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Abstract: We give new examples of noncommutative manifolds that are less standard
than the NC-torus or Moyal deformationsi®f. They arise naturally from basic consid-
erations of noncommutative differential topology and have non-trivial global features.
The new examples include the instanton algebra and the NC-4-si#ifeie con-
struct the noncommutative algebrds= C°°(Sg‘) of functions on NC-spheres as solu-
tions to the vanishing, clte) = 0, j < 2, of the Chern character in the cyclic homology
of A of an idempotent € M4(A), ¢? = e, ¢ = e*. We describe the universal non-
commutative space obtained from this equation as a noncommutative Grassmannian as
well as the corresponding notion of admissible morphisms. This space Gr contains the
suspension of a NC-3-sphef§ distinct from quantum group deformations JU) of
SUQ2).
We then construct the noncommutative geometryj)&s given by a spectral triple
(A, H, D) and check all axioms of noncommutative manifolds. In a previous paper it
was shown that for any Riemannian mefijg on $4whose volume form/g d*x is the
same as the one for the round metric, the corresponding Dirac operator gives a solution
to the following quartic equation,

- ot}

where( ) is the projection on the commutant of44 matrices.

We shall show how to construct the Dirac operaidion the honcommutative 4-
spheresS(;1 so that the previous equation continues to hold without any change.

Finally, we show that any compact Riemannian spin manifold whose isometry group
has rank- > 2 admits isospectral deformations to noncommutative geometries.
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1. Introduction

It is important to have available examples of nhoncommutative manifolds that are less
standard than the NC-torus [4,13] or the old Moyal deformatioR’bfvhose algebra

is boring. This is particularly so in view of the upsurge of activity in the interaction
between string theory and noncommutative geometry started in [11,22,25]. The new
examples should arise naturally, have non-trivial global features (and also pass the test
of noncommutative manifolds as defined in [8]).

This paper will provide and analyse such very natural new examples, including the
instanton algebra and the NC-4-spheS§sobtained from basic considerations of non-
commutative differential topology.

We shall also show quite generally that any compact Riemannian spin manifold whose
isometry group has rank > 2 admits isospectral deformations to noncommutative
geometries.

A noncommutative geometry is described by a spectral triple

(A, H, D), (1.2)

whereA4 is a noncommutative algebra with involutienacting in the Hilbert spac#l
while D is a self-adjoint operator with compact resolvent and such that,

[D, a] is bounded¥ a € A. (1.2)

The operatoD playsin generalthe role of the Dirac operator [19] in ordinary Riemannian
geometry. It specifies both the metric on the state spacemf

d(p,¥) = Supfle(a) — ¥ (@)|: I[D, alll = 1} 1.3)

and theK-homology fundamental class (cf. [6]). What holds things together in this
spectral point of view of NCG is the nontriviality of the pairing between kh¢heory
of the algebrad and theK -homology class oD, given in the even case by

[e] € Ko(A) — IndexD} € Z. (1.4)
Here[e] is the class of an idempotent
ee My (A), ®=e, e =e* (1.5)
in the algebra of x r matrices over4, and
D:‘ =eD%e, (1.6)

whereD* = D (“TV) is the restriction ofD to the rangeH ™ of HTV andy is thez/2
grading ofH in the even case; thuB is of the form,

=[] =35

The cornerstone of the general theory is an operator theoretic index formula [6,12,16]
which expresses the above index pairing (1.4) by exglciél cyclic cocycles on the
algebraA. These local formulas become extremely simple in the special case where
only the top component of the Chern charactet«<im cyclic homology fails to vanish.
(This is easy to understand in the analogous simpler case of ordinary manifolds since



Noncommutative Manifolds, Instanton Algebra and Isospectral Deformations 143

the Atiyah—Singer index formula gives the integral of the product of the Chern character
Ch(E), of the bundleE over the manifoldV, by the index class; if the only component
of Ch(E)isch,,n = % dim M, only the 0-dimensional component of the index class is
involved in the index formula.)

Under this assumption the index formula reduces indeed to the following,

IndexD;} = (—1)™ ][ % (e — %) [D, e]?" D~2", (1.8)

provided the components gfe) all vanish forj < m. Herey is theZ/2 grading ofH

as above, the resolvent bfis of order% (i.e. its characteristic valugs, are C(k‘%))
and# is the coefficient of the logarithmic divergency in the ordinary operator trace [15,
26].

We began in [10] to investigate the algebraic relations implied by the vanishing,

chi(e)=0 j <m, (1.9

of the Chern character efin the cyclic homology ofA. Note that this vanishing at the
chainlevelis a much stronger condition than the vanishing of the usual Chern differential
form.

