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1 Introduction

These notes correspond to a series of Lectures delivered in July 2001 at the Summer School
Geometry, Topology and Quantum Field Theory, that was organized at Villa de Leyva,
in Colombia. Their purpose is to provide the students with a summary of a longstanding
program with aim to describe aperiodic solids and their property with an appropriate
mathematic framework. As explained in Section 2, the lack of periodicity in some solids
does not allow to use the famous Bloch theory [5]. For this reason, physicists have devel-
opped various tools, such as finite scaling and the β-function of the renormalization group
for disordered systems [111, 1], or such as the curved space representation for amorphous
materials [72], or the cut-and-project method for quasicrystals. However, most of these
technics are specific to sub-families of materials. The program presented here intends to
give a general theory valid for all kinds of aperiodic solids. The framework provided by
Noncommutative Geometry, as proposed by A. Connes [41] since the late seventies, will
be shown to be the right tool replacing Bloch’s theory whenever the translation invari-
ance, that occurs in crystals, is broken. The main difference is that the so-called Brillouin
zone becomes a noncommutative manifold, with a non trivial topology. In these notes,
only the topological aspects and few of its consequences in physics are investigated. The
systematic study of the transverse Geometry as well as the N -body problem [105] are not
treated here and are left for future developments.

The main construction is the notion of Hull of an aperiodic solid. This is the content of
Section 2 and Section 3. Several examples are proposed, impurities in a semiconductor,
quasicrystals, tilings. It will be shown that the Hull is actually determined by the Gibbs
thermodynamical ground state of the set of atoms. This Gibbs state also determines in
a unique way various thermodynamical properties such as the diffraction pattern, the
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electronic density of states or the vibrational density of states (phonon modes). Once the
Hull is constructed, it leads to the construction of the Noncommutative Brillouin zone
(NCBZ) and its Geometry. Then the description of electrons in the one-particle approx-
imation, or of the phonons in the harmonic approximation follows easily. No attempt
to account for the large number of results obtained in the eighties and later concerning
the spectral properties for both electrons and phonons will be made here. The reader is
invited to look at [43, 33, 86] concerning spectral results on disordered or quasiperiodic
systems or at [18] concerning transport properties with anomalous spectra or diffusion.
A special emphasis will be put upon recent results obtained to compute the K-theory of
the NCBZ, especially in the context of the so-called gap labelling theorem (see Section 4).
This theorem was formulated in the early eighties in its most general form [12] and has
been given many illustrations in the case of one-dimensional systems during the eighties
[16]. It required however another decade to get precise results for systems in higher di-
mensions. The present notes will conclude on a short description of what is still today
the most spectacular application of the Noncommutative Geometry to realistic physics,
namely the integer quantum Hall effect [22, 41].

Acknowledgments: The author wishes to express his warm thanks to the organizers
of the Summer School, that was held in one of the most beautiful place in the world that
is Villa de Leyva, for giving him the opportunity to deliver this series of lectures. He also
wishes to thank the Colombian students of this school for their enthusiasm and their will-
ingness to learn the best of modern Theoretical Physics. They all showed that in a country
plagued by terrorism and corruption for decades, there is hope for individuals through
these exceptional men and women who are working with competence and courage at cre-
ating a future of peace and progress. The author wishes also to thanks his collaborators
past and present without whom this program could not have been developed.

2 Mathematical Description of Aperiodic Solids

In Solid State physics, most of the theory available in textbooks concerns periodic crystal
in which the Bloch theory applies. Since the mid-sixties, however, physicists started
wondering about what happens for non periodic materials. In this section we propose a
formalism developped in various papers since the early eighties [19, 13, 16, 22, 23, 24],
that is a substitute to Bloch theory, whenever Bloch theory fails to apply.

2.1 Examples of Aperiodic Solids

The structure of solids was investigated from the second half of the 19th century mainly
from the point of view of their macroscopic properties. Crystals were then the focus of
attention. It was not until the first experiment using X-rays by von Laüe in 1911 [64], that
the microscopic structure of solids could be observed. For obvious reasons of symmetry,
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perfect crystals have been the focus of attention until quite recently. Besides, many of the
known materials exhibit a microscopic structure that is perfectly periodic. This is the case
for metals, such as copper, iron, aluminium, or for many ionic salts, like sodium-chloride,
or most oxydes. It is one of the most challenging questions, even nowadays, to understand
why perfect crystals are so common in nature.

Figure 1: Band spectrum for a 2D Bloch electron in a uniform magnetic field

Even in a perfect crystal, the electronic motion, when submitted to a magnetic field, is
no longer periodic [89]. The lack of periodicity is due to the quantum phase created by
the magnetic field in the electronic wave functions that breaks the translation symmetry.
The problem of computing the band spectrum for a Bloch electron in a magnetic field
has been one of the most chalenging ones in Solid State Physics. The Peierls substitution
[89] permits to reduce the problem to a tight-binding one, the most celebrated such a
model being the Harper one [60]. It was only in 1976 that the spectrum of the Harper
model could be computed by Hofstadter [63] thanks to the arrival of a new generation of
computers (see Fig. 1). Another way to describe this aperiodicity is to see the magnetic
field acting as an effective Planck constant that makes the ordinary space noncommutative
from the point of view of quantum charged particles [13, 15, 95].

However, there are many materials that are not crystalline microscopically. The various
varieties of glass are probably the most common examples. These materials are still a
challenge for theoreticians. Less common, but easier to study, is the silicon that exhibits
a crystalline phase with diamond lattice, and also an amorphous phase that is more like
a glass than a crystal. A rather successful description of amorphous semiconductors was
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proposed by Sadoc et al. [72] in the early eighties, based upon saying that such a stucture
looks like a perfect crystal in a curved space, only flattened to accomodate the flat 3D
space.

A serious need for investigating non crystalline solid came from semiconductors due to
their importance for the electronic industry. For indeed, when pure, a semiconductor
is an insulator due to a large gap at the Fermi level [104]. However, impurities, either
created by artificially doping or spontaneously present in nature, provide enough electrons
in the conduction band (or holes in the valence band) to make it a conductor as long as
the temperature is large enough. At low temperature, however, the charge carriers are
trapped in the impurity band and they see only the sublattice of impurities. Hence,
from the point of view of charge carriers, the semiconductor looks like a random lattice,
completely disordered. This problem became the focus of attention in the late seventies
when the technology was ready to produce mesoscopic devices. Several phenomena like
the Anderson localization, the enhancement of the magnetoresistance, the universality of
quantum fluctuations, the quantum Hall effect, became the basic elements of such physics.
One side consequence of the semiconductor technology of this time was the possibility of
creating artificial structures, like superlattices, that may mimick situation proposed by
theoreticians. For example, 1D chains with potentials varying according to a prescribed
rule, such as the Fibonacci or the Thue-Morse sequences can be created in this way.

Figure 2: Diffraction picture of a quasicrystal

In 1984, a new class of materials, called quasicrystals was discovered [102]. The first
sample was an alloy of aluminium and manganese. The surprise was that the diffraction
spectrum obtained by transmission electron microscopy (T.E.M.) was pointlike, like in
a perfect crystal, but exhibited a forbidden 5-fold symmetry (see Fig. 2). The solution
proposed to this paradox was that the atomic arrangement was no longer periodic, but
rather quasiperiodic in space. This implies a long range order of a new type.
Later, a large number of quasicrystalline alloys, mainly made with aluminium and mainly
ternary, were produced [62]. The most important are Al62.5Cu25Fe12.5 (where the iron con-
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Figure 3: Left: Faceted hole in an Al-Mn-Pd quasicrystal [11]

Figure 4: Right: Dodecahedral single grain Ho-Mg-Zn quasicrystal [52]

centration may not vary more than .5% to stay in the quasicristalline phase), Al70Pd21Mn9

(see Fig. 3) or Al70Pd21Re9 due to the extreme quality of the samples that can be pro-
duced (the concentration of impurities or of defect is now less than 10−5). These materials
may have mostly an icosahedral symmetry, like the HoMgZn monograin shown in Fig. 4,
or a decagonal symmetry. But other compounds have been produced with other symme-
tries, like 8-fold or 12-fold symmetries. Besides having their surprising structure, these
materials exhibit strange properties. For instance, even though made of good metals,
they are mostly insulators at low temperature [62, 99]. They are also mechanically hard
and fragile, and they exhibit a superplastic transition at high temperature just below the
melting temperature (see for instance [62] for some of these properties). From the point
of view that is developped in this course, the most interesting aspect of these materials is
that there is no way of treating the aperiodicity as a perturbation of a periodic structure.
Moreover, numerical calculations proved to be extremely hard and they are not powerful
enough to explain most of the properties described above. There is a need for a new
approach and this a typical interesting problem of Mathematical Physics.

2.2 The Hull

The starting point of the theory consists in considering the set of atomic positions in the
ideal case where the atoms are fixed at their equilibrium position at zero temperature.
This is a set of points in the ambient space R

d. This set will be considered in the idealized
situation for which the solid has infinite volume and is homogeneous in space. This is a
convenient approximation that fails only for submicronic samples. Let L denote this set.
It is clear that atoms cannot be too close to each others, due to nucleus repulsion at short
distance. Moreover, since the system is idealized at zero temperature, except for special
situations, like for zeolites, no lacuna is expected to occur so that there is a maximal size
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to holes between these points. This can be axiomatized in the following way [76]

Definition 1 1)- A subset L of Rd is uniformly discrete if there is r > 0 such that every
open ball of radius r meets L at most on one point. Then L will be called r-discrete.
2)- A subset L of R

d is relatively dense if there is R > 0 such that every closed ball of
radius R meets L at least on one point. Then L will be called R-dense.
3)- A subset L of Rd is a Delone set (or also Delauney) if it is both uniformly discrete
and relatively dense. L will be called (r, R)-Delone if it is r-discrete and R-dense.
4)- A Delone set L has finite type whenever L− L is locally finite
5)- A Delone set is a Meyer set whenever L − L is itself a Delone set.

Example 1 1. A random subset L of Rd distributed according to the Poisson distri-
bution with a finite positive density is almost surely discrete, but with probability
one, it is neither uniformly discrete nor relatively dense.

2. Let L0 be a lattice in Rd, namely a discrete cocompact subgroup of Rd. Let L be a
random subset of L0 distributed according to the Bernoulli law on each sites. Then
with probability one L is uniformly discrete (obvious) but not relatively dense. This
situation occurs precisely for the distribution of impurity sites in a lightly doped
semiconductor [104].

3. Most solids are described, at zero temperature by Delone sets. This is the case for
amorphous materials (silicon), glasses, crystals.

4. The cut-and-project method to describe quasicrystals [62] shows that the set of
atomic sites of such a material is a Meyer set.

2

In order to represent a uniformly discrete set L, it is convenient to consider its counting
measure which is the Radon measure on Rd

ν(L) =
∑

y∈L

δ(.− y) . (1)

Recall that a Radon measure µ on Rd is an element of the dual space to the space Cc(Rd)
of continuous functions with compact support. Since it is not the aim of this paper to
give all technical details, the reader should look at [71] to learn more about the natural
topology on this space. Thus µ becomes a linear map µ : f ∈ Cc(Rd) 7→ µ(f) ∈ C which is
continuous. Here ν(L)(f) =

∑
y∈L f(y) and this sum is finite since f has compact support

and since L is discrete. The measure ν(L) is a counting measure that is

Definition 2 A counting measure on Rd is a Radon measure ν such that any ball B ⊂ Rd

has an integer measure, that is ν(B) ∈ N. This measure is r-discrete if for any open ball
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B of radius less than or equal to r then ν(B) ≤ 1. It is called R-dense if for any closed
ball B of radius larger than or equal to R as a measure ν(B) ≥ 1. It is (r, R)-Delone if it
is both r-discrete and R-dense.

It is not difficult to check that there is a one-to-one correspondance between discrete sets
and counting measures, the set being the support of the measure, so that each property
of such a set can be read on the associated measure and vice versa. Representing the
atomic set by a measure is a convenient tool to describe topologies. The space M(Rd)
of Radon measures on Rd will be endowed with the weak∗ topology over Cc(Rd). This
means that a sequence (µn)n∈N of Radon measures converges to µ if and only if given any
continuous function f with compact support on Rd, then limn→∞ µn(f) = µ(f). Thanks
to this language, to say that a sequence Ln of discrete sets converges to the discrete set L
means that in each open ball B the sets Ln ∩B converges to L∩B, say for the Hausdorff
distance. Note however, that this convergence needs not being uniform w.r.t. B. So it is
convenient to denote by UDr(R

d) the set of r-discrete counting Radon measures on Rd.
In very much the same way let Delr,R(Rd) be the set of (r, R)-Delone Radon measures on
Rd. Then [23]:

Proposition 1 1)- UDr(R
d) and Delr,R(Rd) are closed and compact subspaces of M(Rd).

2)- The closure QD(Rd) of the union
⋃
r>0 UDr(R

d) in M(Rd), is the set of counting
measures.
3)- UDr(R

d) is the closure of the union
⋃
R>rDelr,R(Rd).

Remark 1 1)- means that from any sequence of r-discrete sets it is possible to extract
a convergent subsequence that converges to an r-discrete set. In particular the limit of a
convergent sequence of r-discrete sets is itself r-discrete.
2)- a measure of QD(Rd) can be seen as an atomic set in which a finite number of atoms
can sit on top of each other.
3)- means that each r-discrete set can be approximated by a sequence of r-discrete Delone
sets.

2

Remark 2 In much the same way, a Meyer set is an (r, R)-Delone set such that L − L
is (r′, R′)-Delone for some 0 < r < R , 0 < r′ < R′. If Meyr,R;r′,R′(Rd) denote such a set
of measures, it is also compact in the weak∗ topology. 2

Remark 3 The property for L of having finite type is not preserved under limits. 2

Given now a ∈ Rd, the translation t
a : x ∈ Rd 7→ x + a ∈ Rd acts on Cc(Rd) through

t
af(x) = f(x − a) whenever f ∈ Cc(Rd). Therefore it also acts on the space of Radon

measures through t
aµ(f) = µ(t−af) whenever f ∈ Cc(Rd) and µ ∈M(Rd). It is elemen-

tary to check that these maps are continuous and invertible. Hence the translation group
Rd acts on M(Rd) in a continuous way and
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Proposition 2 The spaces QD(Rd), UDr(R
d) and Delr,R(Rd) are Rd-invariant.

Remark 4 In much the same way Meyr,R;r′,R′(Rd) is translation invariant. 2

Remark 5 If L has finite type, then all its translated have finite type. 2

This last result allows to define the Hull of a uniformly discrete set as follows

Definition 3 Let L be a uniformly discrete subset of Rd. Then its Hull is the dynamical
system (Ω,Rd,t) where Ω is the closure of the Rd-orbit of ν(L) in M(Rd).

Remark 6 1)- Since L is uniformly discrete there is r > 0 such that ν(L) ∈ UDr(R
d).

