t

]
∈ M4(C) (2.18)

for x = (q, t) given by a pair of a quaternionq =
[

α β

−β∗ α∗
]

and a real numbert such

that

q q = t − t2 (2.19)

defines a map from the 4-sphereS4 (the double of the 4-disk|q| ≤ 1) to the Grassmannian
of 2-dimensional projectionsE = E2 = E∗ in M4(C) such that,

Trace(F (x) F (y) F (z)) = 0 ∀ x, y, z ∈ S4, (2.20)

whereF(x) = 2E(x) − 1 is the corresponding self-adjoint isometry.
The equality XI.54 of [10] is weaker than this statement but examining the proof one

gets (2.20). To formulate the result for arbitrary even spheresS2m we note first that using
(2.4) the equality

ω = chm(e) (2.21)

defines aHochschild cycleρ(ω) ∈ Z2m(B) for any admissible morphismρ : Am,r → B.
We letr = 2m and construct an admissible surjection,

Am,2m
σ−→ C(S2m) (2.22)

which is non trivial inasmuch as

σ(ω) = v (2.23)

is the volume form of the round oriented sphere.
To constructσ we let Cl = Cliff (R2m) be the Clifford algebra of the (oriented)

Euclidean spaceR2m. We identify S2m with the space of pairs(ξ, t), ξ ∈ R2m and
t ∈ [−1,1] such that‖ξ‖2+t2 = 1. We then define a map fromS2m to the Grassmannian
of self-adjoint idempotents in Cl by

E(ξ, t) = 1

2
+ 1

2
(γ (ξ) + t γ ), (2.24)

whereγ (ξ) is the usual inclusion ofR2m in Cl such that

γ (ξ)2 = ‖ξ‖2, γ (ξ) = γ (ξ)∗ (2.25)
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andγ ∈ Cl, γ ∗ = γ , γ 2 = 1 is theZ/2 grading associated with the chosen orientation
of R2m. One hasγ γ (ξ) = −γ (ξ)γ for anyξ which allows to check thatγ (ξ) + t γ is
an involution andE a self-adjoint idempotent. Next, for5 < 2m, 5 odd,

Trace((γ (ξ1) + t1 γ ) . . . (γ (ξ5) + t5 γ )) = 0 ∀ ξj , tj . (2.26)

Indeed the coefficient of monomials int of even degree is of the form Trace(γ (ξ1) . . .

γ (ξ2k+1)) which vanishes by anticommutation withγ . The coefficient of monomials
in t of odd degree is of the form Trace(γ (ξ1) . . . γ (ξ2k) γ ), wherek < m. It vanishes
becauseγ is orthogonal to all the lower filtration ofC. We thus get,

Trace

((
E(x1) − 1

2

)
. . .

(
E(x5) − 1

2

))
= 0 ∀ x1, . . . , x5 ∈ S2m (2.27)

provided5 is odd,5 < 2m.
HenceE defines an admissible homomorphismσ : Am,2m → C(S2m) and one has,

as in [10], the following result,

Theorem 1. a) E ∈ C∞(S2m,Mr(C)) satisfies E = E2 = E∗ and chj (E) = 0 ∀ j <

m.
b) The Hochschild cycle ω = chm(E) is the volume form of the round sphere S2m.
c) Let g be a Riemannian metric on S2m with volume form

√
g d2mx = ω, then the

corresponding Dirac operator D fulfills〈(
e − 1

2

)
[D, e]2m

〉
= γ,

where e = E as above and 〈 〉 is the projection on the commutant of Mr(C).

We have identifiedMr(C) with the Clifford algebra Cl= Cliff (R2m), r = 2m. This
result shows in particular that Grm,r , r = 2m, containsS2m in such a way thatω|S2m is
the volume form for the round metric. The proof is the same as in [10].

3. The Noncommutative 4-Sphere

Let us now move on to the inclusionS4
θ ⊂ Gr2,4, whereS4

θ is the noncommutative
4-sphere we are about to describe.