Form = 1 (andr = 2 in (1.5)) we found commutative solutions with= C>(52)
as the algebra generated by the matrix components,

Cij, € = [e,-j] S Mz(.A) (1.10)

In fact, form = 1 the commutativity is imposed by the relatiotts= e, ¢ = ¢* and
cho(e) = 0.

Form = 2 (andr = 4 in (1.5)) we also found commutative solutions with=
C> (8% wheres* appears as quaternionic projective space but the computations of [10]
used an “Ansatz” and did not analyse the general solution. In particular this left open the
possibility of a noncommutative solution fer = 2 (andr = 4). We shall show in this
paper that such noncommutative solutions do exist and provide very natural examples of
NC 4-sphere§§. We shall also describe the noncommutative space associated to (1.9)
form = 2 (andr = 4) as a noncommutative Grassmannian as well as the corresponding
notion of admissible morphisms. This space Gr contains our NC 4—spl§§mthe
suspension of a NC 3-sphe$§ distinct from quantum group deformations gU) of
SU2).

Our next task will be to analyse the metrics (i.e. the operatgren our solutions
of Eqg. (1.9). In [10] it was shown that for any Riemannian megi¢ on $* whose
volume formﬁd“x is the same as the one for the round metric, the corresponding
Dirac operator gives a solution to the following quartic equation,

<(e — %) (D, e]4> = ys, (1.11)

where( ) is the projection on the commutant ofd4 matrices (recall that € M4(A)
is a 4x 4 matrix).

We shall show in this paper how to construct the Dirac operator on the noncommu-
tative 4—sphere§5‘ so that Eq. (1.11) continues to hold without any change. Combining
this Eqg. (1.11) with the index formula gives a quantization of the volume,

][ds“ eN ds=D1 (1.12)
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and fixes (in a giverk-homology class for the operatd@) the leading term of the

spectral action [3],
D A?
T =))== AU 1.1
race(f(A)> > ds™ + (1.13)

Since the next term is the Hilbert-Einstein action in the usual Riemannian case [3,18,
17], itis very natural to compare various solutions (commutative or not) of (1.11) using
this action.

2. Components of the Chern Character and the Instanton Algebra
Let A be an algebra (ovef) and
ee M (A), =e (2.1)

be an idempotent. The component, &) of the (reduced) Chern character«fs an
element of

ARA®---® A, (2.2)
—_—
2n

whereA = A/C1 is the quotient of4 by the scalar multiples of the unit 1. The formula
for ch, (e) is (with A,, a normalization constant),

1 ~ ~ ~
ch.(e) = 1y Z <eioi1 - E 8i0i1> Q €iyip & €iiz & €in,igs (23)

where;; is the usual Kronecker symbol and only the class,, € A is used in the
formula. The crucial property of the componentg @h is that they define ayclein the
(b, B) bicomplex of cyclic homology [5, 20],

Bch,(e) = bch,ya(e). (2.4)

For any pair of integers:, r we let 4, , be the universal algebra associated to the
relations,

chij(e)=0 Vj<m. (2.5)

More precisely we let4,, , be generated by the elements;;; i, j € {1,...,r}and
we first impose the relations

P=e e= [eij]. (2.6)

An admissible homomorphism,
o Aur— B, (2.7)

to an arbitrary algebra, is given by thep(e;;) € B which fulfill

p(e)? = ple), (2.8)
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and chy(p(e)) = 0for j < m, thus
1 — —
Z Io(eioil) - E 8i0i1 (29 ;O(eiliz) Q@ lo(eizjio) = O, (29)

where the symbol” means that only the class I matters. We defined,, , as the
quotient of the algebra defined by (2.6) by the intersection of kernels of all admissible
morphismsp.

Elements of the algebrd,, , can be represented as polynomials in the generators
e;; and to prove that such a polynomi@le;;) is non-zero in4,, , one must construct
a solution to the above equations for while;;) # 0. To get aC* algebra we endow
A with the involution given by,

(eij)" =eji (2.10)
which means that = ¢* in M, (A). We define a norm by,
Pl = Sup (|G (Pl (2.11)

wherer ranges through all representations of the above equations in Hilbert space. Such
ar is given by a Hilbert spac# and a self-adjoint idempotent,

E € M,(L(H)), E2=E, E = E* (2.12)

such that (2.9) holds fa = L(H).
One checks that for any polynomiBke; ;) the quantity (2.11), i.e. the supremum of
the norms,

I1PCEI (2.13)

is finite.

We let A, , be theC* algebra obtained as the completion.4f, . for the above
norm.

To get familiar with the (a priori noncommutative) spaceg, Gsuch that,

Ap,r = C(Cly ) (2.14)

we shall first recall from [10] what happens in the simplest ease 1, r = 2.

