
Non-Commutative Geometry and Quantum HallE�ect �J. Bellissard yUniversit�e Paul Sabatier, Toulouse, France zApril 9, 2002AbstractAmathematical framework based on Non-Commutative Geometry is pro-posed to described the Integer Quantum Hall E�ect. It takes localizatione�ects into account. It permits to prove rigorously that the Hall conductiv-ity is quantized and that plateaus occur when the Fermi energy varies in aregion of localized states.1 IntroductionIn 1880, E.H. Hall [14] undertook the classical experiment which led to the so-calledHall e�ect. A century later, von Klitzing and his co-workers [17] showed that theHall conductivity was quantized at very low temperatures as an integer multipleof the universal constant e2=h. Here e is the electron charge whereas h is Planck'sconstant. This is the Integer Quantum Hall E�ect (IQHE). This discovery led toa new accurate measurement of the �ne structure constant and a new de�nitionof the standard of resistance [21].On the other hand, during the seventies, A. Connes [8, 10] extended most ofthe tools of di�erential geometry to non-commutative C�-algebras, thus creatinga new branch of mathematics called Non-Commutative Geometry. The main newresult obtained in this �eld was the de�nition of cyclic cohomology and the proof ofan index theorem for elliptic operators on a foliated manifold. He recently extendedthis theory to what is now called Quantum Calculus [11].After the works by Laughlin [19] and especially by Kohmoto, den Nijs,Nightingale and Thouless [23] (called TKN2 below), it became clear that thequantization of the Hall conductance at low temperature had a geometric origin.�Talk given at the International Conference of Matnematics, Zurich, August 3rd 1994ye-mail: jeanbel@siberia.ups-tlse.frzURA 505, CNRS and Laboratoire de Physique Quantique, 118, Route de Narbonne, 31062-Toulouse Cedex, France 1



The universality of this e�ect had then an explanation. Moreover, as proposed byPrange [20, 16], Thouless [22] and Halperin [15], the Hall conductance plateaus,appearing while changing the magnetic �eld or the charge-carrier density, are dueto localization. Neither the original Laughlin paper nor the TKN2 one howevercould give a description of both properties in the same model. Developing a mathe-matical framework able to reconcile topological and localization properties at oncewas a challenging problem. Attempts were made by Avron et al. [2] who exhibitedquantization but were not able to prove that these quantum numbers were insen-sitive to disorder. In 1986, H. Kunz [18] went further on and managed to provethis for disorder small enough to avoid �lling the gaps between Landau levels.But in [3, 5, 4], we proposed to use Non-Commutative Geometry to extendthe TKN2 argument to the case of arbitrary magnetic �eld and disordered crystal.It turned out that the condition under which plateaus occur was precisely the�niteness of the localization length near the Fermi level. This work was rephrasedlater on by Avron et al. [1] in terms of charge transport and relative index, �llingthe remaining gap between experimental observations, theoretical intuition andmathematical frame.It is our aim in this talk to describe the main steps of this construction. Thereader interested by details of the physical phenomena or of the mathematicalproofs is kindly invited to look into the recent work [7].Acknowledgements. This work has bene�ted from many contacts during the lastten years. It is almost impossible to give the list of all colleagues who contributedto these discussions. I want to address my special thanks to Alain Connes for hisoutstanding contribution, continuous support and warm encouragements. Also Iwant to acknowledge Y. Avron, R. Seiler, B. Simon, have been for their constantinterest in shading light on this di�cult subject. Let me thank my recent and youngcollaborators Hermann Schulz-Baldes and Andreas van Elst, whose enthusiasm andcompetence permitted to write the main report which is the basis of this work.2 IQHE: experiments and theoriesLet us consider a very 
at conductor, considered as two-dimensional, placed in aconstant uniform magnetic �eld B in the z direction perpendicular to the planeOxy of the plate (see Fig.1). If we force a constant current ~j in the x direction, theelectron 