One should observe from the outset that the compact Lie groupSU(4) acts by auto-
morphisms,

PSU(4) ⊂ Aut (C∞Gr2,4) (3.1)

by the following operation,

e → U eU∗, (3.2)

whereU ∈ SU(4) is viewed as a 4× 4 matrix ande = [eij ] as above.
We shall now show that the algebraC(Gr2,4) is noncommutative by constructing

explicit admissible surjections,

C(Gr2,4) → C(S4
θ ) (3.3)
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whose form is dictated by natural deformations of the 4-sphere similar in spirit to the
standard deformation ofT2 to T2

θ .
We first determine the algebra generated byM4(C) and a projectione = e∗ such that〈

e − 1
2

〉 = 0 as above and whose two by two matrix expression is of the form,

[eij ] =
[
q11 q12
q21 q22

]
(3.4)

where eachqij is a 2× 2 matrix of the form,

q =
[

α β

−λβ∗ α∗
]
, (3.5)

andλ = exp(2πiθ) is a complex number of modulus one, different from -1 for conve-
nience. Sincee = e∗, bothq11 andq22 are selfadjoint, moreover since

〈
e − 1

2

〉 = 0, we
can findt = t∗ such that,

q11 =
[
t 0
0 t

]
, q22 =

[
(1 − t) 0

0 (1 − t)

]
. (3.6)

We letq12 =
[

α β

−λβ∗ α∗
]
, we then get frome = e∗,

q21 =
[
α∗ −λ̄β

β∗ α

]
. (3.7)

We thus see that the commutantBθ of M4(C) is generated byt, α, β and we first need
to find the relations imposed by the equalitye2 = e.
In terms of

e =
[
t q

q∗ 1 − t

]
, (3.8)

the equatione2 = e means thatt2 − t + qq∗ = 0, t2 − t + q∗q = 0 and[t, q] = 0. This
shows thatt commutes withα, β, α∗ andβ∗ and sinceqq∗ = q∗q is a diagonal matrix

αα∗ = α∗α, αβ = λβα, α∗β = λ̄βα∗, ββ∗ = β∗β (3.9)

so that theC∗ algebraBθ is not commutative forλ different from 1. The only further
relation is, (besidest = t∗),

αα∗ + ββ∗ + t2 − t = 0. (3.10)

We denote byS4
θ the corresponding noncommutative space, so thatC(S4

θ ) = Bθ . It is
by construction the suspension of the noncommutative 3-sphereS3

θ whose coordinate
algebra is generated byα andβ as above and say the special valuet = 1/2.

Had we taken the deformation parameter to be real,λ = q ∈ R, the noncommutative
3-sphereS3

q would coincide with the quantum groupSUq(2). Similarly, had we taken the
deformation parameter inS4

θ to be real like in [14] we would have obtained a different
deformationS4

q of the commutative sphereS4, whose algebra is different from the above
one. More important, the two dimensional componentch1(e) of the Chern character
would not vanish.
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We shall now check that for the sphereS4
θ the two dimensional componentch1(e)

automatically vanishes as an element of the (normalized) (b,B)-bicomplex so that,

chn(e) = 0, n = 0,1. (3.11)

With q =
[

α β

−λβ∗ α∗
]

, we get,

ch1(e) =
〈(

t − 1

2

)
(dq dq∗ − dq∗ dq)

+ q (dq∗ dt − dt dq∗) + q∗ (dt dq − dq dt)

〉
,

(3.12)

where the expectation in the right hand side is relative toM2(C) and we use the notation
d instead of the tensor notation.

The diagonal elements ofω = dq dq∗ are

ω11 = dα dα∗ + dβ dβ∗, ω22 = dβ∗ dβ + dα∗ dα

while forω′ = dq∗ dq we get,

ω′
11 = dα∗ dα + dβ dβ∗, ω′

22 = dβ∗ dβ + dα dα∗.