€11 €12

One hag =
€21 €22

} and the condition (2.7) just means that

e11+en=1 (2.15)
while (2.6) means that

2
e11te12e21 =e11, e11e12+ e1ze22 = e12,
(2.16)

2
ez1e11+ exper1 = €21, ez1e12 + e5p = €22.

By (2.15) we get11— e%l = epo— 632, sothat (2.16) shows thats e21 = e21 e12. We
also see that; andey1 both commute witle11. This shows thatl; » is commutative and
allows to check that Gr, = S? is the 2-sphere. Thus @s is an ordinary commutative
space.
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Next, we move on to the case= 2,r = 4. We shall show now that G is a non-
commutative space. It differs from standard NC-Grassmannians and its very interesting
structure will be analysed elsewhere. Note that the notion of admissible morphism is a
non trivial piece of structure on @y since the identity map is not admissible.

We can first reformulate the construction of [10] Sect. XI and get an admissible
surjection,

Az g4 -5 C(8Y, (2.17)

whereS* appears naturally as quaternionic projective sp&ites Py(H). Let us recall
from [10] that the equality,

_[t 4
E(x) = [C_I ! t] € M(C) (2.18)

for x = (g, t) given by a pair of a quaterniap = [_‘;‘9* f] and a real numbarsuch
that
qqg=1—1> (2.19)

defines amap from the 4-sphesfe(the double of the 4-dislg| < 1) to the Grassmannian
of 2-dimensional projectiong = E2 = E* in M4(C) such that,

Trace(F(x) F(y) F(z)) =0 Vx,y,ze S* (2.20)

whereF (x) = 2 E(x) — 1 is the corresponding self-adjoint isometry.

The equality X1.54 of [10] is weaker than this statement but examining the proof one
gets (2.20). To formulate the result for arbitrary even sph§#&sve note first that using
(2.4) the equality

o = chy, (e) (2.21)

defines &ochschild cycle p(w) € Za,, (B) for any admissible morphism: A, , — B.
We letr = 2™ and construct an admissible surjection,

Apon > C (5™ (2.22)
which is non trivial inasmuch as
o(w)=v (2.23)

is the volume form of the round oriented sphere.

To constructs we let Cl = Cliff (R?") be the Clifford algebra of the (oriented)
Euclidean spac®2". We identify $%" with the space of pairgt, 1), £ € R?" and
t € [-1, 1] suchthat|£ |42 = 1. We then define a map frofi?” to the Grassmannian
of self-adjoint idempotents in Cl by

1 1
E(E,l)=§+§(7/(f)+t1/), (2.24)

wherey (&) is the usual inclusion dk?" in Cl such that

y(E? = £l yE) =y ©)* (2.25)
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andy € Cl, y* =y, y2 = 1is theZ/2 grading associated with the chosen orientation
of R?". One hay y (§) = —y (£)y for any& which allows to check that (&) + ¢ y is
an involution andt a self-adjoint idempotent. Next, fér< 2m, ¢ odd,

Trace((y(§1) +11y) ... (v () +1ey)) =0 V. 1. (2.26)

Indeed the coefficient of monomialsirof even degree is of the form Trage(&;) . . .

y (E2¢+1)) Which vanishes by anticommutation with The coefficient of monomials
in ¢t of odd degree is of the form Tra¢g(&1) ... y () y), wherek < m. It vanishes
because is orthogonal to all the lower filtration af . We thus get,

Trace((E(xl) — %) .. (E(xg) - %)) =0 Vaxi,...,x €8 (2.27)

provided¢ is odd,¢ < 2m.
HenceE defines an admissible homomorphism A,, on — C(5%"y and one has,
as in [10], the following result,

Theorem 1. ) E € C*®(52", M, (C)) satisfies E = E? = E*andch;(E) =0V j <
m.

b) The Hochschild cycle w = chy, (E) is the volume form of the round sphere $2”.

c) Let g be a Riemannian metric on S" with volume form /g d®"x = w, then the
corresponding Dirac operator D fulfills

(- oor)-r

wheree = E asabove and ( ) isthe projection on the commutant of M, (C).

We have identified, (C) with the Clifford algebra CE Cliff (R2"), r = 2". This
result shows in particular that G, r = 2", containss?” in such a way thab|S?” is
the volume form for the round metric. The proof is the same as in [10].

3. The Noncommutative 4-Sphere

Let us now move on to the inclusicxs?g1 C Grp4, Wheresg1 is the noncommutative
4-sphere we are about to describe.