uid will be submitted to the Lorentz force perpendicular to the currentand the magnetic �eld creating an electric �eld ~E along the y axis. In a stationarystate, writing that the total force acting on the charge vanishes leads to the relation~j = �~E with a 2�2 antidiagonal antisymmetric matrix with matrix element ��Hgiven by �H = � e2h , � = nheB ,where n is the two-dimensional density of charge carriers, h is Planck's constant,2
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Figure 1: The classical Hall e�ect: the sample is a thin metallic plate of width �.The magnetic �eld is uniform and perpendicular to the plate. The current density~j parallel to the x-axis is stationary. The magnetic �eld pushes the charges asindicated creating the electric �eld ~E along the y direction. The Hall voltage ismeasured between opposite sides along the y-axise is the electron charge and � is called the �lling factor. We remark that the signof �H depends upon the sign of the carrier charge. In particular, the orientation ofthe Hall �eld will change when passing from electrons to holes. This observation iscommonly used nowadays to determine which kind of particles carries the current.The quantity RH = h=e2 is called the Hall resistance. It is a universal constantwith value RH = 25812:80
.RH can be measured directly with an accuracy betterthan 10�8 in QHE experiments. Since January 1990, this is the new standard ofresistance at the national bureau of standards [21].Lowering the temperature below 1K leads to the observation of plateaus for integervalues of the Hall conductance (see Fig.2). The accuracy of the Hall conductanceon the plateaus is better than 10�8. For values of the �lling factor correspondingto the plateaus, the direct conductivity �==, namely the conductivity along thecurrent density axis, vanishes: the sample becomes insulating. To summarize:(i) At very low temperature, in the limit of large sample size, and provided thesystem can be considered as two-dimensional, Hall plateaus appear at integervalues of the Hall conductance in unit of the inverse Hall resistance.(ii) On plateaus the sample is an insulator. This is due to disorder in the samplewhich produce the localization of charge carriers wave functions.(iii) for the Hall plateaus with large index (namely indices � 2) one can ignorethe Coulomb interaction between charge carriers without too much error.
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Figure 2: Schematic representation of the experimental observations in the IQHE.The Hall conductivity �H is drawn in units of e2=h versus �lling factor �. Thedashed line shows the Hall conductivity of the Landau Hamiltonian without dis-order. The direct conductivity �== is shown in arbitrary units.3 The Kubo-Chern formulaSince we can ignore Coulomb interactions between particles, the fermion 
uidmade of the charge carriers is entirely described by the one-particle theory. Thequantum motion can be derived from the data of a self adjoint operator called theHamiltonian of the system. A typical example of one-particle Hamiltonian involvedin the QHE for spinless particles, is given byH! = (~P + e ~A)22m� + V!(~x) , (1)where where ~P is the 2D momentum operator and m� is the e�ective mass of theparticle, ~A = (A1; A2) is the vector potential given by the magnetic �eld whileV!(~x) describes the potential created by disorder in the plate. Here !, which de-notes the con�guration of disorder, can be seen as a point in a compact metrizableHausdor� space 
 on which the translation group R2 acts by homeomorphisms.Then the covariance condition V!(~x � ~a) = VT~a!(~x) expresses that moving thesample or changing the reference axis backward are equivalent.Such a model is typical but may be replaced by others, such as lattice approx-imants, or particle with spin. In any cases, the one-particle Hamiltonian describingthe fermion 
uid satis�es the following general properties:(i) The translation group G acting on the sample is R2 or Z2. It acts by home-omorphism T a; a 2 G on the space 
 of the disorder con�gurations. It also4



acts by unitary projective representation T (a); a 2 G, on the one-particleHilbert space H.(ii) The one-particle Hamiltonian is a norm resolvent strongly continuous family(H!)!2