It follows that, sincet is diagonal,〈(
t − 1

2

)
(dq dq∗ − dq∗ dq)

〉
= 0. (3.13)

The diagonal elements ofq dq∗ dt = ρ are

ρ11 = α dα∗ dt + β dβ∗ dt, ρ22 = β∗ dβ dt + α∗ dα dt

while for ρ′ = q∗ dq dt they are

ρ′
11 = α∗ dα dt + β dβ∗ dt, ρ′

22 = β∗ dβ dt + α dα∗ dt.

Similarly for σ = q dt dq∗ andσ ′ = q∗ dt dq one gets the required cancellations so
that,

ch1(e) = 0. (3.14)

We thus get,

Theorem 2. a) e ∈ C∞(S4
θ ,M4(C)) satisfies e = e2 = e∗ and chj (e) = 0 ∀ j < 2.

b) Gr2,4 is a noncommutative space and S4
θ ⊂ Gr2,4.

Sincech1(e) = 0, it follows thatch2(e) is a Hochschild cycle which will play the
role of the round volume form onS4

θ and that we shall now compute. With the above
notations one has,

ch2(e) =
〈[

t − 1
2 q

q∗ 1
2 − t

] ([
dt dq

dq∗ −dt

])4
〉
, (3.15)
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and the sum of the diagonal elements is(
t − 1

2

) (
(dt2 + dq dq∗)2 + (dt dq − dq dt)(dq∗ dt − dt dq∗)

)
−

(
t − 1

2

) (
(dq∗ dt − dt dq∗)(dt dq − dq dt) + (dq∗ dq + dt2)2

)
+ q

(
(dq∗ dt − dt dq∗)(dt2 + dq dq∗) + (dq∗ dq + dt2)(dq∗ dt − dt dq∗)

)
+ q∗((dt2 + dq dq∗)(dt dq − dq dt) + (dt dq − dq dt)(dq∗ dq + dt2)

)
.

(3.16)

Sincet anddt are diagonal 2× 2 matrices of operators and the same diagonal terms
appear indq dq∗ anddq∗ dq, by the same argument by which we got the vanishing
(3.13), the first two lines only contribute by,〈(

t − 1

2

)
(dq dq∗ dq dq∗ − dq∗ dq dq∗ dq)

〉
. (3.17)

Similarly, the last two lines only contribute by〈
q∗ (dt dq dq∗ dq − dq dt dq∗ dq + dq dq∗ dt dq − dq dq∗ dq dt)

− q (dt dq∗ dq dq∗ − dq∗ dt dq dq∗ + dq∗ dq dt dq∗ − dq∗ dq dq∗ dt)
〉
.

(3.18)

The direct computation givesch2(e) as a sum of five components

ch2(e) = (t − 1

2
) 9t + α 9α + α∗ 9α∗ + β 9β + β∗ 9β∗ , (3.19)

with the operators9t , 9α, 9α∗ , 9β, 9β∗ explicitly given by

9t = (dα dα∗ − dα∗ dα)(dβ dβ∗ − dβ∗ dβ)
+ (dβ dβ∗ − dβ∗ dβ)(dα dα∗ − dα∗ dα)
+ (dα dβ − λ dβ dα)(dβ∗ dα∗ − λ̄ dα∗ dβ∗)
+ (dβ∗ dα∗ − λ̄ dα∗ dβ∗)(dαdβ − λ dβ dα)

+ (dα∗ dβ − λ̄ dβ dα∗)(λ dα dβ∗ − dβ∗ dα)
+ (λ dα dβ∗ − dβ∗ dα)(dα∗ dβ − λ̄ dβ dα∗) ;

(3.20)

9α = (dt dα∗ − dα∗ dt)(dβ∗ dβ − dβ dβ∗)
+ (dβ∗ dβ − dβ dβ∗)(dt dα∗ − dα∗ dt)
+ (dβ dt − dt dβ)(dβ∗ dα∗ − λ̄ dα∗ dβ∗)
+ λ (dβ∗ dα∗ − λ̄ dα∗ dβ∗)(dβ dt − dt dβ)

+ (dα∗ dβ − λ̄ dβ dα∗)(dβ∗ dt − dt dβ∗)
+ λ (dβ∗ dt − dt dβ∗)(dα∗ dβ − λ̄ dβ dα∗);