One should observe from the outset that the compact Lie gféu@) acts by auto-
morphisms,

PSU4) C Aut (C®Gry.4) (3.1)
by the following operation,
e— UeU*, (3.2)

whereU e SU(4) is viewed as a 4« 4 matrix ande = [e;;] as above.
We shall now show that the algeb€(Gr; 4) is noncommutative by constructing
explicit admissible surjections,

C(Grz4) — C(S) (3.3)
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whose form is dictated by natural deformations of the 4-sphere similar in spirit to the
standard deformation Gf? to T2.

We first determine the algebra generatedy(C) and a projectiors = ¢* such that
(e — 5) = 0 as above and whose two by two matrix expression is of the form,

ijq _ [4911 912
le¥]= [6121 6]22} (3.4)

where eacly;; is a 2x 2 matrix of the form,

q= |:—fn[/3* f*i| ) (3.5

andi = exp(2rif) is a complex number of modulus one, different from -1 for conve-
nience. Since = ¢*, bothg11 andg»> are selfadjoint, moreover sin¢e— %) =0, we
can findr = ¢* such that,

t0 1—1¢ 0
6111:[(”], q22=|:( 0 )(1—t)]' (3.6)
We let —[ o f’] th t frone — o
q12=| _jg+ 4= |, We then get fronz = ¢*,
A
qzl=[§* aﬂ}. (3.7)

We thus see that the commutasit of M4(C) is generated by, «, 8 and we first need
to find the relations imposed by the equalify= e.
In terms of

Y I:qt* lzt} ’ (3.8)

the equatior? = e means that? — ¢ + g¢* = 0,12 —t +¢*q = O and[t, ¢] = 0. This
shows that commutes withy, 8, «* andg™* and sinceyg* = ¢*q is a diagonal matrix

ao® = a*a, af = A\pa, o p = LBa*, BB* = B*B (3.9)

so that theC* algebraB3y is not commutative foi different from 1. The only further
relation is, (besides= t*),

a* + BB +12—1=0. (3.10)

We denote bySg' the corresponding noncommutative space, sotﬂ"(;sg‘) = By. ltis
by construction the suspension of the noncommutative 3—spﬂ§’evﬂmse coordinate
algebra is generated layand8 as above and say the special value 1/2.

Had we taken the deformation parameter to be veal,gq € R, the noncommutative
3-5phere§§' would coincide with the quantum grouid/, (2). Similarly, had we taken the

deformation parameter iﬁ;‘ to be real like in [14] we would have obtained a different

deformations? of the commutative sphe$#, whose algebra is different from the above
one. More important, the two dimensional componéit(e) of the Chern character
would not vanish.
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We shall now check that for the sphe5‘§ the two dimensional componeak1(e)
automatically vanishes as an element of the (normalized) (b,B)-bicomplex so that,

chy(e) =0, n=0, 1 (3.11)

With ¢ = [_;‘ﬂ* f] , We get,

1
chi(e) = <<t - 5) (dqdq* —dq* dq)
(3.12)
+ q(dq*dt —dtdq™) + q* (dtdg — dgq dt)>,

where the expectation in the right hand side is relativ3¢C) and we use the notation
d instead of the tensor notation.
The diagonal elements af = dg dg* are

w11 = dada* +dB dB*, wy =dp*dB + do* da
while for o’ = dgq* dq we get,
)y =da*da +dBdB*, wy,=dp*dB +dada®.

It follows that, since is diagonal,

<<t - %) (dgdq* — dq*dq)> =0. (3.13)

The diagonal elements gfdq* dt = p are

p11 = ada®dt + BdB*dt, prp = B*dBdr + a" dadt
while for p’ = g* dg dt they are

p1 = o dadt + BdB*dt, py, =B dBdt +ada*dr.

Similarly for o = g dtdq* ando’ = ¢* dt dg one gets the required cancellations so
that,

chi(e) = 0. (3.14)
We thus get,

Theorem 2. a) e € C(Sjy, M4(C)) satisfiese = e? = e* andch;(e) =0V j < 2.
b) Grz 4 isa noncommutative space and S;‘ C Grp4.

Sincechi(e) = 0, it follows thatcha(e) is a Hochschild cycle which will play the
role of the round volume form oﬂg1 and that we shall now compute. With the above
notations one has,

t—3% dr dg 1\*
cha(e) =<[ -~ %‘I_J ([dq* —ng > (3.15)
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and the sum of the diagonal elements is
1 2 *y 2 * *
-3 ((dt +dgdq*)? + (dt dg — dg dt)(dg* dt — dt dg ))
1 X ¥ * 2,2
-(1-3 ((dq dt — drdg*)(dt dq — dq dt) + (dq* dg + dr?) )
+ q((dq* dt —dt dg*)(di? + dq dg*) + (dq* dq + di)(dg* dt — dt dq*))
+ q*((dtz +dqdg*)(dt dg — dg dt) + (dt dg — dgq dt)(dq* dg + dt2)>.