Hence, by Prop. 2 its orbit is contained in UDr(R
d). By Prop. 1 then, Ω is a compact

subset of UDr(R
d). In particular, any measure ω ∈ Ω defines an r-discrete set Lω, namely

its support.
2)- The closure of the orbit of any point is obviously translation invariant, so that R

d acts
on Ω through t.
3)- If in addition L is (r, R)-Delone, the same argument implies that all Lω’s are (r, R)-
Delone.
4)- If L has finite type, then so does any element of the Hull. Actually then Lω−Lω ⊂ L−L
for any ω ∈ Ω. In particular if L is Meyer, so does any element of the Hull. 2

2.3 Properties of the Hull

Let L be a uniformly discrete set in Rd and let Ω be its Hull. Then the canonical
transversal is the subset of X ⊂ Ω defined by

X = {ω ∈ Ω ; 0 ∈ Lω} = {ω ∈ Ω ; ω({0}) = 1} (Canonical transversal) (2)

Each orbit meets this transversal on the corresponding atomic set, namely

t
−xω ∈ X ⇔ x ∈ Lω .

Since L is uniformly discrete, so is Lω, so that there is a minimum distance from one
point of X to any other along the orbit. In this sense the orbits are transversal.

Example 2 Let L be periodic with period group G. If G is a lattice, namely a discrete
subgroup of Rd that generates Rd as a vector space, then the Hull is homeomorphic to
the torus Rd/G. Moreover, the transversal is the finite set X = L/G. 2
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Example 3 A quasicrystal can be constructed by means of the cut-and-project method
(see Section 3.3). For N > d, let R be a lattice in RN and let ∆ be a polyhedral
fundamental domain. Let then E‖ be a d-dimensional subspace of RN meeting R only at
the origin. Then project all points of the strip ∆ + E‖ on E‖ to get L. By identifying E‖
with R

d, L becomes a Meyer set that is a model for all known quasicrystals [62]. Let W =
π⊥(∆), where π⊥ denote the projection operator on the orthogonal subspace of E‖. Let W
be endowed with the coarsest topology such that W ∩ (W + π⊥(a1))∩ · · · ∩ (W + π⊥(an))
becomes closed and open for any family {a1, · · · , an} ⊂ R. Then W is homeomorphic to
the transversal [23]. 2

Associated with the transversal X of the Hull, is a groupoid Γ(X) [96]. This groupoid
plays a rôle similar to the notion of Poincaré map or first return map in the theory of
dynamical systems [42, 69]. This groupoid is defined as follows. The set of unit Γ(0)

coincides with X. The set of arrows Γ(X) is the set of pairs (ω, a) ∈ X × R
d such that

t
−aω ∈ X. Then the range, the source and the composition maps are defined by

r(ω, a) = ω , s(ω, a) = t
−aω , (ω, a) ◦ (t−aω, b) = (ω, a+ b)

The fiber Γ(ω) is r−1({ω}). Endowed with the topology induced by Ω×Rd, this is a locally
compact groupoid. If P is an Rd-invariant ergodic measure on Ω, then it induces on Γ(X)
a transverse measure represented by a probability measure Ptr on X [36].

In the following it will be convenient to introduce the Hausdorff distance of two sets A,B
in Rd, namely dH(A,B) = max{supx∈A infy∈B |x − y| , supy∈B infx∈A |x − y|}. The first
property of such a system is given as follows [23]. It is necessary to recall that a dynamical
system is minimal if every orbit is dense

Proposition 3 If L is uniformly discrete but not relatively dense, then Ω admits a fixpoint
the orbit of which does not meet X. In particular the Hull is not minimal.

Consequently, L must be Delone to have a minimal Hull.

Definition 4 Let L be a Delone set in Rd. Then L is repetitive if for any finite subset
p ⊂ L, and any ε > 0, there is R > 0 such that any ball of radius R contains a translated
of a finite subset p′ such that dH(p, p′) < ε.

The following can be found in [76, 70, 23]

Theorem 1 Let L be a Delone set. Then its Hull is minimal if and only if it is repetitive.

From Def. 1 a uniformly discrete set L has finite type whenever L − L is discrete, thus
closed. In such case the following is true
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Proposition 4 A uniformly discrete subset L of Rd with finite type admits a Cantorian
transversal.

A characterization of the Hull of a finite type repetitive Delone set has been given in [24]
(see Section 3.4)

Theorem 2 Let L be a repetitive Delone set with finite type in R
d. Then its Hull is

conjugate by homeomorphisms to the projective limit of an inverse sequence of branched
oriented flat compact manifolds without boundaries, in which the Rd-action is induced by
parallel transport of constant vector fields.

2.4 Atomic Gibbs groundstates

In realistic solids, the atomic positions are also determined by their thermodynamical
properties. This is because atoms can vibrate around their equilibrium position and can
also diffuse through the solid. This motion creates both acoustic waves (phonons) and
lacunæ. Nevertheless, the atomic position can still be described by a discrete set, thus an
element of QD(Rd). Hence this last space plays the rôle of the configuration space that is
needed in Statistical Mechanics. Nevertheless, it is very convenient to describe the atomic
motion in solids as a perturbation of the equilibrium position. The acoustic waves are
usually treated as phonon degrees of freedom, whereas lacunæ can be seen as impurities.
Still, the atomic positions can be seen as typical configurations for the Gibbs measure
describing the thermal equilibrium of atoms. Neglecting the atomic motion is equivalent
to considering the T ↓ 0 limit P of the Gibbs measure for the atoms. Then P can be seen
as a probability measure on QD(Rd).

From the mathematical point of view, there is a difficulty. For indeed, QD(Rd) is not a
locally compact space, so that the notion of Radon measure is meaningless. Nevertheless,
the weak∗ topology makes this space a Polish space [71]. That is, the topology can be
described through a distance for which the space is complete (the choice of such a distance
is actually not unique and certainly not canonical). But the beauty of Polish spaces is that
there is a genuine theory of probabilities [85] using the Borel approach through σ-additive
functions on the σ-algebra of Borel sets. In particular, since the translation group acts
on QD(Rd) in a continuous way, it transforms Borel sets into Borel sets so that it also
acts on the space of probabilities by t

aP(A) = P(t−aA) for A a Borel set. The Prokhorov
theorem gives also a very useful criterion for compactness of a family of such probabilities.
It turns out that describing the atomic configurations through such probabilities gives rise
to several interesting results for physicists [23].

If the solid under consideration is homogeneous, then its Gibbs measure P is expected to
be translation invariant. Moreover, standard results of Statistical Mechanics [100] show
that a translation invariant pure phase is described by a Gibbs measure that is ergodic
under the translation group. In addition with such considerations, the analysis proposed
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in Section 2.2 shows that typical configurations of atoms at zero temperature should be
at least uniformly discrete, but also Delone unless in very special cases. This is why the
following definition can be useful

Definition 5 An atomic grounstate is a probability measure P on QD(Rd) such that

1. P is Rd-invariant;

2. P is Rd-ergodic;

3. the space of uniformly discrete sets has P-probability one.

In addition, P is called Delone (resp. Meyer) if it gives probability one to the space of
Delone (resp. Meyer) sets.

Several results have been obtained in [23] from such a definition.

Theorem 3 Let P be an atomic groundstate. Then

1. there is r > 0 such that P-almost every atomic configuration L is r-discrete an not
r′-discrete for r′ > r;

2. there is a compact subset Ω ⊂ UDr(R
d) such that for P-almost all atomic configu-

ration L, the Hull of L is Ω; Ω coincides with the topological support of P;

3. if, in addition, P is Delone (resp. Meyer), there is a unique pair (r, R) (resp.
family (r, R; r′, R′)) such that P-almost every configuration is (r, R)-Delone and
not (r”, R”)-Delone for r < r” and R” < R (resp. (r, R; r′, R′)-Meyer and not
(r1, R1; r

′
1, R

′
1) for r < r1 , R > R1 , r

′ < r′1 , R
′ > R′1).

The next result concerns the notion of diffraction measure. Let L be a point set repre-
senting the position of atoms in the solid. Then, the diffraction pattern seen on a screen,
in an X-ray diffraction experiment or in a transmission electronic microscope (T.E.M.),
can be computed from the Fourier transform of L restricted to the domain Λ occupied by
the sample in Rd. More precisely, the intensity seen on the screen is proportional to

IΛ(k) =
1

|Λ|

∣∣∣∣∣
∑

x∈L∩Λ

eı〈k|x〉

∣∣∣∣∣

2

(3)

where k ∈ R
d represents the wave vector of the diffraction beam, the direction of which

gives the position on the screen. The Fourier transform of IΛ(k) is given by the following
expression: if f ∈ Cc(Rd), with Fourier transform denoted by f̃ , then

∫

k∈Rd

dkf̃(k)IΛ(k) =
1

|Λ|
∑

x,y∈L∩Λ

f(x− y) = ρ
(Λ)
L (f) (4)
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where ρ
(Λ)
L will be called the finite volume diffraction measure. From eq. (4), it follows

that ρ
(Λ)
L ∈ M(Rd) is a positive measure with a Fourier transform being also a positive

measure. The main problem is whether such a quantity converges as Λ ↑ Rd. The next
theorem gives conditions under which convergence holds

Theorem 4 Let P be an atomic groundstate. Then:

(i) For P-almost every L the family ρ
(Λ)
L of measures on Rd converges to a positive

measure ρP ∈M(Rd).

(ii) The distributional Fourier transform of ρP is also a positive measure on Rd.

In other words, P determines in a unique way the diffraction pattern. 2

2.5 Bloch Theory

If the solid is a perfect crystal, the set L is invariant under a translation group G. G is a
lattice in Rd namely a discrete subgroup generating Rd as a vector space. G is called the
period group of L. Bloch theory deals with the Schrödinger equation with a G-periodic
potential. More precisely, let H = L2(Rd) be the Hilbert space of quantum states. The
groups G is unitarily represented in H through U(a)ψ(x) = ψ(x − a) whenever a ∈ G.
The Schrödinger operator is a selfadjoint operator H = H∗ = −∆+V with dense domain,
where ∆ is the Laplacian on Rd and V is a locally L1, G-periodic real valued function. In
particular

U(a) H U(a)−1 = H ∀a ∈ G .

Therefore H and the U(a)’s can be simultaneously diagonalized. Since G is Abelian,
diagonalization of the U(a)’s is performed through its character group G

∗. Standard
results in Pontryagin duality theory imply that G∗ is isomorphic to the quotient B =
Rd ∗/G⊥ of the dual group of Rd (isomorphic to Rd) by the orthogonal G⊥ of G in this
group. It is a well known fact that G⊥ is a lattice in Rd (called the reciprocal lattice in
Solid State Physics [65]) so that B = Rd ∗/G⊥ is a compact group homeomorphic to a
d-torus. B will be called the Brillouin zone (strictly speaking this is slightly different from
what crystallographers call Brillouin zone).
The concrete calculation of B goes as follows: any character of Rd is represented by an
element k ∈ R

d ∗. Since R
d ∗ and R

d can be identified canonically, by using the usual
Euclidean structure, k can be seen as a vector k = (k1, · · · , kd) ∈ Rd. The corresponding
character is given by the map

ηk : x ∈ R
d 7→ eı〈k|x〉 ∈ U(1) , 〈k|x〉 = k1x1 + · · ·+ kdxd .

In particular ηk restricts to a character of G, with the condition that ηk�G = ηk′�G if and
only if k − k′ ∈ G⊥, where
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G
⊥ = {b ∈ R

d ; 〈b|a〉 ∈ 2πZ, ∀a ∈ G} .
Since B is a compact group, the diagonalization of the U(a)’s requires the use of a direct
integral decomposition of H over B, so that

H =

∫ ⊕

k∈B

ddkHk H =

∫ ⊕

k∈B

ddk Hk .

Here, Hk is the space of measurable functions ψ on Rd such that ψ(x + a) = eı〈k|x〉ψ(x)
for all a ∈ G and that

∫
V
ddx|ψ(x)|2 = ‖ψ‖2Hk

< ∞, where V = Rd/G. Hk is then the
partial differential operator formally given by the same expression as H, but with domain
Dk given by the space of elements ψ ∈ Hk such that ∂iψ/∂xi ∈ Hk, for 1 ≤ i ≤ d, and
∆xψ ∈ Hk. Then Hk is unitarily equivalent to an elliptic operator on the torus Rd/G = V.
(In solid state physics, V is called the Wigner-Seitz cell, whereas it is called the Voronoi
cell in tiling theory.) Consequently, for each k ∈ B, the spectrum of Hk is discrete and
bounded from below. If Ei(k) denotes the eigenvalues, with a convenient labelling i, the
maps k ∈ B 7→ Ei(k) ∈ R are called the band functions. The spectrum of H is recovered
as Sp(H) =

⋃
i,k∈B

Ei(k) and is called a band spectrum. A discrete spectrum is usually
liable to be computable by suitable algorithms, since it restricts to diagonalizing large
matrices.

This is a short summary of Bloch theory. Strutt first realized the existence of band
functions [107], but soon after Bloch wrote his important paper [27]. In 1930, Peierls
gave a perturbative treatment of the band calculations [88] and Brillouin discussed the
2D and 3D cases [30]. The reader is invited to look at [65, 5] to understand why this
theory has been so successful in solid state physics. Let us simply mention that the first
explicit calculations of bands in 3D were performed in 1933 by Wigner & Seitz [115] on
sodium using the cellular method that holds their names. The symmetry properties of the
wave function were explicitly used in an important paper by Bouckaert, Smoluchowski &
Wigner [29] leading to noticeable simplifications of the band calculation.

2.6 The Noncommutative Brillouin zone

In Section 2.2 it has been shown that an aperiodic solid is well described by its Hull
(Ω,Rd,t), namely a dynamical system with group Rd acting by homeomorphisms on a
compact metrizable space Ω. With any dynamical system, there is a canonical C∗-algebra
namely the crossed product C(Ω) o Rd [87]. In a similar way, such a system can also
be described through its canonical transversal X, and its related groupoid Γ(X). With
any locally compact groupoid Γ, endowed with a transverse function [36], and with any
module δ on Γ, is associated a C∗-algebra C∗(Γ, δ) [96]. In this section, it will be shown
that, after a slight modification if the solid is submitted to a magnetic field, C(Ω) o R

d

is the smallest C∗-algebra generated by the electronic Schrödinger operator and all its
translated. Moreover, it will be shown that, C∗(Γ(X)) is also generated by the matrix
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of phonon modes that appears in the equations of motion for phonons or by the effective
Hamiltonian derived form the so-called tight binding representation [13, 16]. It will also
be shown that, for periodic crystals, this algebra is nothing but the set of continuous
functions on the Brillouin zone.

Given a uniform magnetic field B = (Bνµ), namely a real-valued antisymmetric d × d-
matrix, the C∗-algebra C∗(Ω × Rd, B) is defined as follows. Let A0 be the topological
vector space Cc(Ω × R

d) of continuous functions with compact support in Ω × R
d. It

becomes a topological ∗-algebra when endowed with the following structure

fg (ω, x) =

∫

Rd

dy f(ω, y) g(T−yω, x− y) eiπ(e/h)B·x∧y , (5)

f ∗(ω, x) = f(T−xω,−x) , (6)

where f, g ∈ Cc(Ω×Rd), B ·x∧y =
∑
Bνµxνyµ and ω ∈ Ω, x ∈ Rd. Here e is the electric

charge of the particle and h = 2π~ is Planck’s constant. This ∗-algebra is represented on
L2(Rd) by the family of representations {πω; ω ∈ Ω} given by

πω(f)ψ (x) =

∫

Rd

dy f(T−xω, y − x) e−iπ(e/h)B·x∧yψ(y), ψ ∈ L2(Rd) , (7)

where πω is linear, πω(fg) = πω(f)πω(g) and πω(f)∗ = πω(f
∗). In addition πω(f) is a

bounded operator and the representations (πω)ω∈Ω are related by the covariance condition:

U(a) πω(f)U(a)−1 = πtaω(f) , (8)

where the U ’s are the so-called magnetic translations [119] defined by:

U(a)ψ(x) = exp
{

(ie/~)

∫

[x−a,x]

dyµAµ(y)
}
ψ(x− a) , (9)

where ~A = (A1, ..., Ad) is a vector potential defined by Bµν = ∂µAν − ∂νAµ, a ∈ Rd,
ψ ∈ L2(Rd) and [x− a, x] is the line segment joining x− a to a in Rd. A C∗-norm on A0

is defined by
‖f‖ = sup

ω∈Ω
‖πω(f)‖ . (10)

Definition 6 The noncommutative Brillouin zone is the topological manifold associated
with the C∗-algebra A = C∗(Ωo R

d, B) obtained by completion of A0 = Cc(Ω×R
d) under

the norm ‖ · ‖ defined by eq. (10).