 of selfadjoint operators on H, bounded from below and satisfyingthe covariance condition T (a)H!T (a)�1 = HTa!.Such Hamiltonian actually generalizes the case of a periodic operator, namelythe case for which there is a su�ciently large discrete subgroup of G leaving theHamiltonian invariant. In this latter case, the Bloch theorem permits to describethe quantum motion in term of quasi-momenta k belonging to the so-called Bril-louin zone, which is a manifold di�eomorphic to a torus. Both magnetic �eld anddisorder break this translation symmetry in a non trivial way, so that the notionof Brillouin becomes meaningless in the classical sense. Actually it is still possibleto describe such a manifold in term of Non Commutative Geometry, by replacingthe algebra of continuous functions over the Brillouin zone by a Non CommutativeC�-algebra. In our case this C�-algebra is nothing but the one generated by thebounded functions of the H!'s, ! 2 
. It turns out that it is a closed subalgebra ofthe twist crossed product A = C�(
;G; B) = C(
)�B G [6] where the product istwisted by a module de�ned by the magnetic �eld. A di�erential and integral cal-culus exists on such an algebra making it a non commutative di�erential manifoldthat we have proposed to called the Non Commutative Brillouin zone. More pre-cisely in our two dimensional situation, we can de�ne two derivations @i (i = 1; 2)through using the position operators Xi; i = 1; 2 as(@iA)! = {[Xi; A! ] , A 2 A .Thus C1 elements of A are well de�ned.The integral depends upon the choice of a G-invariant ergodic probability Pon 
. It is then given by the trace per unit area TP namelyTP (A) = lim�"G 1j�jTr�(A!) , A 2 A , for P-almost all !'s (2)where � denotes a sequence of squares in G centered at the origin and covering Gand Tr� is the restriction to � of the usual trace.Due to the Fermi statistics obeyed by the charge carriers (electrons or holes), twodi�erent particles of the 
uid must occupy di�erent quantum eigenstates of theHamiltonian H!. In the limit of zero temperature they occupy the levels of lowestenergy, namely all eigenstates with energy lower than some maximal one EF calledthe Fermi level. We will denote by PF;! the corresponding eigenprojection of theHamiltonian.Standard results in transport theory permit to compute the conductivity interm of the linear response of the fermion 
uid under the in
uence of an external�eld. This is the famousGreen-Kubo formula. In the QHE-limit, namely in the limitof (i) zero temperature, (ii) in�nite sample size, (iii) negligible collision processes,5



(iv) vanishingly small electric �elds, the direct conductivity either vanishes or isin�nite, whereas the transverse conductivity, when de�ned, is given by�H = e2h Ch(PF ) = e2h 2{� TP (PF [@1PF ; @2PF ]) . (3)It turns out that Ch is nothing but the non commutative analog of a Cherncharacter. Thus Kubo's formula gives rise to a Chern character in the QHE limit.This is why we propose to call eq (3) the Kubo-Chern formula, associating Japanwith China.The main properties of the non commutative Chern character are the follow-ing(i) homotopy invariance: given two equivalent C1 projections P and Q in A,namely such that there is U 2 C1(A) with P = U�U and Q = UU�, thenCh(P ) = Ch(Q). This is actually what happens if P and Q are homotopicin C1(A).(ii) additivity: given two C1 orthogonal projections P and Q in A, namely suchthat PQ = QP = 0 then Ch(P �Q) = Ch(P ) +Ch(Q).In particular, the homotopy invariance shows that Ch(PF ), when it is de�ned,is a topological quantum number. One of the main results of Non CommutativeGeometry is that this Chern character is an integer provide it is well de�ned. Thusthank to eq. (3) we get the Hall conductance quantization. We will see in Section 5below that this Chern character is well de�ned precisely whenever the Fermi levellies in a region of localized states. Moreover changing the value of the �lling factorproduces the moving of the Fermi level, which does not change the Chern characteras long as the localization length stay bounded.4 The four traces wayIn this section we use four di�erent traces that are technically needed to expressthe complete results of this theory. The �rst one is the usual trace on matrices oron trace-class operators. The second one, introduced in the Section 3 above, is thetrace per unit volume. The third one is the graded trace or supertrace introducedin this Section below. This is the �rst technical tool proposed by A. Connes [8] tode�ne the cyclic cohomology and constitutes the �rst important step in provingquantization of the Hall conductance [4]. The last one is the Dixmier trace de�nedby Dixmier in 1964 [12] and of which the importance for Quantum Di�erentialCalculus was emphasized by A. Connes [9, 10, 11]. It will be used in connectionwith Anderson's localization.Let H be the physical one-particle Hilbert space of Section 3. We then built thenew Hilbert space Ĥ = H+ �H� with H� = H. The grading operator Ĝ and the\Hilbert transform" F are de�ned as follows:6