(3.16)

Sincer anddr are diagonal Z 2 matrices of operators and the same diagonal terms

appear indg dg* anddq™* dq, by the same argument by which we got the vanishing
(3.13), the first two lines only contribute by,

1
<<t — E) (dgdq*dqdq* —dq*dqdq* dq)>. (3.17)
Similarly, the last two lines only contribute by

<q* (dt dq dq*dq — dq dit dg* dg + dq dg* di dq — dq dq* dq dr)

(3.18)
—q(dtdq*dqdq® —dq*dtdqdq* +dq*dqdrdq* —dq*dqdq* dt)).
The direct computation givagi>(e) as a sum of five components
1
cha(e) = (t — 5) Ii+alg+a*Tos+ BT+ B Tp, (3.19)

with the operator§’,, Iy, o+, g, T'g= explicitly given by

I, = (dado® —do* do)(dB dB* — dB* dB)
+ (dB dp* — dB* dB)(da da* — da* da)
+ (dadB — rdB da)(dB* da* — L da* dB*)
+ (dB* da* — Lda* dB*)(dadB — 1 dp da) (3.20)
+ (da* dB — AdB da*)(hda dB* — dB* da)
+ (Ada dp* —dp*da)(da* dp — LdB da™);

I, = (dtda* — do* dt)(dp* dB — dp dp*)
+ (dB* dp — dB dB*)(dt da* — da* dt)
+ (dB dt — dt dB)(dB* da* — X da* dB*)
+ A (dB*da* — Xda* dB*)(dB dt — dt dB) (3.21)
+ (da* dp — L dB da™*)(dB* dt — dt dB*)
+ A(dB*dt — dtdB*)(da* dB — LdB da*);
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[y = (dt da — do dt)(dB dB* — dB* dB)
+ (dB dB* —dB* dp)(dt da — da dt)
+ (dadB — 1dB do)(dt dB* — dp* dt)
+ A (dtdp* —dB*dt)(dadp — rdBda)
+ (dtdB —dB dt)(dB* da — A da dB*)
+ A (dB*da — Ado dB*)(dt dB — dB dt);

(3.22)

I'g = (dt dp* — dp* dt)(da* da — da da*)
+ (da* da — da da®)(dt dB* — dB* dr)
+ A (dtda — dodt)(dB* doa* — L da* dB¥)
+ (dB*da* — rda* dB*)(dt da — da dt)
+ A (da* dt — dt do*)(dB* do — ) do dB*)
+ (dB* da — rda dp*)(da* dt — dt da*);

(3.23)

T+ = (dt dp — dp dt)(da da* — do* dar)
+ (dada® —do* da)(dt dB — dB dt)
+ (da*dt — dt da™)(da dB — AdB da)
+ X (dadB — rdB do)(da* dt — dt da™) (3.24)
+ (dtda — docdt)(da* dB — *dB da*)
+ A (da*dB — rdB da*)(dt do — da dt).

One can equivalently (in order to avoid any confusion with ordinary differentials)
write the Hochschild cycle = chz(e) as

1
c:(t—§> Cr+acy +afcogr + Bep+ BT, (3.25)

where the components, ¢y, cq*, cg, cg+, Which are elements iy ® By @ By ® By,

have an expression of the same form as the corresponding operators in (3.20-3.24) with
the symbold substituted by the tensor product symlgl The vanishing obc, which

has six hundred terms, can be checked directly from the commutation relations (3.9).

The cyclec is totally “A-antisymmetric”.
4. The Noncommutative Geometry of S;

The next step consists in finding the Dirac operator which gives a solution to the basic
quartic equation (1.11). Lett = C°°(Sg) be the algebra of smooth functions on the
noncommutative sphelg‘. We shall now describe a spectral triple

(A, H, D) (4.1)

which describes the geometry Ggﬁ corresponding to the round metric.
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In order to do that we first need to find good coordinatesbim terms of which the
operatorD will be easily expressed. We choose to parametrizg and: as follows:

— % cospcos — Y singcos t—1+lsin 4.2)
@ =7 COSpCosy, f= 7 singcosy, 1=+ siny. :
Herep andy are ordinary angles with domain
b g T
O<p<—-, ——==<y¢=<-—, 4.3
s¢=3 S SV =3 (4.3)

while u andv are the usual unitary generators of the alg(élﬁ%(']l‘g) of smooth functions
on the noncommutative 2-torus. Thus the presentation of their relations is

uv = Aivu, uut=u*u=1 v =vv=1 (4.4)

One checks that, 8, ¢ given by (2) satisfy the basic presentation of the generators of
C°°(Sg) which thus appears assabalgebra of the algebra generated (and then closed

under smooth calculus) #, ¢V, u andv.
Foré = 0 one readily computes the round metric,