For B = 0 this construction gives the definition of the C∗-crossed product C(Ω) o Rd

[87, 26]. In the case of a perfect crystal (see Section 2.5), with lattice translation group
G, the hull Ω = Rd/G is homeomorphic to Td (see Example 2) and
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Theorem 5 [98, 16] The C∗-algebra C∗(Rd/G o Rd, B = 0) associated with a perfect
crystal with lattice translation group G, is isomorphic to C(B)⊗K, where C(B) is the space
of continuous functions over the Brillouin zone and K the algebra of compact operators.

Even though the algebra C(B) ⊗ K is already noncommutative, its noncommutativity
comes from K, the smallest C∗-algebra generated by finite rank matrices. It describes the
possible vector bundles over B. Theorem 5 is the reason to claim that A generalizes the
Brillouin zone for aperiodic systems.

The groupoid C∗-algebra of Γ(X) can be defined very similarly. Here B0 = Cc(Γ(X)) and
the structure of ∗-algebra is given by

fg (ω, x) =
∑

y∈Γ(ω)

f(ω, y) g(T−yω, x− y) eiπ(e/h)B·x∧y , (11)

f ∗(ω, x) = f(T−xω,−x) , (12)

Setting Hω = `2(Γ(ω)), there is a representation π̂ω on Hω defined by

π̂ω(f)ψ (x) =
∑

y∈Γ(ω)

f(T−xω, y − x) e−iπ(e/h)B·x∧yψ(y), ψ ∈ Hω , (13)

Giving γ = (ω, a) ∈ Γ(X), there is a unitary operator U(γ) : H
t

−aω 7→ Hω defined by

U(γ)ψ(x) = exp
{

(ie/~)

∫

[x−a,x]

dyµAµ(y)
}
ψ(x− a) , ψ ∈ H

t
−aω , (14)

such that the covariance condition holds

U(γ) π̂
t

−aω(f)U(γ)−1 = π̂ω(f) . (15)

A C∗-norm on B0 is defined by

‖f‖ = sup
ω∈X
‖π̂ω(f)‖ . (16)

The C∗-algebra B = C∗(Γ(X), B) is the completion of B0 under this norm. The notion of
Morita equivalence, quickly defined below, is defined in Section 4.1.1 (see Definition 13).
The main result is the following [98]

Theorem 6 1)- The C∗-algebras B = C∗(Γ(X), B) and A = C∗(Ω o Rd, B) are Morita
equivalent, namely A is isomorphic to B ⊗ K.
2)- For B = 0 and for a crystal L with period group G and transversal X = L/G, the
C∗-algebra B is isomorphic to C(B)⊗MN(C) if N is the cardinality of X.
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In order to see the noncommutative Brillouin zone as a manifold, rules of Calculus are
required. Integration is provided by using a transverse measure. Let P be an Rd-invariant
ergodic probability measure on Rd and let Ptr be the probability induced on X. Then
traces are defined on A and B as follows

TP(f) =

∫

Ω

dP(ω) f(ω, 0) , f ∈ A0 , T̂P(f) =

∫

X

dPtr(ω) f(ω, 0) , f ∈ B0 , (17)

TP and T̂P are traces in the sense that TP(fg) = TP(gf), and that TP(ff
∗) > 0. Whereas

TP is not bounded, T̂P is actually normalized, namely T̂P(1) = 1. Moreover, using the
Birkhoff ergodic theorem [42, 69], these traces can be seen as trace per unit volume in the
following sense

TP(f) = lim
R↑∞

1

|B(0;R)| Tr
(
πω(f) �B(0;R)

)
,

where B(x;R) denotes the ball of radius R centered at x ∈ Rd. A similar formula holds for
T̂P provided |B(0;R)| is replaced by the number of points in Lω ∩ B(0;R). In particular
in the crystalline case,

TP(f) =

∫

B

dk Tr
(
f̃(k)

)
,

if f̃(k) denotes the representative of f in C(B) ⊗ K and dk is the normalized Haar mea-
sure on B ' Td. Therefore, these traces appears as the noncommutative analog of the
integration over the Brillouin zone.
A positive measure on a topological space defines various spaces of measurable functions,
such as the Lp-spaces. In much the same way, a positive trace on a C∗-algebra defines
also Lp-spaces [101]. Whenever 1 ≤ p <∞, Lp(A, TP) is the separation-completion of A0

with respect to the seminorm ‖A‖p = TP{(A∗A)p/2}1/p for A ∈ A0. A similar definition
is given for B. In particular, L2(A, TP) coincides with the Hibert space of the GNS-
representation πGNS of A associated with TP [45, 108]. Then L∞(A, TP) denotes the von
Neumann algebra generated by (namely the weak closure of) πGNS(A).

Similarly, a differential structure is provided in the following way

~∇f (ω, x) = ı~xf(ω, x) , f ∈ A0 or B0 . (18)

Here ~x denotes the vector x ∈ R
d. It is easy to check that ~∇ defines a ∗-derivation

namely it obeys Leibniz rule ~∇(fg) = ~∇(f)g + f ~∇(g) and ~∇(f)∗ = ~∇(f ∗). Moreover
~∇ is the infinitesimal generator of a norm pointwise continuous d-parameter group of
automorphisms defined by [87]

η~k(f) (ω, x) = eı
~k·~x f(ω, x) , f ∈ A0 or B0 .
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Let ~X be the position operator on L2(Rd), (resp. on Hω), defined by ~Xψ(x) = ~xψ(x).
Then

πω

(
~∇f
)

= ı[ ~X, πω(f)] , f ∈ A0 , π̂ω

(
~∇f
)

= ı[ ~X, π̂ω(f)] , f ∈ B0 ,

In the crystalline case, it is easy to show that ~∇ coincides with ∂/∂k in B [16]. Hence ~∇
appears as the noncommutative analog of the derivation in momentum space.

In the philosophy of A.Connes, a noncommutative Geometry for a compact manifold is
given by a spectral triplet (A,H, D), where A is a dense subalgebra of a unital C∗-algebra,
invariant by holomorphic functional calculus, H a Z2-graded Hilbert space on which A is
represented by degree 0 operators and D is a degree 1 selfadjoint operator with compact
resolvent, such that [D,A] ∈ B(H) for all A ∈ A. Then D plays the rôle of a Dirac operator
on the noncommutative space associated with A, giving both a differential structure and
a Riemannian metric corresponding to ds2 = D−2 [41]. Then the dimension spectrum is
provided by the set of poles of the ζ-function

ζD(s) = Tr

(
1

|D|s
)
.

If s0 denote the maximum real pole, then the residue at s0 provides an integral over the
manifold given by

∫
T = lim

s↓s0
(s− s0) Tr

(
1

|D|sT
)

= TrDix

(
1

|D|s0 T
)
,

where TrDix denotes a Dixmier trace on H [41, 44] (The definition and properties of the
Dixmier trace will be given in Section 5.3). Such a structure is also present on the non-
commutative Brillouin zone B. For indeed, let γ1, · · · , γd be an irreducible representation
of the Clifford algebra of Rd by Dirac matrices satisfying γµγν +γνγµ = 2δµ,ν and γ∗µ = γµ
in the finite dimensional Hilbert space Cliff(d). Then Cliff(d) is graded by the matrix
γ0 = γ1γ2 · · ·γd, so that setting H = Hω⊗Cliff(d), G = 1⊗γ0, this gives a graded Hilbert
space where G defines the graduation. Moreover A = B0 and D =

∑d
µ=1 γµXµ give a

spectral triplet for which s0 = d. In particular, the Dixmier trace TrDix(|D|−d) exist for
Ptr-almost every ω ∈ X and its common value is given by

TrDix(|D|−d) = DensP(Lω)
πd

Γ(1 + d/2)
,

where DensP(Lω) is the density of Lω which exists for P-almost all ω’s (see [23] see proof
of Theorem 1.12). The numerical factor represents the volume of the unit ball of Rd.
Moreover, if f ∈ B0 this gives
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∫
f = TrDix(|D|−d π̂ω(f)) = T̂P(f)

πd

Γ(1 + d/2)
, Ptr − a.e. ω ∈ X ,

showing that Connes’ integral and the integral over the Brillouin zone coincide modulo
normalization.

2.7 Electrons and Phonons

The formalism developped in the previous sections will eventually be useful to describe the
quantum motion of electrons and phonons in an aperiodic solid, within the one particle
approximation. The interacting case is more involved [105] and will not been considered
in these notes.
The quantum motion of an electron in a monoatomic aperiodic solid represented by a
uniformly discrete set L of atomic positions, and submitted to a uniform magnetic field
B, is well described by a covariant family of Schrödinger operators of the type

Hω =
1

2m

(
~

ı
~∇− e ~A

)2

+
∑

y∈Lω

v(X − y) , on L2(Rd) , (19)

where ~ is the Planck constant, m is the electron mass, ~A is a vector potential and v
is an effective atomic potential, that represents the binding forces acting on the valence
electron. In practice, an aperiodic solid contains more than one species of atoms, so that
L must be replaced by a family L1, · · · ,Lr of uniformly discrete subsets representing the
position of each atomic species, supposing that r species are present. Then each species
i acts via an effective potential vi. Moreover, the number of valence electrons involved
in the conduction may be more than one per atom, so that it should be necessary to
consider instead an l-body problem if l valence electrons per atom are involved. This
latter case will not be considered either, even though its treatment does not represent a
major difficulty. In these notes the model described in eq. (19) will be sufficient.
The Schrödinger operator (19) is not well defined as long as no assumption is given on
the nature of the atomic potential v. For the sum over the atomic sites to converge, it
is necessary that v decay fast enough at infinity. Also local regularity is necessary. A
sufficient condition has been given in [23] (Lemma 2.22), namely let

L1
K,r(R

d) = {f ∈ L1(Rd); |f(x)| ≤ K

rd

∫

|x−y|<r/2

ddy |f(y)|, for a.e. x}

be the set of integrable K-subharmonic functions on Rd. Then

Lemma 1 Let v ∈ L1
K,r(R

d) and ν ∈ UDr(R
d). Then ν ∗ v ∈ L∞

R
(Rd) and the map

v ∈ L1
K,r(R

d) 7→ ν ∗ v ∈ L∞
R

(Rd) is continuous.
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The following Proposition is a consequence of [16] Section 2, Theorem 4 and [23] Theorem
2.23

Proposition 5 1)- For any L an r-discrete subset of Rd, let HL be the Schrödinger
operator given by eq. (19). Then, if v ∈ L1

K,r(R
d) the map L ∈ UDr(R

d) 7→ HL is strong
resolvent continuous.
2)- If Ω is the Hull of L, the map ω ∈ Ω 7→ Hω is strong resolvent continuous and
covariant.

As a consequence, thanks to [16] Theorem 6,

Theorem 7 Let L be a uniformly discrete set in Rd with Hull Ω. Let A = C∗(ΩoRd, B)
be the C∗-algebra of the corresponding Noncommutative Brillouin zone. Let {Hω; ω ∈ Ω}
be the strong resolvent continuous and covariant family of Schrödinger operators defined
by eq. (19) with v ∈ L1

K,r(R
d). Then there is a holomorphic family z ∈ C \R 7→ R(z) ∈ A

such that

πω(R(z)) = (z −Hω)
−1 , ∀ω ∈ Ω .

As a consequence, it can be said that the Schrödinger operator is affiliated to the C∗-
algebra A [55, 117, 118]:

Definition 7 A covariant family (Aω) of selfadjoint operators is affiliated to A if, for all
f ∈ C0(R), the bounded operator f(Aω) can be represented as πω(Af) for some Af ∈ A
such that the map A : f ∈ C0(R) 7→ Af ∈ A is a bounded ∗-morphism.

The resolvent map R(z) is then given by Arz if rz : s ∈ R 7→ 1/(z − s) ∈ C for z ∈ C \R.
Conversely the resolvent map permits to reconstruct the map A through a contour integral.
It has been argued in [16] that the C∗-algebra A above can be actually reconstructed from
the Schrödinger operator HL itself.

In Solid State Physics the conduction electrons are commonly described through the
so-called tight binding approximation. This is because only those electrons with energy
within O(kBT ) from the Fermi level do contribute to the current. There is no need then to
consider the full range of energy to describe these electrons. In particular, the Schrödinger
operator can be replaced by its restriction to an energy interval of size O(kBT ) around
the Fermi level. However this is not practically accessible in most cases. The method to
perform such a reduction goes as follows [13, 61, 56] for atoms with one valence electron.
The single atom Schrödinger equation

H1 =
1

2m

(
~

ı
~∇− e ~A

)2

+ v(X) , on L2(Rd) ,
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has usually a non empty discrete spectrum, described by quantum numbers. The valence
electron occupy a given eigenstate, denoted by φv ∈ L2(Rd) corresponding to the energy
Ev. If the potential v decays fast enough to zero at infinity, φv decays exponentially fast
away from the origin. Then an approximate basis of eigenstate of Hω is provided by the
family {U(y)φv; y ∈ Lω} whenever U is the magnetic translation group. Denoting by
Pω the projection on the subspace generated by such a family in L2(Rd), it is possible
to check that Pω = πω(P ) for some projection P ∈ A. Thanks to an orthonormalization
procedure, the family U(y)φv gives rise to an orthonormal basis {ψy; y ∈ Lω} indexed by
the atomic sites, where each ψy is exponentially localized near y. By using either the Schur
complement (or Feshbach) method [51] or a Grushin method [57] there exists an effective
Hamiltonian in the form of a function z 7→ Heff(z) holomorphic in a neighbourhood of
Ev with values in covariant matrices over Lω. Moreover, the spectrum of the original
problem is given by the implicit equation E ∈ SpH ⇔ E ∈ SpHeff(E). The advantage
of this method is that Heff(z) can be seen as an element of the groupoid C∗-algebra B
[13, 16], with matrix elements decreasing exponentially fast away from the main diagonal.
In practice only a finite number of such diagonals are kept to compute the spectrum, giving
rise to tight-binding models. Such a method is actually commonly used also in computer
software for the purpose of band calculations in crystals. The various ab initio methods
of Quantum Chemistry or the functional density calculations (Kohn-Sham method), may
lead to an accurate calculation of the parameters involved in such an effective Hamiltonian.
It is not the purpose of these notes to explain these methods. However, they lead to
effective Hamiltonians described by elements of the groupoid C∗-algebra B.