(3.21)
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9α∗ = (dt dα − dα dt)(dβ dβ∗ − dβ∗ dβ)
+ (dβ dβ∗ − dβ∗ dβ)(dt dα − dα dt)

+ (dα dβ − λ dβ dα)(dt dβ∗ − dβ∗ dt)
+ λ̄ (dt dβ∗ − dβ∗ dt)(dα dβ − λ dβ dα)

+ (dt dβ − dβ dt)(dβ∗ dα − λ dα dβ∗)
+ λ̄ (dβ∗ dα − λ dα dβ∗)(dt dβ − dβ dt);

(3.22)

9β = (dt dβ∗ − dβ∗ dt)(dα∗ dα − dα dα∗)
+ (dα∗ dα − dα dα∗)(dt dβ∗ − dβ∗ dt)
+ λ (dt dα − dα dt)(dβ∗ dα∗ − λ̄ dα∗ dβ∗)
+ (dβ∗ dα∗ − λ̄ dα∗ dβ∗)(dt dα − dα dt)

+ λ̄ (dα∗ dt − dt dα∗)(dβ∗ dα − λ dα dβ∗)
+ (dβ∗ dα − λ dα dβ∗)(dα∗ dt − dt dα∗);

(3.23)

9β∗ = (dt dβ − dβ dt)(dα dα∗ − dα∗ dα)
+ (dα dα∗ − dα∗ dα)(dt dβ − dβ dt)

+ (dα∗ dt − dt dα∗)(dα dβ − λdβ dα)

+ λ̄ (dα dβ − λdβ dα)(dα∗ dt − dt dα∗)
+ (dt dα − dα dt)(dα∗ dβ − λ̄ dβ dα∗)
+ λ (dα∗ dβ − λ̄ dβ dα∗)(dt dα − dα dt).

(3.24)

One can equivalently (in order to avoid any confusion with ordinary differentials)
write the Hochschild cyclec = ch2(e) as

c =
(
t − 1

2

)
ct + α cα + α∗ cα∗ + β cβ + β∗ cβ∗ , (3.25)

where the componentsct , cα, cα∗ , cβ, cβ∗ , which are elements inBθ ⊗ Bθ ⊗ Bθ ⊗ Bθ ,
have an expression of the same form as the corresponding operators in (3.20-3.24) with
the symbold substituted by the tensor product symbol⊗ . The vanishing ofbc, which
has six hundred terms, can be checked directly from the commutation relations (3.9).
The cyclec is totally “λ-antisymmetric”.

4. The Noncommutative Geometry of S4
θ

The next step consists in finding the Dirac operator which gives a solution to the basic
quartic equation (1.11). LetA = C∞(S4

θ ) be the algebra of smooth functions on the
noncommutative sphereS4

θ . We shall now describe a spectral triple

(A,H,D) (4.1)

which describes the geometry onS4
θ corresponding to the round metric.
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In order to do that we first need to find good coordinates onS4
θ in terms of which the

operatorD will be easily expressed. We choose to parametrizeα, β andt as follows:

α = u

2
cosϕ cosψ, β = v

2
sinϕ cosψ, t = 1

2
+ 1

2
sinψ. (4.2)

Hereϕ andψ are ordinary angles with domain

0 ≤ ϕ ≤ π

2
, −π

2
≤ ψ ≤ π

2
, (4.3)

whileuandv are the usual unitary generators of the algebraC∞(T2
θ )of smooth functions

on the noncommutative 2-torus. Thus the presentation of their relations is

uv = λvu, uu∗ = u∗u = 1, vv∗ = v∗v = 1. (4.4)

One checks thatα, β, t given by (2) satisfy the basic presentation of the generators of
C∞(S4

θ ) which thus appears as asubalgebra of the algebra generated (and then closed
under smooth calculus) byeiϕ , eiψ , u andv.