G = 4(dada +dBdp + dt?) (4.5)
and in terms of the coordinateg, v, u, v one gets,
G = co% ¢ coS ¥ du dii + Sir? ¢ coS ¥ dv dv + coS ¥ dp? + dy/2. (4.6)
Up to normalization, its volume form is given by
sing cosg (cosy)3udu ATdv A dy Adg. 4.7)

In terms of these rectangular coordinates we get the following simple expression for the
Dirac operator,

il . 0
= (cosp cosy) T u 5o vi+ (sing cosy) Lo S 72
v
+ ! V-1 0 1 cot t + = t v
cosy 3(/) g¢ 9y ) vs W 59
(4.8)
Herey, are the usual Dirac 4 4 matrices with

Vsl =280, v = Vuu (4.9)

It is now easy to move on to the noncommutative case, the only tricky point is that
there are nontrivial boundary conditions for the operdigrwhich are in particular
antiperiodic in the arguments of bathandv. We shall just leave them unchanged in the
NC case, the only thing which changes is the algebra and the way it acts in the Hilbert
space as we shall explain in more detail in the next section. The formula for the operator
D is now,

D = (cosp cosw)_l 81y1+ (sing cosw)_l 822

1 y 1 1 g 3
«/—1(— + = cotgg — Etgng) V3+~/—1<w - §t9W> V4,

+ cosyr dp 2
(4.10)
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where they,, are the usual Dirac matrices and whe&rands, are the standard derivations
of the NC torus so that

61(u) =u, 681(v) =0,

So(u) =0, 8(v) =v. (4.11)

One can then check that the corresponding metric is the right one (the round metric).
In order to compute the operatge — %) [D, 1% (in the tensor product by/4(C))
we need the commutators &f with the generators crfoo(Sg‘). They are given by the
following simple expressions:
u

(D,al =2 {1~ V=1 sing) ys — V=1 cosp)sin¥) ya |

2
(D0 1= " [a+ V71 sing) ys + V1 cosg) siny) a ).
[D. 81 = 5 { v2+ /=1 cos@) ys = =1 sing) sin(y) ya (4.12)
(D 81=—2 | v2 V1 cosg) ya + VL sing) sincy) a)
(0.1 =~ oy s

We check in particular that they are all bounded operators and hence that for any
f e C°°(Sg) the commutatof D, f] is bounded. Then, a long but straightforward

calculation shows that the operaige — 3) [D, e]*) is a multiple ofys = y1y2y3ya.
One first checks that it is equal#dc), wherec is the Hochschild cycle in (111.3.25) and
7 is the canonical map from the Hochschild chains to operators given by

Tla®a1®...Ra,) =agl[D,ai]...[D,a,]. (4.13)

One can then check the various conditions which in the commutative case suffice to
characterize Riemannian geometry [8, 9].

Theorem 3. a) The spectral triple (C°°(S;‘), ‘H, D) fulfills all axioms of noncommuta-

tive manifolds.
b)Lete € C°°(Sg, M4(C)) be the canonical idempotent given in (111.3.8). The Dirac

e 1),6 y,

where ( ) isthe projection on the commutant of M4(C) and y isthe grading operator.

The real structure [7] is given by the charge conjugation operatahich involves
in the noncommutative case the Tomita-Takesaki antilinear involution. The order one
condition,

[([D.al,b°1=0 Va,beC®(SH, (4.14)

whereb® = Jb*J~1 follows easily from the derivation rules for tise.
As we shall mention in the next section, Poincaré duality continues to hold.
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5. I'sospectral Defor mations

We shall show in this section how to extend Theorem 3 of the previous section to arbitrary
metrics on the sphet$® which are invariant under rotation efandv and have the same
volume form as the one of the round metric. We shall in fact describe a very general
construction of isospectral deformations of noncommutative geometries which implies
in particular that any compact spin Riemannian manifdldvhose isometry group has
rank > 2 admits a natural one-parameter isospectral deformation to noncommutative
geometriesMy. The deformation of the algebra will be performed along the lines of
[23].