Phonons can also be described in a similar way through B with zero magnetic field. This
is because phonons are the harmonic approximation of the atomic motion around their
equilibrium positions. If the atom located at ~x ∈ L is moving around ~x, let ~x + ~ux(t) be
its position at time t. Since x is an equilibrium position for the atom, the potential energy
created by its neigbours increases away from x, hence it is expected that ~ux(t) stay small
at all time. Moreover, the lowest order expansion of the potential energy around x gives
rise to a quadratic potential, namely harmonic forces, tending to force the atom back to
its position x. Therefore, within this harmonic approximation, the classical equation of
motion for the atom has the form

M
d2~ux
dt2

=
∑

y∈Lω

κω(x, y) (~uy − ~ux) , (20)

where M is the atomic mass and κω(x, y) is the d× d matrix of spring constants between
atoms located at y and x. So κω(x, y) ∈ Md(R). Phonons are just the quantized degrees of
freedom associated with this classical motion. In practice however, the influence of atoms
far apart is negligible so that κω(x, y) decays fast enough as |x− y| → ∞. Moreover, the
action-reaction principle implies that κω(x, y) = κω(y, x). In addition, since it describes
an attracting force, κω(x, y) is a positive matrix for any (x, y). Also, the translation
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invariance of interactions between atoms leads to the covariance condition

κtaω(x + a, y + a) = κω(x, y) .

In very much the same way, the translation invariance of interactions between atoms
leads to the continuity of κω(x, y) with respect to ω. Hence the map (ω, x) ∈ Γ(X) 7→
κω(0, x) ∈Md(R

d) defines a positive element κ of C∗(Γ(x))⊗Md. The equation of motion
(20) is usually solved by looking at the stationnary solutions, namely solutions for which

d2~ux
dt2

= −ω̃2~ux ,

leading to the eigenmode equation

∑

y∈Lω

〈x|π̂ω(K)y〉~uy = ω̃2~ux , K(ω, x) = δx,0
∑

y∈Lω

κ(ω, y)

M
− (1− δx,0)

κ(ω, x)

M
. (21)

It is easy to check that this K defines a positive element of B so that the eigenmodes
are given by the spectrum of K1/2. These modes are the plane waves that are allowed
to propagate through the crystal. Historically, Einstein [48] was the first to propose a
quantized version of these oscillations, assuming that only one mode was propagating.
Then he could compute the heat capacity of the solid and show that it saturates at high
temperature leading to the Dulong an Petit law. Soon after, Debye ([64] Section 1.1)
introduced a distribution of eigenmodes together with a density of eigenmodes, namely
the number of eigenmodes per unit volume and unit of frequency at a given value of ω̃. He
also introduced a cut-off to take into account the uniform discreteness of the crystal, in the
form of the Debye Temperature ΘD. In 1912, Born and von Karman [28] performed the
first explicit calculation of the eigenmodes in a cubic crystal and discovered the existence
of optical modes, explaining a small discrepancy between the Debye predictions and the
measurements of the heat capacity.

In both cases, the density of states (DOS), for electrons, and the vibrational density of
states (VDOS), for the phonons, are defined in a similar way. In the phonon case, the
relevant operator is K1/2 ∈ B, whereas for electrons it is its Hamiltonian H, namely either
the Schrödinger operator, in the continuum case, or the effective Hamiltonian in the tight
binding representation. Let then H be the name of such an operator. In both cases it
is given by a strong resolvent continuous family (Hω)ω of selfadjoint operators, bounded
from below, indexed either by the Hull Ω or by the transversal X. It acts either on L2(Rd)
or on `2(Lω). In both cases, given a bounded box Λ ⊂ Rd, it is meaningfull to restrict
Hω to Λ provided boundary conditions are prescribed. Let Hω,Λ be this restriction. Then
its spectrum is discrete in both cases so that there is only a finite number of eigenvalues
(counted with their multiplicities), below E ∈ R. This allows to define the integrated
density of states (IDS) as
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N (E) = lim
Λ↑Rd

1

|Λ| # {E
′ ∈ Sp(Hω,Λ); E ′ ≤ E}

The existence of the limit depends upon the choice of an invariant ergodic probability
measure P on the Hull so that the limit exists only P-almost surely (resp. Ptr-almost
surely) with respect to ω [13, 33, 43, 86]. Let then NP denote this common limit. The
Shubin formula [13, 16] expresses it in term of the noncommutative Brillouin zone as

NP(E) = TP (χ{H ≤ E}) , (Shubin formula) (22)

with a similar formular in the tight-binding case. Here χ{· ≤ E} denotes the characteristic
function of the interval (−∞, E] ⊂ R. Then χ{H ≤ E} is the spectral projection of H
seen as an element of the von Neumann algebra L∞(A, TP). It is then clear from the
definition, that NP is a non decresing non negative function of E. It vanishes below
E0 inf Sp{H}. It is constant on spectral gaps (see Fig. 5). In particular, its derivative
dNP/dE exists in the sense of a Stieljes-Lebesgue measure and is called the density of
states (DOS) (resp. the vibrational density of states).

(E)N

E

Figure 5: An example of electronic integrated density of states in 1D

The DOS is usually used to expressed thermodynamical quantities such as the heat ca-
pacity. In the case of phonons, the VDOS is given by

Nφ(ω̃) = T̂P

(
χ(K ≤ ω̃2)

)
ρP , (Shubin for phonons) (23)

where ρP is the atomic density (in number of atoms per unit volume) in order to get a
number of modes per unit volume. Because there are d possible choices for the polarization
of the acoustic waves, the trace T̂P(χ(K ≤ ∞)) = d. The Debye formula for the phonon
contribution to heat capacity per unit volume leads to

22



Cph
v = kB

∫ ω̃D

0

dNφ(ω̃)

{
~ω̃/2kBT

sinh (~ω̃/2kBT )

}
, (24)

where ω̃D is the Debye cut-off frequency of the solid. If T ↑ ∞, eq. (24) gives the Dulong-
Petit law, namely

Cph
V

T↑∞−→ ρP kB d , (Dulong & Petit). (25)

As T ↓ 0, only the low frequencies contribute, so that it is enough to consider the asymp-
totic of the VDOS at ω̃ ↓ 0. Since low frequencies correspond to large wave lengths, the
corresponding phonons do not see the fine structure of the solid and behave like acoustic
waves with sound velocity cα for the polarisation α. In particular dNφ(ω̃) behaves like
ω̃d−1dω̃, so that

Cph
v ∝ T d , as T ↓ 0 .

For d = 3 this gives the usual T 3 law discovered by Debye.

The electronic contribution to the heat capacity must take the fermionic character of the
electrons into account. Then

Cel
v = T

(
∂S

∂T

)

V,N

,

if S is the total entropy in the volume V . The derivative is taken at constant volume
and constant electron number. The computation of S is usually performed in the grand
canonical ensemble. If Nel denotes the electronic IDS, the chemical potential µ is fixed
by the condition

2

∫

R

dNel(E)
1

1 + e−β(E−µ)
=

N

V
= 2Nel(EF ) .

Here N is the total number of electrons in volume V and EF is called the Fermi energy.
The factor 2 comes from the spin degrees of freedom. Then the entropy S is given by

S = 2kB V

∫

R

dE β2 (E − µ)
Nel(E)

4 cosh2{β(E − µ)/2} . (26)

Here β = 1/kBT . Setting x = β(E − µ)/2 this gives

S = 2kB V

∫ ∞

0

dx
x

cosh2(x)
(Nel(µ+ 2xkBT )−Nel(µ− 2xkBT )) . (27)

Whenever the IDS is smooth around E = EF , this gives the usual electronic contribution
to the heat capacity

Cel
v ∝ T , as T ↓ 0 .

23



If, however Nel admits some fractal behaviour near the Fermi energy, then the low tem-
perature behaviour may be modified. It turns out that such a fractal behaviour is hardly
seen in practice. This is because the disorder and the interactions as well tend to smooth
out the IDS at small energy scales.

3 Examples of Hull

3.1 Perfect Crystals

If L denotes the set of atoms of a perfect crystal, let G be its period group (see Section
2.5). Then clearly the set of translated of L can be identified with the quotient space
R
d/G = V by the very definition of the period group. In particular, G is cocompact. Thus

the Hull is the Wigner-Seitz cell with periodic boundary conditions. Since any cocompact
subgroup of Rd is isomorphic to Zd , it follows that Ω is homeomorphic to a d-torus. In
very much the same way, the transversal is the finite set X = L/G. The number of points
in X is the number of atoms in each unit cell. The groupoid of the transversal Γ(X) is
made of pairs (x, b) ∈ X × Rd such that (x − b) mod G ∈ X. Such b’s can be labelled
in the following way. If x − b = y mod G an element of Γ(X) can be seen as a triplet
(x, y; a) ∈ X ×X ×G with the range, source maps and composition given by

dT

Figure 6: The Hull of a periodic crystal

r(x, y; a) = x s(x, y; a) = y , (x, y; a) ◦ (y, z; b) = (x, z; a + b) .

In particular, a typical element of the C∗-algebra associated with this groupoid is a matrix
valued sequence Fx,y(a) with product and adjoint given by
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(FG)x,y(a) =
∑

z∈X

∑

b∈G

Fx,z(b) Gz,y(a− b) , (F ∗)x,y(a) = Fy,x(−a) .

In particular, using the Fourier transform (here B is the dual group to G and has been
called the Brillouin zone in Section 2.5)

(F̂ (k))x,y =
∑

a∈G

Fx,y(a) e
ı〈k|a〉 , k ∈ B ,

the previous algebra becomes nothing else but the tensor product C(B)⊗Mn(C) if n = |X|
is the number of points contained in X. The same argument shows that the C∗-algebra
of the Hull is isomorphic to C(B)⊗K where K is the C∗-algebra of compact operators.

3.2 Disordered Systems

Let us consider now the case of impurities in a perfect monoatomic crystal. The physical
example is the silicon diamond lattice in which some of the Si atoms may be replaced by
an impurity of the columns IIIA (B,Al, Ga, In or p-type), or VA (P,As, Sb or n-type).
The finite set of possible doping atoms is denoted by A and will be called an alphabet. For
example, if the Si is doped only with boron B or antimony Sb, the alphabet will contain
three letters, namely A = {Si, B, Sb}. Let L be the underlying lattice of the pure silicon.
Then, if x ∈ L let nx ∈ A be the letter denoting the atom sitting at x. A family of the
type n = (nx)x∈L ∈ AL will be called a configuration of impurities. The period group G

of L acts on the configuration space AL through

t
an = (nx−a)x∈L , a ∈ G

To take into account that most of the lattice sites are occupied by a silicon atom, it
is necessary to define a probability measure P which forces the impurities to be very
rare. The simplest example of such a probability consists in demanding that the nx’s be
independent identically distributed random variables with a common distribution p such
that p(Si) = 1− c where c =

∑
w∈A\{Si} p(w) ∈ (0, 1) is the concentration of impurities.

Then P(n) =
⊗

x∈L p(nx) is G-invariant. The main result is the following [105, 23]

Proposition 6 If p(w) > 0 for all letter w ∈ A, namely if each impurity occurs with a
nonzero concentration, then
(i) for P-almost all configuration n of impurities, the transversal X of the Hull of n is
homeomorphic to AL. In particular X is a Cantor set.
(ii) the Hull is homeomorphic to the suspension of X by the action of G, namely

Ω ' X × R
d/G ,

where G acts on X through t and on Rd by translation.
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The previous result has been generalized to probabilities P with correlations in [105, 23].
The condition that each impurity occurs with a nonzero concentration must be then
replaced by: given any finite subset Λ ⊂ L then any configuration nΛ = (nx)x∈Λ in AΛ

have a non zero probability. Such a condition is usually satisfied by Gibbs measures
describing the thermal equilibrium of the impurities.

3.3 Quasicrystals

The simplest example of non-periodic tiling was provided by R. Penrose [90] (see Fig. 7).
It is built from two types of tiles in the 2D plane, through inflation rules, and exhibits a
five-fold symmetry. It was extensively studied by de Bruijn [31]. But it was recognized
only later on by physicists that it is quasiperiodic. However, de Bruijn and also Kramer &
Neri [74] built examples of quasiperiodic tilings. Most models describing the quasiperiodic
order in quasicrystals, are based upon the so-called cut-and-project method, independently
proposed by Duneau & Katz [46, 47], Kalugin, Kitaev & Levitov [67], Elser [49] and Levine
& Steinhardt [81]. It was not until 1995 that this method was recognized as equivalent
to the notion of model sets provided by Meyer [83] in his thesis work [82].

Figure 7: The Penrose tiling
The best models known nowdays to represent the structure of a quasicrystal are built by
using the cut-and-project method (see [62]). It is well illustrated by the construction given
in Fig. 8. The idea is the following. Let N = d+n be an integer bigger than the dimension
of the physical space. In RN , the lattice L = ZN defines some periodicity. Then let E‖ be
a d-dimensional subspace of RN intersecting L only at the origin (irrationality condition).
The idea of the construction is that the physical space is precisely E‖. Then E⊥ will
denote the orthocomplement subspace. The corresponding orthogonal projection on E‖
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Figure 8: The cut-and-project construction

and E⊥ will be denoted by π‖, π⊥ respectively. Let then W be the polytope obtained
by projecting the unit N -cube on E⊥ and let O be its center, namely the projection of
the center of the N -cube. W will be called the window or the acceptance domain. Given
a face of W of maximal dimension n − 1, there is a unique opposite face obtained by
the inversion symmetry around O. For each such a pair of faces, one, called permitted,
will be added to W the other one, called forbidden, will be excluded from W . If two
(n− 1)-permitted faces are adjacent, the closed (n− 2)-face they have in common will be
taken in W . Otherwise the same procedure must be applied to (n− 2)-faces, then to the
(n−3)-faces etc. In this way, for each pair of opposite points of the boundary of W one is
permitted, and belongs to W , the other one is forbidden. Thus, W is neither closed nor
open. Let then ΣW = W + E‖ be the strip parallel to the physical space and generated
by W . The lattice points contained in ΣW , are then projected on the physical space to
give the atomic sites L, namely (see Fig. 8)

L = π‖
(
(W + E‖) ∩ Z

d
)
.

Example 4 (The octagonal tiling-) The simplest example of such a construction is
the octagonal or Ammann-Beenker tiling given in Fig. 9

To built this model it is enough to start from Z4. The 8-fold symmetry seen in Fig. 9 can
be implemented through the transformation (see Fig. 10)
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Figure 9: The Ammann-Beenker tiling

R :





e1 7→ e3
e2 7→ e4
e3 7→ e2
e4 7→ −e1





,

where {e1, e2, e3, e4} is the canonical basis of R4. The matrix R has integer coefficients, is
orthogonal and satisfies R4 = −1. It can be decomposed into the direct sum of two plane
rotations of angles π/4 and 3π/4. The corresponding invariant planes will be E‖ and E⊥
respectively. Since both these planes and the lattice Z4 are R-invariant, and because R
commutes with the projections π‖, π⊥, it follows that R leaves the set L of atomic sites
invariant, which is what is seen in Fig. 9. The acceptance domain is the projection of the
unit 4-cube on E⊥. It must be R invariant, so that it must be an octagon.
This acceptance domain is given in Fig. 10 together with the projection of the four basis
vectors in E⊥. The acceptance domain can be used to read the properties of the tiling.
For instance, le L3 the set of points in L having exactly three nearest neighbours in the
direction e1, e3,−e4. Such points come from points a ∈ L such that a + e1, a− e4, a + e3

belong to the strip ΣW whereas the other a ± ei’s fall out of ΣW . Their projection onto
W gives the subdomain of W given by the rectangle triangle with hypothenuse on the
boundary of W and located along the direction e1 from the center. The other subdomains
designed in Fig. 10 correspond to the acceptance domains of sites with other possible
nearest neighbour environments.