For θ = 0 one readily computes the round metric,

G = 4 (dα dα + dβ dβ + dt2) (4.5)

and in terms of the coordinates,ϕ,ψ, u, v one gets,

G = cos2 ϕ cos2ψ du du + sin2 ϕ cos2ψ dv dv + cos2ψ dϕ2 + dψ2. (4.6)

Up to normalization, its volume form is given by

sinϕ cosϕ (cosψ)3 u du ∧ v dv ∧ dψ ∧ dϕ. (4.7)

In terms of these rectangular coordinates we get the following simple expression for the
Dirac operator,

D = (cosϕ cosψ)−1 u
∂

∂u
γ1 + (sinϕ cosψ)−1 v

∂

∂v
γ2

+ 1

cosψ

√−1

(
∂

∂ϕ
+ 1

2
cotgϕ − 1

2
tgϕ

)
γ3 + √−1

(
∂

∂ψ
− 3

2
tgψ

)
γ4.

(4.8)

Hereγµ are the usual Dirac 4× 4 matrices with

{γµ, γν} = 2δµν, γ
∗
µ = γµ. (4.9)

It is now easy to move on to the noncommutative case, the only tricky point is that
there are nontrivial boundary conditions for the operatorD, which are in particular
antiperiodic in the arguments of bothu andv. We shall just leave them unchanged in the
NC case, the only thing which changes is the algebra and the way it acts in the Hilbert
space as we shall explain in more detail in the next section. The formula for the operator
D is now,

D = (cosϕ cosψ)−1 δ1 γ1 + (sinϕ cosψ)−1 δ2 γ2

+ 1

cosψ

√−1

(
∂

∂ϕ
+ 1

2
cotgϕ − 1

2
tgϕ

)
γ3 + √−1

(
∂

∂ψ
− 3

2
tgψ

)
γ4,

(4.10)
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where theγµ are the usual Dirac matrices and whereδ1 andδ2 are the standard derivations
of the NC torus so that

δ1(u) = u, δ1(v) = 0,

δ2(u) = 0, δ2(v) = v.
(4.11)

One can then check that the corresponding metric is the right one (the round metric).
In order to compute the operator

〈(
e − 1

2

) [D, e]4〉 (in the tensor product byM4(C))
we need the commutators ofD with the generators ofC∞(S4

θ ). They are given by the
following simple expressions:

[D,α] = u

2

{
γ1 − √−1 sin(φ) γ3 − √−1 cosφ) sin(ψ) γ4

}
,

[D,α∗] = −u∗

2

{
γ1 + √−1 sin(φ) γ3 + √−1 cos(φ) sin(ψ) γ4

}
,

[D,β] = v

2

{
γ2 + √−1 cos(φ) γ3 − √−1 sin(φ) sin(ψ) γ4

}
,

[D,β∗] = −v∗

2

{
γ2 − √−1 cos(φ) γ3 + √−1 sin(φ) sin(ψ) γ4

}
,

[D, t] =
√−1

2
cos(ψ) γ4.

(4.12)

We check in particular that they are all bounded operators and hence that for any
f ∈ C∞(S4

θ ) the commutator[D, f ] is bounded. Then, a long but straightforward
calculation shows that the operator

〈(
e − 1

2

) [D, e]4〉 is a multiple ofγ5 = γ1γ2γ3γ4.
One first checks that it is equal toπ(c), wherec is the Hochschild cycle in (III.3.25) and
π is the canonical map from the Hochschild chains to operators given by

π(a0 ⊗ a1 ⊗ . . . ⊗ an) = a0[D, a1] . . . [D, an]. (4.13)

One can then check the various conditions which in the commutative case suffice to
characterize Riemannian geometry [8,9].

Theorem 3. a) The spectral triple (C∞(S4
θ ),H,D) fulfills all axioms of noncommuta-

tive manifolds.
b) Let e ∈ C∞(S4

θ ,M4(C)) be the canonical idempotent given in (III.3.8). The Dirac
operator D fulfills 〈(

e − 1

2

)
[D, e]4

〉
= γ,

where 〈 〉 is the projection on the commutant of M4(C) and γ is the grading operator.