We let(A, H, D) be the canonical spectral triple associated with a compact Rieman-
nian spin manifold. We recall thatd = C°° (M) is the algebra of smooth functions
onM,H = L%(M, S) is the Hilbert space of spinors arlis the Dirac operator. We
let J be the charge conjugation operator which is an antilinear isomet of

Let us assume that the group Is@W) of isometries of\f has rank- > 2. Then, we
have an inclusion

T? C Isom(M), (5.1)

with T = R/27Z the usual torus, and we léf(s), s € T? be the corresponding
(projective) unitary representation# = L2(M, S) so that by construction

U)D=DU(s), U(s)J =JU(s). (5.2)
Also,
UGs)aU(s) P =as(a), VacdA, (5.3)

wherewa; € Aut(A) is the action by isometries on the algebra of functiongfn
We letp = (p1, p2) be the generator of the two-parameters groip) so that

U(s) = exp(i(s1p1 + s2p2)). (5.4)

The operatorg1 and p, commute withD but anticommute with/. Both p1 and p2
have half-integral spectrum,

Sped2p;) CZ, j=12 (5.5)

One defines a bigrading of the algebra of bounded operat@{svitth the operator
T declared to be of bidegree1, n>) when,

as(T) = expli(siny + son2)) T, Vs € T?, (5.6)

wherea, (T) = U(s) T U(s)"t as in (5.3). Any operatdf of classC™ relative toc
(i.e. such that the map— «, (7)) is of classC*® for the norm topology) can be uniquely
written as a doubly infinite norm convergent sum of homogeneous elements,

T = Z ﬁl»nZ’ (5.7)

ni,nz

with ’T\nm2 of bidegree(n1, n2), and where the sequence of nornﬁl,nzn is of rapid
decay in(ny, no).
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Let . = exp(27i6). For any operatof” in A of classC* we define its left twist
I(T) by

IT) =" Tupmp 2P, (5.8)
ni,nz
and its right twist-(T') by
r(T) =Y NP2 . (5.9)
ni,n2

Since|A| = 1 andp1, p2 are self-adjoint, both series converge in norm. The construction
involves in the case of half-integral spin the choice of a square raot©he has,

Lemma 4. a) Let x be a homogeneous operator of bidegree (n1, n2) and y be a homo-
geneous operator of bidegree (n’, n%). Then,

1) r(y) = r()1(x) = (x y — yx) A2z n2pinpz, (5.10)

In particular, [I(x), r(y)] = 0if [x, y] = 0.
b) Let x and y be homogeneous operators as before and define

Xky= A2 Xy; (5.11)

thenI(x)I(y) = I(x x y).

To check a) and b) one simply uses the following commutation rule which is fulfilled
for any homogeneous operatbrof bidegree(m, n),

Awp1tbp2 T — yamtbn o yapitbez g b e 7. (5.12)
One has then
I(x)r(y) =xA"2P1 AT1P2 y=xy Amnznyng yn2pitnyp2 (5.13)
and
F(y)1(x) = A"1P2 y x \"2P1 = y x \M1n2 TNy jnapitnypa (5.14)

which gives a). One checks b) in a similar way.

The produck defined in (5.11) extends by linearity to an associative product on the linear
space of smooth operators and could be callegbeoduct. One could also define a de-
formed “right product”. Ifx is homogeneous of bidegrée;, n2) andy is homogeneous

of bidegree(n), n5) the product is defined by

Xk y = A2 xy, (5.15)
Then, along the lines of the previous lemma one shows-tat (y) = r(x , y).
Next, we twist the antiunitary isometudy by

J=Jarrz, (5.16)
One has/ = APz J and hence

J2=J>2 (5.17)
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Lemma 5. For x homogeneous of bidegree (n1, n2) one has that
JIx) T Y =r(axJ™h. (5.18)

For the proof one needs to check that

Jlx)=r(JxJH7T. (5.19)
One has
ATPIP2 o — o a—(PrtnD(p2tn2) _ ) —nanz j —(ping+nap2) 3 —pip2 (5.20)
Then
jl(x) — J ATPIP2 x \N2PL — J x ) MMz 3 N1P2 ) ~P1P2 (5.21)
while
r(JxJ YT =amp2 g g=lga—rp2 — gy ) ~mp2tn2) j—pip2, (5.22)

Thus one gets the required equality.

We can now define a new spectral triple where IHtland the operatob are un-
changed while the algebrdand the involutiory are modified té(.A) andJ respectively.
By Lemma 4 b) one checks thitA) is still an algebra.

SinceD is of bidegreg0, 0) one has,

[D, l(a)] =I([D, a]) (5.23)

which is enough to check théb, x] is bounded for any € /(A). Forx, y € [(A) one
checks that

[x, y°1=0, =Ty T (5.24)

Indeed, one can assume thatand y are homogeneous and use Lemma 5 together
with Lemma 4 a). Combining Eqg. (5.24) with Eq. (5.23) one then checks the order one
condition

[[D, x], yo] =0 Vx,yel(A. (5.25)
As a first corollary of the previous construction we thus get

Theorem 6. Let M be a compact spin Riemannian manifold whose isometry group has
rank > 2. Then M admits a natural one-parameter isospectral deformation to noncom-
mutative geometries My.