The transversal of L is nothing but the acceptance domain W provided it is completed
for a topology finer than the usual topology in R2. More precisely, given any finite family
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1e

e2

e3 e4

Figure 10: The acceptance domain of the Ammann-Beenker tiling

of vectors (a1, · · · , al) in Z4, the sets W ∩ (W + π⊥(a1)) ∩ · · · ∩ (W + π⊥(al)) are closed
and open for this new topology. In particular all possible acceptance domain of local
environments are closed and open. It is easy to see that W is a Cantor set.

To built the Hull, it is enough to pull-back the topology of W to R4 by demanding that
π−1
⊥ (W0) be closed and open for each W0 ⊂ W closed and open. Let R

4
W denote the

completion of R4 for this topology. It is a locally compact space on which both Z4 and
E‖ acts by homeomorphisms. In particular the Hull can be identified with T4

W = R4
W/Z

4

and R2 acts by translation by vectors of E‖. 2

In general the cut-and-project method can be well described in term of model sets of
Meyer. Namely it is defined with spaces and maps as follows

Rd π1←− Rd × Rn π2−→ Rn

∪
Λ(M)

π1←− R π2−→ M

(28)

where R ⊂ Rd × Rn is a lattice (a co-compact discrete subgroup) and π1 and π2 are the
projections onto Rd and Rn, respectively. Furthermore π1 restricted on R is injective and
π2(R) is dense in Rn. Rd wil be called the physical space and Rn the internal space. Here
π1 and π2 are the restriction maps on the corresponding coordinate of R

d×R
n. Therefore

the setting of a cut-and-project scheme is given by the triple (π1, π2,R). For a subset M
in the internal space Rn we define the corresponding point set in the physical space Rd as

Λ(M) = {π1(a)|a ∈ R, π2(a) ∈M}. (29)

M is called the acceptance domain of the point set Λ(M). For a lattice vector a ∈ R
Λ(M + π2(a)) = Λ(M) + π1(a). (30)
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Definition 8 A point set L in Rd is called a model set if there exists a bounded set M
with non-empty interior such that L = Λ(M).

The next result is proved in [23]

Proposition 7 A model set is a Meyer set.

Definition 9 Let M be a bounded subset of Rn with non-empty interior. M is called
admissible if for every ball B(x, ε) with ε > 0 and x in π2(R) ∩M , there exists a finite
family {a1, . . . , ap} in π2(R) such that M ∩ (M +a1)∩ . . .∩ (M +ap) is a subset of B(x, ε)
with non-empty interior. A model set L is called admissible if there exists an admissible
set M such that L = Λ(M).

Example 5 A convex polytope is an admissible set. 2

Let L = Λ(M) be an admissible model set and let AM denote the C∗-algebra generated

by the set of functions {f ⊗ (χM ◦ T π2(a)
n ); a ∈ R, f ∈ Cc(Rd)}, where T

π2(a)
n denotes

the translation in Rn by π2(a). Here χM denotes the characteristic function of M . Let
R
n+d
M be the set of characters of AM so that, by Gelfand’s theorem, AM is isomorphic to
C0(Rn+d

M ) where R
n+d
M is a locally compact space. Since M is admissible C0(Rn+d) is a closed

subalgebra of AM . By duality there is a surjective continuous map πM : R
n+d
M → Rn+d.

Therefore R
n+d
M can be seen as the completion of Rn+d for a finer topology than the usual

one, that will be called the M -topology, in which the sets Rd×M +a, for a ∈ R, are open
and closed. By construction, for a ∈ R, the map x ∈ Rd×Rn → x+a ∈ Rd×Rn extends
to R

n+d
M by continuity. One sets T

n+d
M = R

n+d
M /R. By construction, for y ∈ R

d × {0}, the
map x ∈ Rd × Rn → x + y ∈ Rd × Rn extends also by continuity to R

n+d
M and commutes

with the action of R. Thus it defines a R
d-action T̂ on T

n+d
M . Similarly R

n
M can be defined

as the set of characters of the C∗-algebra generated by the set {χM ◦T π2(a)
n ; a ∈ R}. Since

it is a set of idempotents, Rn
M is totally disconnected and T

n+d
M is transversally totally

disconnected.

Definition 10 The dynamical system
(
T
n+d
M ,Rd

)
is called the pseudo-torus associated

with the window M .

The following result is proved in [23]

Theorem 8 Let L = Λ(M) be an admissible model set in Rd, and ν = ν(L). Then
(Ων,R

d, T ) is topologically conjugated to (Tn+d
M ,Rd, T̂ ). This dynamical system is minimal.

It is uniquely ergodic, providing M is a Borel set in R
n.

Up to now, M has only been assumed to be admissible. The following property actually
holds in quasicrystals:
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Definition 11 A polytope in R
n is said R-compatible if its vertices belong to π2(R).

If the acceptance domain M is an R-compatible polytope, let F1, · · · , Fp be the hyper-
planes of R

n+d parallel to the maximal faces of R
n ×M . For each j ∈ {1, · · · , p}, let

uj ∈ Rn+d be a unit vector perpendicular to Fj so as to define F+
j = {x ∈ Rn+d; 〈uj|x〉 ≥

0} and F−j = Rn+d \ F+
j . Let then F be the family of affine hyperplanes Fj + a with

j ∈ {1, · · · , p} and a ∈ π2(R). Rd × Rn is then endowed with the coarsest topology for
which, given any F ∈ F , the closed half-space F+ is both closed and open. It will be
called the F -topology. The same construction can be performed in Rn. Let R

n+d
F and

Rn
F be the completions of Rd × Rn and Rn with this topology, respectively. In much the

same way, T
n+d
F = R

n+d
F /R is well defined and can be endowed with an R

d-action. The
following proposition is easy to prove:

Proposition 8 If M is R-compatible, the M-topology and the F-topology are equivalent
on Rn+d. In particular T

n+d
F = T

n+d
M .

Remark 7 An alternative description of this pseudo-torus is proposed in [80, 54] under
very general hypothesis on M . 2

Remark 8 In a Meyer set obtained through the cut-and-project method any bounded
pattern repeats itself infinitely often. More generally, each Meyer set is a Delone set of
finite type. Thanks to Proposition 4, this implies that the canonical transversal is totally
disconnected. This can also be seen from the particular topology described just before.
2

3.4 Finite type Tilings

The construction of quasicrystalline lattices given in the previous Section 3.3 cannot be
extended to any Delone set of finite type. Nevertheless a construction has been proposed
in [24], inspired by earlier papers by [4, 103], which gives the description of the Hull
in such a case. The consequence is summarized in the Theorem 2 given at the end of
Section 2.3. Let this theorem be illustrated with the help of the octagonal tiling.

The octagonal tiling shown in Fig 9 can be tiled by 20 tiles modulo translation. Each tile
is repeated eight times when the 8-fold rotation R is applied (see Section 2.3). Therefore,
modulo R, three tiles are remaining, one is a rhombus with sides of length one and a
45◦ angle, the two others are rectangle triangles corresponding to half a square of side
one. The two half squares are symmetric to each other around the diagonal of the square.
These tiles are also decorated by arrows. They are shown in Fig. 11 below. The arrows
have to match within the tiling. The octagonal tiling is invariant by an inflation symmetry
of ratio

√
2 + 1. The inflated tiles are also shown in Fig. 11. For instance, the inflated

rhombus is made of three rhombi and two of each variety of half squares. The inflated
square is made of 4 rhombi and 3 of each variety of half squares.
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Figure 11: Construction of BOF manifolds for the octagonal tiling

The family of these 20 tiles is made into a compact branched, oriented, flat Riemannian
manifold (BOF) by identifying the oriented sides of various tiles whenever they match
somewhere in the tiling. The result is the manifold B0. To obtain B1, it is sufficient to
proceed the same way with the inflated tiles. The decoration of the sides of the inflated
tiles is now more complicated. But the same rule applies. Due to the inflation symmetry,
B0 and B1 are actually diffeomorphic BOF manifolds. However, the inflation changes the
metric from ds2 to (

√
2 + 1)2ds2. It is thus possible to define a map f0 : B1 7→ B0, with

derivative Df0 = 1 (the unit matrix), which identifies each tile of order 0 in an inflated
tile with the corresponding tile of B0 (see Fig. 11). It is important to remember that two
tiles which differ by a rotation are considered as distinct. Such a map is called a BOF
submersion. It is locally the identity map, it is globally onto, but it maps several point
of B1 to the same point in B0. In a sense, f0 folds B1 onto B0.
Then, by inflating n times, and proceeding in the same way at each inflation, the BOF
manifold Bn is constructed. Again, in this particular example, due to the inflation sym-
metry, Bn is diffeomorphic to B0. But the metric ds2 is multiplied by (

√
2+1)2n in Bn. In

very much the same way, as shown in Fig. 11, there is a BOF submersion fn : Bn+1 7→ Bn

defined by identifying the n-tiles tiling the (n + 1)-tiles in Bn+1 with the corresponding
n-tile of Bn.

This construction leads to a projective family · · · fn+1−→ Bn+1
fn−→ Bn

fn−1−→ · · · of BOF
manifolds. Then the successive unfolding of the Bn’s is described through the projective
limit

Ω = lim
←

(Bn, fn) . (31)
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By definition, a point in Ω is a family ω = (xn)n∈N ∈
∏
Bn such that fn(xn+1) = xn for

all n’s. Actually only the large enough n’s do matter to define ω, since given xn, all the
xj with j < n are uniquely defined. Therefore, given a ∈ R2, there is N large enough
so that xn is at distance larger than ‖a‖ from the boundary of the tile it belongs to. In
particular, xn + a is a well defined point in the same tile as xn. Since DFn = 1, it follows
that fn(xn+1 + a) = xn + a for n large enough. Thus the point t

aω = (yn)n∈N defined
by yn = xn + a for n > N is well defined in Ω. Hence R2 acts on Ω through t. The
Theorem 2 says that the dynamical system (Ω,R2,t) is conjugate to the Hull of the tiling
through a homeomorphism.

In the general situation of a Delone set L ⊂ Rd that is repetitive with finite type, the
procedure is similar. First, a tiling is built, by means of the Voronoi construction. Namely
given x ∈ L , the Voronoi cell of x is the open convex polyhedron Vx defined as (see Fig. 12)

Vx = {z ∈ R
d; ‖z − x‖ < ‖z − y‖, ∀y ∈ L \ {x}}

Figure 12: Construction of a Voronoi cells and a Voronoi tiling

It is known that such polyhedra tile the space. Then, since L has finite type, there is only
finitely many Voronoi cells modulo translation. Each such cell will be decorated by the
family of its neighbours: a Voronoi cell Vy is a neighbour of Vx if Vx∩Vy 6= ∅. A prototile is
the equivalence class of a decorated Voronoi cell modulo translations. Then B0 is obtained
from the disjoint union of the prototiles by gluing two such prototiles T1 and T2 along one
of their face, whenever there is a region in the tiling where two tiles equivalent to T1 and
T2 respectively, are touching along the corresponding face. The decorated Voronoi tiles
of L will be called 0-tiles.
In general there is no natural inflation rule in a tiling. But it is possible to proceed as
follows. Let one of the prototiles T be chosen. And let LT be the subset of L made of
points with Voronoi cell equivalent to T . Thanks to L being repetitive, LT is itself a
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Delone set of finite type. It is then possible to build the corresponding Voronoi cells of
LT . It will be convenient to substitute to each such cell, the polyhedron V

(1)
x obtained as

the union of the 0-tiles intersecting it, with some convention at the boundary, decorated
by the 0-tiles that touch it from the outside. This will be a 1-tile. Then B1 is built in
the same way as B0. Moreover each 1-tile is tiled by a family of 0-tiles, so that the map
f0 : B1 7→ B0 is well defined as in the octagonal case. The construction of B1 from B0,
can be repeated to get again a projective family of BOF, as in the previous example,
and so to the space Ω together with the Rd action. And this is the interpretation of the
Theorem 2.

4 The Gap Labelling Theorems

The Shubin formula for electrons or phonons, given by eq. (22,23), shows that the inte-
grated density of electronic states or of phonon modes are given in term of the trace of a
spectral projection of a self adjoint operator affiliated to the C∗-algebra A of interest. In
the electronic case, this operator is the Schrödinger Hamiltonian H, which is unbounded,
while in the phonon case, it is the mode operator K which belongs to A. There are many
situations in which either H or K may have a spectral gap. If this happens, then the
spectral projection χ(H < E) or χ(K < ω̃2) becomes elements of A whenever E or ω̃2

belong to a gap. Since the trace of a projection P ∈ A does not change by a unitary
transformation, the value of this trace depends only upon the unitary equivalence class of
the projection P . The notion of unitary equivalence is, however, meaningless in general
in a C∗-algebra since it may not have a unit. This is why it is better to use the von
Neumann definition, namely [87]

Definition 12 Two projections P and Q of a C∗-algebra A are equivalent, and it is
denoted by P ≈ Q whenever there is U ∈ A such that UU ∗ = P and U∗U = Q.

As a matter of fact, there are not so many such equivalence classes, more precisely [87]

Theorem 9 In a separable C∗-algebra , the family of equivalence classes of projections
is at most countable.

A consequence is that the trace of a projection belongs to a countable subset of R+.
Such numbers will be called gap labels. The question is whether it is possible to compute
this subset. The answer is yes and this is the purpose of the various versions of the
gap labelling theorem to do so. The main tool is that the set of equivalence classes of
projections may be enlarged in a canonical way to become a discrete abelian group, called
K0(A) or the K-theory group.

4.1 K-theory

This section is devoted to a short review of K-theoryMorita [26, 114].
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4.1.1 The Group K0

The set of equivalence classes of projections in A will be denoted by P(A), and the
equivalence class of P by [P ]. Two projections P and Q are orthogonal whenever PQ =
QP = 0. Then P +Q is a new projection, called the direct sum of P and Q, denoted by
P ⊕Q.

Proposition 9 Let A be a separable C∗-algebra. Let P and Q be two projections in
A. Then the equivalence class of their direct sum, if it exists, depends only upon the
equivalence classes of P and of Q. In particular, a sum is defined on the set Θ of pairs
([P ], [Q]) in P(A), such that there are P ′ ≈ P and Q′ ≈ Q with P ′Q′ = Q′P ′ = 0, by
[P ] + [Q] = [P ′ ⊕Q′]. This composition law is commutative and associative.

The main problem is that the direct sum may not be everywhere defined. To overcome
this difficulty, A is replaced by its stabilization A⊗K, where K is the algebra of compact
operators. A C∗-algebra A is stable if A and A⊗ K are isomorphic. For any C∗-algebra
A, A⊗K is always stable, because K ⊗ K ∼= K.

Definition 13 Two C∗-algebras A and B are Morita equivalent whenever A⊗K is iso-
morphic to B ⊗ K.