The real structure [7] is given by the charge conjugation operatorJ , which involves
in the noncommutative case the Tomita-Takesaki antilinear involution. The order one
condition,

[[D, a], b0] = 0 ∀ a, b ∈ C∞(S4
θ ), (4.14)

whereb0 = Jb∗J−1 follows easily from the derivation rules for theδj .
As we shall mention in the next section, Poincaré duality continues to hold.
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5. Isospectral Deformations

We shall show in this section how to extend Theorem 3 of the previous section to arbitrary
metrics on the sphereS4 which are invariant under rotation ofu andv and have the same
volume form as the one of the round metric. We shall in fact describe a very general
construction of isospectral deformations of noncommutative geometries which implies
in particular that any compact spin Riemannian manifoldM whose isometry group has
rank ≥ 2 admits a natural one-parameter isospectral deformation to noncommutative
geometriesMθ . The deformation of the algebra will be performed along the lines of
[23].

We let(A,H,D) be the canonical spectral triple associated with a compact Rieman-
nian spin manifoldM. We recall thatA = C∞(M) is the algebra of smooth functions
onM, H = L2(M, S) is the Hilbert space of spinors andD is the Dirac operator. We
let J be the charge conjugation operator which is an antilinear isometry ofH.

Let us assume that the group Isom(M) of isometries ofM has rankr ≥ 2. Then, we
have an inclusion

T2 ⊂ Isom(M), (5.1)

with T = R/2πZ the usual torus, and we letU(s), s ∈ T2 be the corresponding
(projective) unitary representation inH = L2(M, S) so that by construction

U(s)D = DU(s), U(s) J = J U(s). (5.2)

Also,

U(s) a U(s)−1 = αs(a), ∀ a ∈ A, (5.3)

whereαs ∈ Aut(A) is the action by isometries on the algebra of functions onM.
We letp = (p1, p2) be the generator of the two-parameters groupU(s) so that

U(s) = exp(i(s1p1 + s2p2)). (5.4)

The operatorsp1 andp2 commute withD but anticommute withJ . Both p1 andp2
have half-integral spectrum,

Spec(2pj ) ⊂ Z, j = 1,2. (5.5)

One defines a bigrading of the algebra of bounded operators inH with the operator
T declared to be of bidegree(n1, n2) when,

αs(T ) = exp(i(s1n1 + s2n2)) T , ∀ s ∈ T2, (5.6)

whereαs(T ) = U(s) T U(s)−1 as in (5.3). Any operatorT of classC∞ relative toαs
(i.e. such that the maps → αs(T ) is of classC∞ for the norm topology) can be uniquely
written as a doubly infinite norm convergent sum of homogeneous elements,

T =
∑
n1,n2

T̂n1,n2, (5.7)

with T̂n1,n2 of bidegree(n1, n2), and where the sequence of norms||T̂n1,n2|| is of rapid
decay in(n1, n2).
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Let λ = exp(2πiθ). For any operatorT in H of classC∞ we define its left twist
l(T ) by

l(T ) =
∑
n1,n2

T̂n1,n2 λ
n2p1, (5.8)

and its right twistr(T ) by

r(T ) =
∑
n1,n2

λn1p2 T̂n1,n2. (5.9)

Since|λ| = 1 andp1,p2 are self-adjoint, both series converge in norm. The construction
involves in the case of half-integral spin the choice of a square root ofλ. One has,

Lemma 4. a) Let x be a homogeneous operator of bidegree (n1, n2) and y be a homo-
geneous operator of bidegree (n′

1, n
′
2). Then,

l(x) r(y) − r(y) l(x) = (x y − y x) λn
′
1n2+n′

1n
′
2λn2p1+n′

1p2. (5.10)

In particular, [l(x), r(y)] = 0 if [x, y] = 0.
b) Let x and y be homogeneous operators as before and define

x ∗ y = λn
′
1n2 xy; (5.11)

then l(x)l(y) = l(x ∗ y).
To check a) and b) one simply uses the following commutation rule which is fulfilled

for any homogeneous operatorT of bidegree(m, n),

λap1+bp2 T = λam+bn T λap1+bp2, ∀a, b ∈ Z. (5.12)