The deformed spectral triple is given By.A), H, D) withH = L?(M, S) the Hilbert
space of spinord) the Dirac operator and.4) is really the algebra of smooth functions
on M with product deformed to the-product defined in (5.11). Moreover, the real
structure is given by the twisted involutiohdefined in (5.16). One checks using the
results of [24] and [8] that Poincaré duality continues to hold for the deformed spectral
triple. We showed in [8] that the Dirac operator for the Levi-Civita connection minimizes
the action functionaf D?" (wheren is the dimension o) among operators of the
form D + T which e commute withJ and have the same commutators/asvith any
a € A (so thatT belongs to the commutant of). It is important to check that this
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continues to hold in the deformed case. This is easy to see since we can also assume
invariance under the actiobti (s) T U(s)~! = o, (T) so that the space of available
perturbations” is smaller in the deformed case.

The above construction also allows us to extend Theorem 3 of the previous section
to arbitrary metrics on the sphesé which are invariant under rotation efandv and
have as volume forny/gdx the round one.

In [22] Nekrasov and Schwarz showed that Yang—Mills gauge theory on noncom-
mutativeR* gives a conceptual understanding of the nonzero B-field desingularization
of the moduli space of instantons obtained by perturbing the ADHM equations [1]. In
[25], Seiberg and Witten exhibited the unexpected relation between the standard gauge
theory and the noncommutative one. The above work raises the specific question for NC-
sphere§g1 whether one can implement such a Seiberg—Witten relation as an isospectral
one. It also suggests to extend the above isospectral deformations (Theorem 6) to more
general compatible Poisson structures on a given spin Riemmannian manifold.

6. Final Remarks

We shall end this paper with several important remarks,

The odd case. First there are formulas for theld Chern character in cyclic homol-
ogy, similar to those of Sect. 2 above. Given an invertible elemeatGL, (A), the
component cp+% (u) of its Chern character is as above an element of

AQAQ - Q@ A, (6.1)
—
2n—1

whereA = A/C1 is the quotient of4 by the scalar multiples of the unit 1.
The formula for clg%(u) is (with A,, a normalization constant),

-1
i2n—110
-1 -1
- Z Ujsis O Uizipg @utyin -+ & uiznfli()] .
As in the even case, the crucial property of the componqus%qh) is that they define
acyclein the (b, B) bicomplex of cyclic homology,

Chn_;,_%(u) = An {Z Uijgiq ® ul_lllz ® Ujpig -+ Qu (6 2)

BChnf%(u) = bCthr%(u). (6.3)
For any pair of integers:, r we can define the odd analogugs , as generated by the
r2 elementsy;;; i, j € {1,... ,r} and we impose as above the relations
uu* =utu=1u=Iu;l, (6.4)
and
Chj+%(p(u))=0 Vj<m. (6.5)

One can prove as an exercise that the suspension of the corresponding NC spaces are
contained in thesr,, »,.
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The Dirac operator and quantum groups. There exist formulas fog-analogues of
the Dirac operator on quantum groups, (cf. [2,21]); let us ¢athese “naive” Dirac
operators. Now the fundamental equation to define the thought for true Dirac operator
D which we used above implicitly on the deformed 3-sphere (after suspension to the
4-sphere and for deformation parameters which are complex of modulus one) is,

(D12 = 0, (6.6)

where the symbdlx], has the usual meaning iranalogues,

X —X
-9 (6.7)
q9—4

The main point is that it is only by virtue of this equation that the commutdirs |

will be bounded, and they will be so not only for the natural action of the algdlwh
functions onSU, (2) on the Hilbert space of spinors but also for the natural action of
the opposite algebral?; this is easy to prove in Fourier. But it is not true th@k, a]

is bounded, fora € A, due to the unbounded nature of the bimodule defining the
g-analogue of the differential calculus.

Yang—Mills theory. One can develop the Yang—Mills theory Sg‘] since we now have

all the required structure, namely the algebra, the calculus and the “vector bendle”
(naturally endowed, in addition, with a preferred connec¥)nOne can check that the
basic results of [6] apply. In particular Theorem 4, p 561 of [6] gives a basic inequal-
ity showing that the Yang—Mills actiory M (V) = f62ds*, (whered = V? is the
curvature, and's = D~1) has a strictly positive lower bound given by the topological
invariantfy (e — 3)[D, e]* ds* = 1. The next step is thus to extend the results of [1]
on the classification of Yang—Mills connections to this situation. This was done in [13]
for the noncommutative torus and in [22] for noncommutaiife Note however that

in the noncommutative case the NC—sph@jés not isomorphic to the one-point com-
pactification of noncommutativR* used there. In particular, and in contrast to what
happens for noncommutati®, even the measure theory@j is very sensitive to the
irrationality of the parametet.

[x]q =
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