Proposition 10 Given any pair P and Q of projections in A ⊗ K, there is always a
pair P ′, Q′ of mutually orthogonal projections in A ⊗ K such that P ′ ≈ P and Q′ ≈ Q.
Therefore the sum [P ] + [Q] = [P ′ ⊕Q′] is always defined.

In this way, if A is a stable algebra, the set P(A) of equivalence classes of projections is
an Abelian monoid with neutral element given by the class of the zero projection. If A
is not stable, P(A) will be replaced by P(A⊗ K). The Grothendieck construction gives
a canonical way to construct a group from such a monoid. This is a direct generalization
of the construction of the group of integers Z from N. The formal difference [P ] − [Q]
is defined as the equivalence class of pairs ([P ], [Q]) ∈ P(A⊗ K)× P(A⊗ K) under the
relation

([P ], [Q]) R ([P ′], [Q′])⇔ ∃[S] ∈ P(A⊗K); [P ] + [Q′] + [S] = [P ′] + [Q] + [S] .

The corresponding quotient is the Abelian group K00(A) = P(A ⊗ K) × P(A ⊗ K)/R.
Whenever A is unital, K0(A) := K00(A). Otherwise, A must be enlarged to A+ obtained
by adjoining a unit, so that A becomes a two-sided closed ideal of A+. The quotient map
π : A+ → A+/A induces a group homomorphism π∗ : K00(A+)→ K00(A+/A), the kernel
of which being the group K0(A) (see [26] for details). It leads to:

Proposition 11 Let A be a separable C∗-algebra.
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(i) The set K0(A) is countable and has a canonical structure of Abelian group.

(ii) Any ∗-isomorphism ϕ : A 7→ B between C∗-algebras induces a group homomorphism
ϕ∗ : K0(A) 7→ K0(B), so that K becomes a covariant functor from the category of
C∗-algebras into the category of Abelian discrete groups.

(iii) Any trace T on A defines in a unique way a group homomorphism T∗ from K0(A)
to R such that if P is a projection on A, T (P ) = T∗([P ]) where [P ] is the class of
P in K0(A).

(iv) If A and B are two Morita equivalent C∗-algebras then K0(A) and K0(B) are iso-
morphic.

4.1.2 Higher K-groups and exact sequences

The explicit computation of K-groups can be performed using the methods developed in
homological algebra. The main tools are exact sequences and spectral sequences. However,
these methods require introducing higher order K-groups. Let A be a C∗-algebra and let
GLn(A) be the group of invertible elements of the algebra Mn(A). (when A is non-unital,
GLn(A) = {u ∈ GLn(A+); u ≡ 1n mod Mn(A)}). GLn(A) is embedded as a subgroup
ofGLn+1(A) using

(
GLn(A) 0∗n

0n 1

)

(with 0n = (0...0)). Let GL∞(A) be the inductive limit of GLn(A), namely the norm
closure of their union, and let [GL∞(A)]0 be the connected component of the identity in
GL∞(A). K1 is defined as follows:

K1(A) = GL∞(A)/GL∞(A)0 = lim
→
{GLn(A)/[GLn(A)]0} (32)

If A is separable, then K1(A) is countable, since nearby invertible elements are in the
same component. For u ∈ GLn(A), let [u] be its class in K1(A). The relation [u][v] =
[diag(u, v)] defines a product in K1(A). Then [26]

Proposition 12 K1(A) is an Abelian group.

The suspension of A is the C∗-algebra SA of continuous functions f : R → A vanishing
at ±∞, endowed with point-wise addition, multiplication and adjoint, and the sup-norm.
Hence SA ∼= C0(R)⊗A. Then [26]

Theorem 10 K1(A) is canonically isomorphic to K0(SA).
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Therefore we can also define higher K-groups by

K2(A) = K1(SA) = K0(S
2A), . . . , Kn(A) = · · · = K0(S

nA).

Theorem 11 (Bott Periodicity) K0(A) ∼= K2(A). More precisely K0(A) is isomor-
phic to the group π1(GL∞(A)) of homotopy classes of closed paths in GL∞(A). Fur-
thermore, if T is a trace on A and if t ∈ [0, 1] → U(t) is a closed path in GL∞(A)
[37]:

T∗([U ]) =
1

2πi

∫

[0,1]

dt T (U(t)−1U ′(t)), (33)

where T∗ is the map induced by T on K0(A).

Ki is a covariant functor with the following properties:

Theorem 12 Let J ,A,An,B be C∗-algebras and n, i non-negative integers:

(i) If f : A → B is a ∗-homomorphism, then f induces a group homomorphism f∗ :
Ki(A)→ Ki(B). Then id∗ = id, and (f ◦ g)∗ = f∗ ◦ g∗.

(ii) Ki(
⊕

nAn) ∼=
⊕

nKi(A)

(iii) If A is the inductive limit of the sequence (An)n>0 of C∗-algebras then Ki(A) is the
inductive limit of the groups Ki(An).

(iv) If φ : J → A, and ψ : A → B are ∗-homomorphisms such that the sequence

0→ J → A→ B → 0

be exact, there is a six-term exact sequence of the form:

K0(J )
φ∗−−−→ K0(A))

ψ∗−−−→ K0(B)

Ind

x
yExp

K1(B))
ψ∗←−−− K1(A)

φ∗←−−− K1(J )

(34)

In the previous theorem, Ind et Exp are the connection automorphisms defined as follows
(whenever A is unital): let P be a projection in B ⊗ K, and let A be a self-adjoint
element of A ⊗ K such that ψ ⊗ id(A) = P . Then ψ ⊗ id(e2ıπA) = e2ıπP = 1, so that
B = e2ıπA ∈ (J ⊗ K)+ and is unitary in (J ⊗ K)+. The class of B gives an element of
K1(J ) which is, by definition, Exp([P ]). In much the same way, let now U be an unitary
element of 1+(B⊗K). Without loss of generality it is the image under ψ⊗ id of a partial
isometry W in (A⊗K). Then Ind([U ]) is the class of [WW ∗]− [W ∗W ] in K0(J ). These
definitions actually make sense.
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4.1.3 The Connes-Thom isomorphism

The C∗-algebra of a dynamical system introduced in Section 2.6 is a special case of
the C∗-crossed product construction. Let A be a C∗-algebra, G be a locally compact
group, and α be a continuous homomorphism from G into Aut(A) (namely the group of
∗-automorphisms of A endowed with the topology of point-wise norm-convergence). A
covariant representation of the triple (A,G, α) is a pair of representations (Π, ρ) of A
and G on the same Hilbert space such that ρ(g)Π(a)ρ(g)∗ = Π(αg(a)) for all a ∈ A and
g ∈ G. Each covariant representation of (A,G, α) gives a representation of the twisted
convolution algebra Cc(G, A) by integration (compare with Section 2.6), and hence a
pre-C∗-norm on this ∗-algebra. The supremum of all these norms is a C∗-norm, and the
completion of Cc(G, A) with respect to this norm is called the crossed product of A by G

under the action α, denoted by Aoα G. The *-representations of Aoα G are in natural
one-to-one correspondence with the covariant representations of the dynamical system
(A,G, α).

Theorem 13 [37] Ki(Aoα R) ∼= K1−i(A), for i = 0, 1.

4.1.4 The Pimsner & Voiculescu exact sequence

The following result can be found in [91]

Theorem 14 Let A be a separable C∗-algebra, and let α be a *-automorphism of A.
There exists a six-term exact sequence:

K0(A)
id−α∗−−−→ K0(A))

j∗−−−→ K0(Aoα Z)

Ind

x
yExp

K1(Aoα Z))
j∗←−−− K1(A)

id−α∗←−−− K1(A)

(35)

where j is the canonical injection of A into the crossed product.

4.1.5 Morita equivalence

In Section 4.1.1 the notion of Morita equivalence was defined. Namely, C∗-algebras A,B
are called Morita equivalent whenever A ⊗ K ' B ⊗ K, if K is the algebra of compact
operators. In Prop. 11.iv, it was shown that if A and B are Morita equivalent, then they
have same K-groups. The following theorem will be used here (see for instance[41])

Theorem 15 Let Ω be a compact metrizable space endowed with an action of Rd by home-
omorphisms. Let X ⊂ Ω be a transversal. Let Γ(X) be the groupoid of the transversal.
Then the C∗-algebras A = C(Ω) o Rd and B = C∗(Γ(X)) are Morita equivalent.
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Figure 13: The Poincaré first return map

In particular, whenever d = 1, a transversal is called a Poincaré section. The construction
of the first return map t, also called Poincaré map, shows that the groupoid Γ(X) is
obtained as the action of Z on X defined by t (see Fig. 13).
Hence, the C∗-algebra of the transversal is nothing but B = C(X) o Z.

4.2 Gap Labels

Let be a self-adjoint operator affiliated to A and satisfying Shubin’s formula (22). Let g

be a gap in the spectrum SpH of H. The integrated density of states (IDOS) is constant
on this gap. Let N (g) be its value there. Moreover, if E ∈ g, the characteristic function
x ∈ SpH 7→ χ(x ≤ E) ∈ R is continuous on SpH and does not depend upon the choice
of E ∈ g. Therefore the spectral projection χ(H ≤ E) is an element P (g) ∈ A which
depends only upon the gap. Hence, it defines an element n(g) = [P (g)] ∈ K0(A). The
Shubin formula implies:

N (g) = TP (P (g)) = TP ∗(n(g)) ,

namely, the IDOS on gaps is a number that belongs to the image of the K0-group by
the trace. Since this group is countable such numbers belong to a countable subgroup
of R. At last since a projection satisfies 0 ≤ P ≤ 1, the trace of a projection satisfies
o ≤ TP(P ) ≤ TP(1). Hence:

Theorem 16 Abstract Gap Labelling Theorem[12, 13]
Let H be a self-adjoint operator affiliated to A and satisfying Shubin’s formula. Then:

(i) For any gap g in the spectrum of H, the value of the IDOS of H on g belongs to the
countable set of real numbers T∗(K0(A)) ∩ [0, T (1)].
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Figure 14: Conservation rules for gap labels (Theorem 16 (v))

(ii) The equivalence class n(g) = [P (g)] ∈ K0(A), gives a labelling which is invariant
under norm perturbations of the Hamiltonian H within A.

(iii) If S ⊂ R is a closed and open subset in SpH, then nS = [PS] ∈ K0(A), where PS is
the eigenprojection of H corresponding to S, is a labelling for each such part of the
spectrum.

Let t ∈ R→ H(t) be a continuous family of self-adjoint operators (in the norm-resolvent
topology) with resolvent in A.

(iv) (homotopy invariance) The gap edges of H(t) are continuous and the labelling of a
gap {g(t)}, is independent of t as long as the gap does not close.

(v) (additivity) (see Fig. 14) If for t ∈ [t0, t1], the spectrum of H contains a clopen subset
S(t) such that S(0) = S+ ∪ S− and S(1) = S ′+ ∪ S ′− where S± and S ′± are clopen
sets in spec(H(t0)) and spec(H(t1)) respectively, then nS+ + nS−

= nS′

+
+ nS′

−

.

Example 6 The first example of such a gap labelling, using K-theory, was the case of
the Harper model [12] using the results of Rieffel and Pimsner & Voiculescu [92, 97]
on the irrational rotation algebra. The Harper model is the Hamiltonian describing the
motion of a 2D-electron on the square lattice and submitted to a uniform magnetic field
perpendicular to the lattice like in Fig. 15. The Hilbert space of electronic states is `2(Z2).
The energy operator is reduced to its discrete kinetic term:

H = U1 + U−1
1 + U2 + U−1

2
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Figure 15: A square lattice in a uniform magnetic field

where U1, U2 are the magnetic translations in the directions of the two axis [119] defined
by

Uiψ(~m) = e
ıe/~

∮ ~m

~m−~ei

~A·d~̀
ψ(~m− ~ei) , ~m = (m1, m2) ∈ Z

2 ~e1 = (1, 0) ~e2 = (0, 1) .

It is elementary to check that

U−1
i = U∗i (i = 1, 2) U1 U2 = e2ıπαU2 U1 , α =

φ

φ0

, (36)

where φ is the magnetic flux through the unit cell, whereas φ0 = h/e2 is the flux quantum
(here h = 2π~). The C∗-algebra generated by two unitaries satisfying (36) is denoted by
Aα and is called the rotation algebra [97]. It is easy to see that the C∗-algebra generated
by one unitary, say U2, is isomorphic to C(T) if U2 is identified with the trigonometric
monomial x ∈ T 7→ eıx ∈ C. The commutaion rule given in (36) implies that U1 acts on
C(T) through this isomorphism as

U1fU
−1
1 (x) = f(x+ 2πα) .

Hence, U1 is the generator of the Z-action α : x ∈ T 7→ x + 2πα ( mod 2π), so that
Aα is isomorphic to the crossed product C(T) oα Z. It is clear that within the algebra
C(T)⊗Mn(C) the automorphism α(F )(x) = F (x+ 2πα) is homotopic to the identity, so
that the action of α on the K-group is trivial so that α∗− id = 0. Moreover, the K-groups
of the torus are K0 ' Z ' K1. The generator of K0 is the function f(x) = 1, whereas
U2 generates K1. The Pimsner-Voiculescu exact sequence (Theorem 14), splits into two
independent short exact sequences

0 7→ Z
i∗7→ Ki(A)

∂7→ Z 7→ 0 , i = 0, 1 ,
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where i∗ is the canonical injection of C(T) intoAα = C(T)oαZ whereas ∂ is the connecting
homomorphism. Since Z is a free group, the only solution is Ki(A) ' Z2 for i = 0, 1.
In addition, the trace per unit area satisfies

T (Un1
1 Un2

2 ) = 0 if n1 = n2 = 0 , T (1) = 1 .

Since 1 is one generator of K0(A), it is sufficient to built a projection non equivalent to
1 to get another generator. The following result was proved by [92] and can be proved
nowadays in several other ways

Theorem 17 If α is an irrational number, and if P ∈ Aα is a projection, there is a
unique integer n such that

T (P ) = nα− [nα]

where [x] denote the integer part of x.

These integers was recognized by Claro and Wannier [35] in 1978 (see Fig. 16: the hori-
zontal axis corresponds to the spectrum of H, the vertical axis corresponds to the value
of α), on the basis of the numerical calculation by Hofstadter [63] (see Fig. 1). Eventually
these integers are the one occuring in the Quantum Hall effect (see Section 5).

Figure 16: Gap labels for the Harper model: each color corresponds to an integer [84]

2
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4.3 Computing Gap Labels

The first systematic computation of gap labels was performed for 1D systems in [16, 21].
Let Ω be the Hull of the system and X its transversal. In Section 4.1.5 it has been
shown that the K-group of A = C(Ω) o R is the same a the one of the groupoid of the
transversal C(X)o Z where Z acts through the Poincaré map t. The Pimsner-Voiculescu
exact sequence, defined in Section 4.1.4 allows to compute the K-group from the topology
of X. The simplest case occurs whenever X is a Cantor set.

Definition 14 Let G be an Abelian group and let T : G 7→ G be a group isomorphism.
The set E = {g ∈ G; ∃h ∈ G, g = h− T (h)} is a subgroup. The set GT = {g ∈ G;T (g) =
g} is called the group of invariants whereas GT = G/E is called the groups of co-invariants.