One has then

l(x) r(y) = x λn2p1 λn
′
1p2 y = x y λn

′
1n2+n′

1n
′
2 λn2p1+n′

1p2 (5.13)

and

r(y) l(x) = λn
′
1p2 y x λn2p1 = y x λn

′
1n2+n′

1n
′
2 λn2p1+n′

1p2 (5.14)

which gives a). One checks b) in a similar way.
The product∗ defined in (5.11) extends by linearity to an associative product on the linear
space of smooth operators and could be called a∗-product. One could also define a de-
formed “right product”. Ifx is homogeneous of bidegree(n1, n2) andy is homogeneous
of bidegree(n′

1, n
′
2) the product is defined by

x ∗r y = λ−n′
1n2 xy. (5.15)

Then, along the lines of the previous lemma one shows thatr(x)r(y) = r(x ∗r y).
Next, we twist the antiunitary isometryJ by

J̃ = J λ−p1p2. (5.16)

One has̃J = λp1p2 J and hence

J̃ 2 = J 2. (5.17)
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Lemma 5. For x homogeneous of bidegree (n1, n2) one has that

J̃ l(x) J̃−1 = r(J x J−1). (5.18)

For the proof one needs to check that

J̃ l(x) = r(J x J−1) J̃ . (5.19)

One has

λ−p1p2 x = x λ−(p1+n1)(p2+n2) = x λ−n1n2 λ−(p1n2+n1p2) λ−p1p2. (5.20)

Then

J̃ l(x) = J λ−p1p2 x λn2p1 = J x λ−n1n2 λ−n1p2 λ−p1p2, (5.21)

while

r(J x J−1) J̃ = λ−n1p2 J x J−1 J λ−p1p2 = J x λ−n1(p2+n2) λ−p1p2. (5.22)

Thus one gets the required equality.
We can now define a new spectral triple where bothH and the operatorD are un-

changed while the algebraA and the involutionJ are modified tol(A)andJ̃ respectively.
By Lemma 4 b) one checks thatl(A) is still an algebra.

SinceD is of bidegree(0,0) one has,

[D, l(a)] = l([D, a]) (5.23)

which is enough to check that[D, x] is bounded for anyx ∈ l(A). Forx, y ∈ l(A) one
checks that

[x, y0] = 0, y0 = J̃ y∗ J̃−1. (5.24)

Indeed, one can assume thatx and y are homogeneous and use Lemma 5 together
with Lemma 4 a). Combining Eq. (5.24) with Eq. (5.23) one then checks the order one
condition [[D, x], y0] = 0 ∀ x, y ∈ l(A). (5.25)

As a first corollary of the previous construction we thus get

Theorem 6. Let M be a compact spin Riemannian manifold whose isometry group has
rank ≥ 2. Then M admits a natural one-parameter isospectral deformation to noncom-
mutative geometries Mθ .

The deformed spectral triple is given by(l(A),H,D)with H = L2(M, S) the Hilbert
space of spinors,D the Dirac operator andl(A) is really the algebra of smooth functions
on M with product deformed to the∗-product defined in (5.11). Moreover, the real
structure is given by the twisted involutioñJ defined in (5.16). One checks using the
results of [24] and [8] that Poincaré duality continues to hold for the deformed spectral
triple. We showed in [8] that the Dirac operator for the Levi-Civita connection minimizes
the action functional

∫−D2−n (wheren is the dimension ofM) among operators of the
form D + T which ε commute withJ and have the same commutators asD with any
a ∈ A (so thatT belongs to the commutant ofA). It is important to check that this
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continues to hold in the deformed case. This is easy to see since we can also assume
invariance under the actionU(s) T U(s)−1 = αs(T ) so that the space of available
perturbationsT is smaller in the deformed case.

The above construction also allows us to extend Theorem 3 of the previous section
to arbitrary metrics on the sphereS4 which are invariant under rotation ofu andv and
have as volume form

√
gdx the round one.