Theorem 18 [16, 21] Let X be a totally disconnected compact metrizable space, endowed
with a Z-action t and let B = C(X) o Z be the corresponding C∗-algebra . Let t also
denotes the induced action on the abelian group C(X,Z) defined by tf(x) = f(t−1x).
Then

(i) K1(B) is isomorphic to the group of invariant C(X,Z)t. In particular, if t is
topologically transitive, namely if there is one dense orbit, K1(B) ' Z.

(ii) K0(B) is isomorphic to the group of co-invariants C(X,Z)t.

(iii) Let P be a t-invariant ergodic probability measure on X and let TP be the corre-
sponding trace on B. Then, the set of gap labels of B, namely the image of K0(B)
by TP is the countable subgroup P(C(X,Z)) of R.

Example 7 The main application is the following. Let A be a finite subset of R that will
be called an alphabet. The elements of A will be called letters. A word is a finite sequence
of letters. The set of words is denoted by W. The length of a word w is the number,
denoted by |w|, of its letters. If v and w are two words, vw denotes the word obtained
by concatenation, namely by associating the list of letters appearing in v followed by the
one in w. Then |vw| = |v| + |w|. Let now AZ be the set of doubly infinite sequence of
letters u = (ui)i∈Z with ui ∈ A for every i ∈ Z. Z acts on AZ through the bilateral shift
(tu)i = ui−1. Given u(0) ∈ A let X be the closure in AZ of the set {tnu(0) ; n ∈ Z}
of the shifted of u(0). X is called the Hull of u(0). A cylinder set is a clopen set of the
form Uw,n = {u ∈ X ; un+i = wi , 1 ≤ i ≤ |w|}, for some n ∈ Z and some word w.
Cylinder sets form the basis of the topology of X. A cylindrical function f : X 7→ C

on X is a function for which there is N ∈ N such that, for u ∈ X, f(u) depends only
on (u−N , uN−1, · · · , uN−1, uN). By definition of the product topology, any continuous
function f ∈ C(X) can be uniformly approximated by a sequence of cylindrical function.
As a consequence, it is possible to show that any integer valued continuous function g
is a finite sum of characterisic function of cylinder sets. Given any t-invariant ergodic
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probability measure P on X, the probability P(Uw,n) of the cylinder set Uw,n does not
depend on n and is nothing but the occurence probability of the word w in the sequence
u(0). Hence, Theorem 18 implies

Proposition 13 Let A be an alphabet and let u(0) be a doubly infinite sequence of letters
in A, and let X be its Hull. Let P be a t invariant ergodic probability on X. Then the
set of gap labels of the algebra B = C(X) o Z is nothing but the Z-module Zu(0) generated

by the occurence probabilities of finite words contained in the sequence u(0).

Let now H be a selfadjoint operator on `2(Z) defined by

Hψ(n) =
∑

m∈Z

h(t−mu, n−m)ψ(m) ,

where, for each n ∈ Z, the map hn : u 7→ h(u, n) ∈ C is continuous and satisfies: (i)
h(u, n) = h(t−nu,−n) and (ii) supu∈X

∑
n∈Z
|h(u, n)| <∞. Then H ∈ B and it IDOS on

gaps takes on values in Zu(0) .

A substitution σ is a map σ : A 7→ W. It extends to W by concatenation, namely if
w = a1a2 · · ·an then σ(w) = σ(a1)σ(a2) · · ·σ(an). It will be assumed that

(i) ∃a ∈ A such that σ(a) = vaw, for some non empty words v, w;
(ii) σ is primitive namely, given any pairs of letters b, c there is an n ∈ N such that

σn(b) contains the letter c;
(iii) σ is generating, namely, for any letter b, the length of σn(b) diverges as n→∞.

Then, the sequence of words σn(a) converges in AZ to an infinite sequence u(0). Such a
sequence will be called a substitution sequence. The following is a classical result [94]

Theorem 19 Let u(0) be a substitution sequence. Then there is a unique t-invariant
ergodic probability measure on its Hull.

Let M(σ)b,a be the number of occurences of the letter b in the word σ(a). Then M(σ)
is the matrix of the substitution σ. Because it is a matrix with nonnegative entries, the
Perron-Frobenius Theorem implies that it has a simple eigenvalue θ equal to its spectral
radius, called the Perron-Frobenius eigenvalue, with eigenvector V = (Vb)b∈A with positive
entries and normalized to

∑
b Vb = 1, called the Perron-Frobenius vector. It follows from

the definition of this matrix that vb is the occurence probability of the letter b in the
substitution sequence.
Let now AN be the set of words of length N . Then, considering AN as a new alpha-
bet, σ induces on AN a substitution σN defined as follows. If w is a word with N
letters and first letter b, let m be the length of σ(b) and let σ(w) = a1 · · ·an. Then
σN (w) = (a1 · · ·aN)(a2 · · ·aN+1) · · · (am · · ·aN+m). Let then MN (σ) be the matrix of this
new substitution. Then it follows that θ is also the Perron-Frobenius eigenvalue of MN (σ)
[94], for any N . Moreover [16, 21]
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Theorem 20 Let σ be a substitution satisfying the condition (i),(ii),(iii) above. Let u(0)

be the corresponding substitution sequence and X be its hull. Then the set of gap labels is
given by the Z[θ−1]-module generated by the components of the Perron-Frobenius vectors
of M(σ) and M2(σ), where θ is the Perron-Frobenius eigenvalue.

2

Example 8 The generalization of the previous example can be described as follows. Let
X be a Cantor set endowed with an action of Zd by homeomorphisms. Let B = C(X)oZd

be the corresponding C∗-algebra . Then Forrest and Hunton [53], using the Atiyah-
Hirzebruch spectral sequences [6] and a result by Adams [2], proved the following theorem

Theorem 21 If X is a Cantor set endowed with a minimal action of Z
d by homeomor-

phisms. Then the group of K-theory of the corresponding C∗-algebra B = C(X) o Zd is
given by

Ki(B) '
d/2⊕

m=0

H2m+i(Zd, C(X,Z)) ,

where Hn(Zd, G) is the group cohomology of Zd with cœfficients in the abelian group G
and C(X,Z) denotes the abelian group of integer valued continuous functions on X.

Let now P be a Z
d-invariant ergodic probability measure on X and let TP be the corre-

sponding normalized trace on B. Then it has been proved recently by [25, 68] that

Theorem 22 If X is a Cantor set endowed with an action of Zd by homeomorphisms
and if P is a Z

d-invariant ergodic probability measure on X, then the set of gap labels,
namely the image by the trace TP induced by P on B = C(X)oZd, is given by P (C(X,Z)).

2

Example 9 The definition of a finite type repetitive Delone set L given in Section 2.3, is
actually the d-dimensional generalization of a bi-infinite sequence of letters. For indeed,
thanks to the Voronoi construction (see Section 3.4) the points of L can be seen as tiles
instead and the finite type property means that the number of such tiles is finite modulo
translations. A prototile is an equivalence class of tiles modulo translation. Let then
T be the set of prototiles. This is the d-dimensional analog of the alphabet. However,
prototiles lead to patches instead of words. A patch is a finite union of tiles of L, but such
a notion is too loose. Given r ≥ 0 an r-patch of L is the finite union p of closed tiles of
L centered at points of a subset of the form L(p) = B(0; r] ∩ (L − x) for some x ∈ L.
Here B(y; r] denotes the closed ball of radius r centered at y. Geometrically an r-patch
p is a polyhedron. In the following, Ω will denote the Hull of L and X its transversal.
According to the construction given in Section 2.2, any ω ∈ Ω is a Radon measure on
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Rd supported by a Delone set Lω, and giving mass one to each point of Lω. Then Lω is
itself repetitive and has finite type. Since L has finite type, it is easy to check that the
prototiles and the patches of Lω are the same as for L. It is useful to recall that ω ∈ X
if and only if Lω contains the origin.
Let then P(r) be the set of r-patches of L. Since L has finite type, P(r) is finite so
that the map r ∈ [0,∞) 7→ P(r) is locally constant and upper semicontinuous. Hence
there is an infinite increasing sequence 0 = r0 < r1 < · · · < rn < rn+1 < · · · such that
rn ≤ r < rn+1 ⇒ P(r) = P(rn). Let Pn denote P(rn) and let P be the union of the Pn’s.
In particular, P0 = T. The analogy with the 1D case is now simple. The alphabet A is
replaced by the set of prototiles T, the set of words W by the set of patches P and the
bi-infinite sequence u(0) of letters by L. Then the Hull of u(0) is replaced by the transversal
X of L. Cylinder sets are now given by clopen subsets U(p, n) ⊂ X, with p ∈ Pn for
some n ∈ N, where U(p, n) denotes the set of ω ∈ X for which the union of the closed
tiles centered on points of B(0; rn] ∩ Lω is precisely p.

In Section 3.4, eq. (31) gives the construction of the Hull from a projective sequence

· · · fn+1−→ Bn+1
fn−→ Bn

fn−1−→ · · · of BOF manifolds from the notion of decorated patches.
The following result has been proved in [24] which is a an extenxion of the Forrest-Hunton
theorem 21 [53]

Theorem 23 Let L be a repetitive Delone set of finite type in Rd. Let Ω its Hull and let
A = C(Ω) o Rd be the corresponding Noncommutative Brillouin zone. Then

(i) the group of K-theory of A is given by

Ki(A) ' lim
n →

d/2⊕

m=0

H2m+i(Bn,Z)

(ii) The longitudinal homology group group Hd(Ω) = lim←Hd(bn,R) is canonically
ordered with positive cone Hd(Ω)+. There is a canonical bijection between Hd(Ω)+ and
the set of R

d-invariant positive measure on Ω.

Let now P be an Rd-invariant measure on Ω. It then defines a canonical probability on
X, called the transverse measure induced by P [36, 41]. To build this transverse measure,
let a box be defined as a subset of Ω of the form

B̂(p, n; r) = {ω′ ∈ Ω ; ∃a ∈ R
d , |a| < r ,t−aω′ ∈ U(p, n)} ,

where n ∈ N, p is a patch in Pn and r > 0. Then, if L is r0-discrete, the transverse
measure is the probability PX on X uniquely defined by

PX (U(p, n)) =
P

(
B̂(p, n; r)

)

|B(0; r]| , ∀0 < r < r0 ,
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where |A| denotes the Lebesgue measure of A ⊂ Rd. If, in addition, P is ergodic, then
PX (U(p, n)) is nothing but the occurence probability of the patch p in the tiling associated
with L. The following result was proved in [24] and is complementary to [25, 68]

Theorem 24 Let L be a repetitive Delone set of finite type in Rd. Let Ω its Hull and
let P be an R

d-invariant ergodic measure on Ω. Let A = C(Ω) o R
d be the corresponding

noncommutative Brillouin zone and TP the trace induced by P. Then the set of gap labels,
namely the image by TP of the K0-group of A, is the Z-module generated by the occurence
probabilities of patches.

2

5 The Quantum Hall Effect

In 1880, E.H. Hall [58] undertook the classical experiment which led to the so-called
Hall effect. A century later, von Klitzing and his co-workers [73] showed that the Hall
conductivity was quantized at very low temperatures as an integer multiple of the universal
constant e2/h. Here e is the electron charge whereas h is Planck’s constant. This is the
Integer Quantum Hall Effect (IQHE). This discovery led to a new accurate measurement
of the fine structure constant and a new definition of the standard of resistance [106].

After the works by Laughlin [78] and especially by Kohmoto, den Nijs, Nightingale and
Thouless [110] (called TKN2 below), it became clear that the quantization of the Hall
conductance at low temperature had a geometric origin. The universality of this effect
had then an explanation. Moreover, as proposed by Prange [93, 66], Thouless [109] and
Halperin [59], the Hall conductance plateaus, appearing while changing the magnetic
field or the charge-carrier density, are due to localization. Neither the original Laughlin
paper nor the TKN2 one however could give a description of both properties in the
same model. Developing a mathematical framework able to reconcile topological and
localization properties at once was a challenging problem. Attempts were made by Avron
et al. [8] who exhibited quantization but were not able to prove that these quantum
numbers were insensitive to disorder. In 1986, H. Kunz [75] went further on and managed
to prove this for disorder small enough to avoid filling the gaps between Landau levels.

However Bellissard [13, 14, 15] proposed to use the Non-Commutative Geometry of Connes
[41] to extend the TKN2 argument to the case of arbitrary magnetic field and disordered
crystal. It turned out that the condition under which plateaus occur was precisely the
finiteness of the localization length near the Fermi level. This work was rephrased later
on by Avron et al. [9] in terms of charge transport and relative index, filling the remain-
ing gap between experimental observations, theoretical intuition and the mathematical
framework. The part concerning the localization was later reconsidered by Aizenman and
Graf [3] by using more conventional tools. This Section is devoted to a review of this
work which can be found in an extended paper in [22] and in a shorter version in [17].
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5.1 Physics

The Hall effect is observed only for very thin flat conductors. Ideally it is a 2D effect. The
thinest possible type of material available at the time of Hall were gold leaves that could
be produced with thickness of few micrometers. Nowadays, using potential interface be-
tween two semiconductors, it is possible to make the electron gas exactly two-dimensional
by forcing the quantized transverse motion to its lower energy state. Let then such a
conductor be placed in a perpendicular uniform magnetic field (see Fig. 17)

+− − − − − − − − 
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+ + + +
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x

y

Figure 17: The classical Hall effect

If a constant current ~j is forced in the x direction, the electron fluid will be submitted to
the Lorentz force perpendicular to the current and the magnetic field creating an electric
field ~E along the y axis. In a stationary state, the total force acting on the charge

~Ftot = q~E +~j × ~B , q = ±e ,
vanishes leading to the relation ~j = σ~E with σ, called the conductivity tensor, is an
antidiagonal antisymmetric 2× 2 matrix with element ±σH given by

σH = ν
e2

h
, ν =

nh

eB
.

Here n is the two-dimensional density of charge carrier, h is Planck’s constant, e is the
electron charge and ν is called the filling factor. We remark that the sign of σH depends
upon the sign of the carrier charge. In particular, the orientation of the Hall field will
change when passing from electrons to holes. This observation, made already by Hall
himself in 1880, was understood only in the late twenties after the work by Sommerfeld
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on electron theory [64]. It is commonly used nowadays to determine which kind of particle
carries the current.

ν1 2 3
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Figure 18: IQHE. left: conductivity (schematic view); right: resistivity (experiment)

The quantity RH = h/e2 is called the Hall resistance. It is a universal constant with
value RH = 25812.80 Ω. RH can be measured directly with an accuracy better than
10−8 in QHE experiments. Since January 1990, this is the new standard of resistance at
the national bureau of standards [106]. As the temperature is lowered to few Kelvins,
however, the observation made of semiconductors, like MOSFET [73] or heterojunctions
[112], leads to a completely different scenario. As shown in Fig. 18, the conductivity,
expressed in units of the Hall resistance, is no longer equal to the filling factor, but is
rather a stairlike function with plateaus at integer valued. In heterojunctions, it is even
possible to observe plateaus for fractional values of the filing factors (see Fig. 19). The
relative accuracy δσH/σH of the Hall plateaus can be as low as 10−8-10−10 depending
upon the sample used for the measurement for the integer values. It goes up to 10−4

for the fraction 1/3 and higher for other observed fractions. The experiments shows also
that the direct conductivity and the direct resistivity as well, vanish on the plateaus and
are appreciable only for values of the filling factor corresponding to transition between
plateaus. That both the direct resistivity and conductivity vanish at the same time is
due to the matrix character of the conductivity tensor, the inverse of which being the
resistivity tensor. In particular

σ =

(
0 σH
−σH 0

)
⇒ ρ = σ

−1 =

(
0 −σ−1

H

σ−1
H 0

)

This experimental fact is explained in term of Anderson localization. Namely for the corre-
sponding the 2D electron gas is submitted to a random potential created by the impurities
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Figure 19: FQHE: fractional plateaus of the resistivity (taken from [116])

used for doping the system. Without such a potential, the one-particle Hamiltonian would
be the Landau model of the free electron in a uniform magnetic field [77]

HL =
(~P − q ~A)2

2m∗
,

were q = ±e is the charge of the carrier, m∗ its effective mass, ~P is its momentum operator
while ~A = (A1, A2) is the vector potential defined by ∂1A2 − ∂2A1 = B. It is well known
that the spectrum of HL is given by the Landau levels

En = ~ωc(n+
1

2
) , ωc =

qB

m
n = 0, 1, 2, · · ·

Each of these levels has an infinite degeneracy in the infinite volume limit, corresponding
to a degeneracy per unit area equal to g = eB/h. This number can be intuitively computed
as follows: the total number of states available in a large surface of area S is Φ/Sφ0 if
Φ = BS is the total flux through this surface, while φo = h/e is the flux quantum. Hence
the filling factor is the ratio ν = n/g of the actual number of electrons et the number of
available states in one Landau level. Thus it gives the fraction of the Landau levels that
is filled by electrons.
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Figure 20: Schematic view of the DOS in the quantum Hall regime

When the disorder potential is turned on, the Landau levels split into large overlaping
bands. This gives a density of states (DOS) of the form schematically given in Fig. 20.
It shows that the spectrum has no gap. But away from the Landau levels, the states are
localized. This has been proved rigorously both for the lattice models [20] and the Landau
model with disorder [10, 113]. Actually, from the renormalization group technics [1] it is
expected that all states are localized in the infinite volume limit, but that the localization
length diverges at the Landau levels [34]. Since the electron gas obeys Fermi’s statistics,
at zero temperature all states of lowest energy are occupied up to a maximum value EF

called the Fermi level. It is possible to vary the relative position of EF either by changing
the charge carrier density n, or by modifying the magnetic field B. Since both parameters
arises through the filling factor, changing ν is equivalent to change EF . Since, in addition
there is no spectral gap, the relation EF = f(ν) is monotonous. Hence, as long as EF

stays in a region of localized states, the current cannot change, explaining why there are
plateaux of the conductivity. This explanation must be supplemented by a more serious
mathematical proof which is explained in the following Sections. However, this argument
does not explain why the plateaus occur precisely at the integers. This is related to a
topological invariant that cannot be expressed in term of usual Geometry, but which is
the noncommutative analog of a Chern number.

5.2 The Chern-Kubo formula

Since the seminal paper by Laughlin [79], it is generally accepted that the fractional
quantum Hall effect (FQHE) is due to interactions between the charge carriers, creating
a new type of groundstate. It is also clear from the experimental observations, that
interactions can more or less be ignored for Landau level with quantum numbers n > 2.
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Hence, if the Coulomb interaction between particles is ignored, the charge carrier fermion
fluid is entirely described by the one-particle theory. The quantum motion can be derived
from the Hamiltonian of the system. A typical example of one-particle Hamiltonian
involved in the QHE for spinless particles, is given by

Hω =
(~P − q ~A)2

2m∗
+ Vω(~x) , (37)

where Vω(~x) describes the potential created by disorder in the Hall bar. Here ω, which
denotes the configuration of disorder, can be seen as a point of the Hull Ω associated with
the sublattice of impurities. Then the covariance condition Vω(~x−~a) = VT~aω(~x) expresses
that moving the sample or changing the reference axis backward are equivalent. Such
a model is typical, and is actually accurate for semiconductors. But it may be replaced
by others, such as lattice approximants, or particle with spin. In any case, the one-
particle Hamiltonian describing the fermion fluid becomes affiliated to (see Definition 7)
the C∗-algebra A = C(Ω o R2, B) (see Definition 6).

Standard results in transport theory permit to compute the conductivity in term of the
linear response of the fermion fluid under the influence of an external field. This is the
famous Green-Kubo formula. In the QHE-limit, namely in the limit of (i) zero temper-
ature, (ii) infinite sample size, (iii) negligible collision processes, (iv) vanishingly small
electric fields, the direct conductivity either vanishes or is infinite, whereas the transverse
conductivity, when defined, is given by [110, 22]

σH =
e2

h
Ch(PF ) =

e2

h
2ıπ TP(PF [∂1PF , ∂2PF ]) . (38)

It turns out that Ch is nothing but the non commutative analog of a Chern character.
Thus Kubo’s formula gives rise to a Chern character in the QHE limit. This is why
eq (38) can be called the Kubo-Chern formula, associating Japan with China. The main
properties of the non commutative Chern character are the following [41]

(i) homotopy invariance: given two equivalent C1 projections P and Q in A, namely such
that there is U ∈ C1(A) with P = U∗U and Q = UU∗, then Ch(P ) = Ch(Q). This
is actually what happens if P and Q are homotopic in C1(A).

(ii) additivity: given two C1 orthogonal projections P and Q in A, namely such that
PQ = QP = 0 then Ch(P ⊕Q) = Ch(P ) + Ch(Q).

In particular, the homotopy invariance shows that Ch(PF ), when it is defined, is a topo-
logical quantum number. One of the main results of Noncommutative Geometry is that
this Chern character is an integer provide it is well defined. Thus, thanks to eq. (38) the
Hall conductance is quantized. It will be shown in Section 5.4 that this Chern character
is well defined precisely whenever the Fermi level lies in a region of localized states. More-
over changing the value of the filling factor produces the moving of the Fermi level, which
does not change the Chern character as long as the localization length stay bounded.
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5.3 The Four Traces Way

In this section four different traces will be defined and used. They are technically needed
to express the complete results of this theory. The first one is the usual trace Tr on
matrices or on trace-class operators. The second one, introduced in Section 2.6, eq. (17),
is the trace per unit volume TP attached to an R2-invariant probability measure P on
the Hull. The third one TrS is the graded trace or supertrace introduced in this Section
below. This is the first technical tool proposed by A. Connes [38, 41] to define the cyclic
cohomology and constitutes the first important step in proving quantization of the Hall
conductance [14]. The last one is the Dixmier trace TrDix defined by Dixmier in 1964 [45]
and of which the importance for Quantum Differential Calculus was emphasized by A.
Connes [39, 40, 41]. It will be used in connection with Anderson’s localization.

Let H be the physical one-particle Hilbert space of Section 2.6 namely L2(R2). In the
language of Noncommutative Geometry, H can be seen as the space of sections of a
hermitian vector bundle over the noncommutative Brillouin zone. Following Atiyah’s
proof of the Index theorem, through the Dirac operator [7], it is convenient to introduced
a spin bundle (a similar construction has been proposed in Section 2.6). Practically, here,
this is done through the new Hilbert space Ĥ = H+ ⊕ H− with H± = H. A grading
operator Ĝ and the (longitudinal) Dirac operator D are defined as follows:

Ĝ =

(
+1 0
0 −1

)
, D =

(
0 X
X 0

)
, F =

(
0 X

|X|
X
|X|

0

)
, (39)

where X = X1 + ıX2 (here the dimension is d = 2). It is clear that D is selfadjoint
and satisfies D2 = X21. Moreover F is the phase of D, namely F = D|D|−1. Then
F = F ∗ and F 2 = 1. A bounded operator T acting on Ĥ will said to have degree 0 if it
commutes with Ĝ and of degree 1 if it anticommutes with Ĝ. The graded commutator
(or supercommutator) of two operators and the graded differential dT are defined by

[T, T ′]S = TT ′ − (−)deg(T )deg(T ′)T ′T , dT = [F, T ]S .

Then, d2T = 0. The graded trace TrS (or supertrace) is defined by

TrS(T ) =
1

2
TrĤ(ĜF [F, T ]S) = TrH(T++ − uT−−u) , (40)

where u = X/|X| and T++ and T−− are the diagonal components of T with respect
to the decomposition of Ĥ. It is a linear map on the algebra of operators such that
TrS(TT

′) = TrS(T
′T ). However, this trace is not positive. Observables in A will become

operators of degree 0, namely A ∈ A will be represented by Âω = Aω ⊕ Aω.
Given a Hilbert space H, the characteristic values µ1, . . . , µn, . . . of a compact operator T
are the eigenvalues of |T | = (TT ∗)1/2 labeled in the decreasing order. The Mačaev ideals
Lp+(H)is the set of compact operators on H with characteritic values satisfying
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‖T‖p+ = sup
N→∞

1

lnN

N∑

n=1

µpn < ∞ .

Let Lim be a positive linear functional on the space of bounded sequences l∞+ (N) of positive
real numbers which is translation and scale invariant. For T ∈ L1+(H) its Dixmier trace
is defined by

TrDix(T ) = Lim(
1

lnN

N∑

n=1

µn) .

Clearly, T ∈ L1+ if and only if TrDix(|T |) < ∞ and if the sequence ( 1
lnN

∑N
n=1 µn) con-

verges, then all functionals Lim of the sequence are equal to the limit and the Dixmier
trace is given by this limit. From this definition, it can be shown that TrDix is a trace
[45, 41].

The first important result is provided by a formula that was suggested by a result of A.
Connes [39]. Namely if A ∈ C1(A) and if ~∇ = (∂1, ∂2) [22]:

TP(|~∇A|2) =
1

π
TrDix(|dAω|2) , for P-almost all ω . (41)

Let now S denote the closure of C1(A) under the noncommutative Sobolev norm ‖A‖2S =

TP(A
∗A) + TP(~∇A∗~∇A). The eq. (41) shows that for any element A ∈ S, dAω belongs to

L2+(Ĥ), P-almost surely. In what follows, L∞(A, TP) denotes the weak closure of A in
the GNS-representation with respect to TP (see Section 2.6).

The following formula, valid for A0, A1, A2 ∈ C1(A), is the next important result proved
in [38, 14, 9, 22]:

∫

Ω

dP(ω)TrS(Â0,ωdÂ1,ωdÂ2,ω) = 2ıπTP(A0∂1A1∂2A2 − A0∂2A1∂1A2) . (42)

This formula actually extends to Ai ∈ L∞(A, TP) ∩ S. For indeed, the right hand side is
well defined by the Cauchy-Schwartz inequality. On the other hand, thanks to eq. (41),
dÂi,ω ∈ L2+ ⊂ L3(Ĥ), if Lp(H) denotes the Schatten ideal of compact operators T on
H with traceclass |T |p. Then the integrand occuring under the integral of the left hand

side can be written as TrĤ(ĜFdÂ0,ωdÂ1,ωdÂ2,ω) which is well defined, thanks to Hölder’s
inequality.

Applying these formulæ to the Fermi projection, the Chern character Ch(PF ) is well
defined provide PF ∈ S and

Ch(PF ) =

∫

Ω

dP(ω)TrS(P̂F,ωdP̂F,ωdP̂F,ω) . (43)
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The last step is a consequence of the Calderón-Fedosov formula [32, 50] namely the oper-
ator PωF

+−|PωH−
is Fredholm and its index is an integer given by:

n(ω) = Ind(PωF
+−|PωH−

) = TrS(P̂F,ωdP̂F,ωdP̂F,ω) . (44)

It remains to show that this index is P-almost surely constant. By the covariance condition
PTaωF

+−|PTaωH−
and PωT (a)−1F+−T (a)|PωH−

are unitarily equivalent, so that they have
same Fredholm index. Moreover PωT (a)−1F+−T (a)|PωH−

− PωF
+−|PωH−

is easily seen
to be compact so that PTaωF

+−|PTaωH−
have the same index as PωF

+−|PωH−
. In other

words, n(ω) is a R
2-invariant function of ω. The probability P being R

2-invariant and
ergodic, n(ω) is P-almost surely constant. Consequently, since F+− = u, if PF ∈ S :

Ch(PF ) = Ind(PF,ωu|PF,ωH) ∈ Z , P-almost surely .

In [9], Avron et al. showed that this index can also be interpreted as

Ind(PF,ωu|PF,ωH) = TrH
(
(uPF,ωu

−1 − PF,ω)3
)
,

The right hand side is called the relative index of uPF,ωu
−1 and PF,ω. It represents the

variation of the dimension of the projector PF,ω when the unitary transformation u is
applied. It turns out that u = X/|X| is exactly the (singular) gauge transformation
applied to the original Hamiltonian whenever an infinitely flux tube is pierced at the
origin and the flux is adiabatically increased from 0 to one flux quantum. Laughlin [78]
argued that this number is exactly the number of charges that are sent to infinity under
this adiabatic transformation.

5.4 Localization

It remains to show how the condition PF ∈ S is related to the Anderson localization. The
easiest way to define the localization length consists in measuring the averaged square
displacement of a wave packets on the long run. Let ∆ ⊂ R be an interval. Let P∆ be the
eigenprojection of the Hamiltonian corresponding to energies in ∆. If X is the position
operator, let X∆,ω(t) = e

ı
~
HωtP∆,ωXP∆,ωe

− ı
~
Hωt. The ∆-localization length is defined as:

l2(∆) = lim sup
T→∞

∫ T

0

dt

T

∫

Ω

dP(ω) < 0|(X∆,ω(t)−X∆,ω(0))2|0 > .

It is shown in [22] that, equivalently,

l2(∆) = lim sup
T→∞

∫ T

0

dt

T
TP(|~∇(e−

ı
~
HtP∆)|2) (45)

= sup
P

∑

∆′∈P

TP(|~∇P∆′|2) . (46)
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where P runs in the set of finite partitions of ∆ by Borel subsets. Moreover [22]

Theorem 25 If `2(∆) <∞, then the spectrum of Hω is pure point in ∆, P-almost surely.

The density of states is the positive measure N on R defined by
∫

R
dN (E)f(E) =

TP(f(H)) (see eq. (22)) for f a continuous function with compact support. It turns
out [22] that if l2(∆) < ∞, there is a positive N -square integrable function ` on ∆ such
that

l2(∆′) =

∫

∆′

dN (E) l(E)2 , (47)

for any subinterval ∆′ of ∆. Then, `(E) is the localization length at energy E.

Thanks to eq. (46), (47) the finiteness of the localization length in the interval ∆ implies
that [22]

(i) PF ∈ S whenever the Fermi level EF lies in ∆,

(ii) EF ∈ ∆ 7→ PF ∈ S is continuous (for the Sobolev norm) at every regularity point of
N .

(iii) Ch(PF ) is constant on ∆, leading to existence of plateaus for the transverse con-
ductivity.

(iv) If the Hamiltonian is changed continuously (in the norm resolvent topology), Ch(PF )
stay constant as long as the localization length remains finite at the Fermi level.

As a Corollary, between two Hall plateaus with different indices, the localization length
must diverge [59, 75, 34]. The reader will find in [22] how to compute practically the Hall
index using homotopy (property (iv)) and explicit calculation for simple models.
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Lecture Notes in Mathematics, 725, pp. 19-143, Springer, Berlin (1979).

[37] A. Connes, An analog of the Thom isomorphism for crossed products of a C∗-algebra
by an action of R, Adv. Math., 39, 31-55, (1981).

[38] A. Connes, Non-commutative differential geometry, Publ. I.H.É.S., 62, 257-360,
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