In [22] Nekrasov and Schwarz showed that Yang–Mills gauge theory on noncom-
mutativeR4 gives a conceptual understanding of the nonzero B-field desingularization
of the moduli space of instantons obtained by perturbing the ADHM equations [1]. In
[25], Seiberg and Witten exhibited the unexpected relation between the standard gauge
theory and the noncommutative one. The above work raises the specific question for NC-
spheresS4

θ whether one can implement such a Seiberg–Witten relation as an isospectral
one. It also suggests to extend the above isospectral deformations (Theorem 6) to more
general compatible Poisson structures on a given spin Riemmannian manifold.

6. Final Remarks

We shall end this paper with several important remarks,

The odd case. First there are formulas for theodd Chern character in cyclic homol-
ogy, similar to those of Sect. 2 above. Given an invertible elementu ∈ GLr(A), the
component chn+ 1

2
(u) of its Chern character is as above an element of

A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
2n−1

, (6.1)

whereA = A/C1 is the quotient ofA by the scalar multiples of the unit 1.
The formula for chn+ 1

2
(u) is (with λn a normalization constant),

chn+ 1
2
(u) = λn

{∑
ui0i1 ⊗ u−1

i1i2
⊗ ui2i3 · · · ⊗ u−1

i2n−1i0

−
∑

u−1
i0i1

⊗ ui1i2 ⊗ u−1
i2i3

· · · ⊗ ui2n−1i0

}
.

(6.2)

As in the even case, the crucial property of the components chn+ 1
2
(u) is that they define

a cycle in the(b, B) bicomplex of cyclic homology,

B chn− 1
2
(u) = b chn+ 1

2
(u). (6.3)

For any pair of integersm, r we can define the odd analoguesBm,r as generated by the
r2 elementsuij ; i, j ∈ {1, . . . , r} and we impose as above the relations

u u∗ = u∗ u = 1, u = [uij ], (6.4)

and

chj+ 1
2
(ρ(u)) = 0 ∀ j < m. (6.5)

One can prove as an exercise that the suspension of the corresponding NC spaces are
contained in theGrm,2r .
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The Dirac operator and quantum groups. There exist formulas forq-analogues of
the Dirac operator on quantum groups, (cf. [2,21]); let us callQ these “naive” Dirac
operators. Now the fundamental equation to define the thought for true Dirac operator
D which we used above implicitly on the deformed 3-sphere (after suspension to the
4-sphere and for deformation parameters which are complex of modulus one) is,

[D]q2 = Q, (6.6)

where the symbol[x]q has the usual meaning inq-analogues,

[x]q = qx − q−x

q − q−1 . (6.7)

The main point is that it is only by virtue of this equation that the commutators[D, a]
will be bounded, and they will be so not only for the natural action of the algebraA of
functions onSUq(2) on the Hilbert space of spinors but also for the natural action of
the opposite algebraAo; this is easy to prove in Fourier. But it is not true that[Q, a]
is bounded, fora ∈ A, due to the unbounded nature of the bimodule defining the
q-analogue of the differential calculus.

Yang–Mills theory. One can develop the Yang–Mills theory onS4
θ since we now have

all the required structure, namely the algebra, the calculus and the “vector bundle”e

(naturally endowed, in addition, with a preferred connection∇). One can check that the
basic results of [6] apply. In particular Theorem 4, p 561 of [6] gives a basic inequal-
ity showing that the Yang–Mills action,YM(∇) = ∫− θ2 ds4, (whereθ = ∇2 is the
curvature, andds = D−1) has a strictly positive lower bound given by the topological
invariant

∫−γ (e − 1
2)[D, e]4 ds4 = 1. The next step is thus to extend the results of [1]

on the classification of Yang–Mills connections to this situation. This was done in [13]
for the noncommutative torus and in [22] for noncommutativeR4. Note however that
in the noncommutative case the NC-sphereS4

θ is not isomorphic to the one-point com-
pactification of noncommutativeR4 used there. In particular, and in contrast to what
happens for noncommutativeR4, even the measure theory ofS4

θ is very sensitive to the
irrationality of the parameterθ .
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