Ĝ = � +1 00 �1 � , F =  0 XjXjXjXj 0 ! , (4)where X = X1+ {X2 (here the dimension is D = 2). It is clear that F is selfadjointand satis�es F 2 = 1. An operator T on Ĥ will said to be of degree 0 if it commuteswith Ĝ and of degree 1 if it anticommutes with Ĝ. The graded commutator (orsupercommutator) of two operators and the graded di�erential dT are de�ned by[T; T 0]S = TT 0 � (�)deg(T )deg(T 0)T 0T , dT = [F; T ]S .Then, d2T = 0. The graded trace TrS (or supertrace) is de�ned byTrS(T ) = 12TrĤ(ĜF [F; T ]S) = TrH(T++ � uT��u) , (5)where u = X=jX j and T++ and T�� are the diagonal components of T with respectto the decomposition of Ĥ. It is a linear map on the algebra of operators such thatTrS(TT 0) = TrS(T 0T ). However, this trace is not positive. Observables in A willbecome operators of degree 0, namely A 2 A will be represented by Â! = A!�A!.Given a Hilbert space H, the characteristic values �1; : : : ; �n; : : : of a compactoperator T are the eigenvalues of jT j = (TT �)1=2 labeled in the decreasing order.The Ma�caev ideals Lp+(H)is the set of compact operators on H with characteriticvalues satisfying kTkp+ = supN!1 1lnN NXn=1�pn < 1 .Let Lim be a positive linear functional on the space of bounded sequences l1+ (N)of positive real numbers which is translation and scale invariant. For T 2 L1+(H)its Dixmier trace is de�ned byTrDix(T ) = Lim( 1lnN NXn=1�n) .Remark that T 2 L1+ if and only if TrDix(jT j) < 1. Moreover, if the sequence( 1lnN PNn=1 �n) converges, then all functionals Lim of the sequence are equal tothe limit and the Dixmier trace is given by this limit. From this de�nition, onecan show that TrDix is a trace [12, 11].The �rst important result is provided by a formula that was suggested by a resultof A. Connes [9]. Namely if A 2 C1(A) and if ~r = (@1; @2) we have [7]:TP (j~rAj2) = 1�TrDix(jdA!j2) , for P-almost all ! . (6)Let now S denote the closure of C1(A) under the non commutative Sobolev normkAk2S = TP (A�A) + TP (~rA�~rA). The eq. (6) shows that for any element A 2 S,dA! belongs to L2+(Ĥ) P-almost surely.7



The following formula, valid for A0; A1; A2 2 C1(A), is the next important resultproved in [8, 4, 1, 7]:Z
 dP(!)TrS(Â0;!dÂ1;!dÂ2;!) = 2{�TP (A0@1A1@2A2 �A0@2A1@1A2) . (7)Thanks to eq. (6) this formula extends to Ai 2 S.Applying these formul� to the Fermi projection, the Chern character Ch(PF ) iswell de�ned provide PF 2 S andCh(PF ) = Z
 dP(!)TrS(P̂F;!dP̂F;!dP̂F;!) . (8)The last step is a consequence of the Fedosov formula [13] namely the operatorP!F+�jP!H� is Fredholm and its index is an integer given by:n(!) = Ind(P!F+�jP!H�) = TrS(P̂F;!dP̂F;!dP̂F;!) . (9)It remains to show that this index is P-almost surely constant. By the covariancecondition PTa!F+�jPTa!H� and P!T (a)�1F+�T (a)jP!H� are unitarily equiva-lent, so that they have same Fredholm index. Moreover P!T (a)�1F+�T (a)jP!H��P!F+�jP!H� is easily seen to be compact so that PTa!F+�jPTa!H� have the sameindex as P!F+�jP!H� . In other words, n(!) is a G-invariant function of !. Theprobability P being G-invariant and ergodic, n(!) is P-almost surely constant.Consequently, since F+� = u, if PF 2 S :Ch(PF ) = Ind(PF;!ujPF;!H) 2 Z , P-almost surely .5 LocalizationIt remains to show how the condition PF 2 S is related to the Anderson's lo-calization. The easiest way to de�ne the localization length consist in measur-ing averaged square displacement of a wave packets on the long run. Let �be an interval. We denote by P� the eigenprojection of the Hamiltonian cor-responding to energies in �. Then, if X is the position operator in G we setX�;!(t) = e {�hH!tP�;!XP�;!e� {�hH!t. Then we de�ne the �-localization length as:l2(�) = lim supT!1 Z T0 dtT Z
 dP(!) < 0j(X�;!(t)�X�;!(0))2j0 > .In [7] we have shown that equivalently
8



l2(�) = lim supT!1 Z T0 dtT TP (j~r(e� {�hHtP�)j2) (10)= supP X�02P TP (j~rP�0 j2) . (11)where P runs in the set of �nite partitions of � by Borel subsets. Moreover wehave also shown [7] that `2(�) <1 implies that the spectrum of H! is pure pointin �, P-almost surely.The density of states is the positive measure N on R de�ned by RR dN (E)f(E) =TP (f(H)) for f a continuous function with compact support. It turns out [7] thatif l2(�) < 1 one can �nd a positive N -square integrable function ` on � suchthat l2(�0) = Z�0 dN (E) l(E)2 , (12)for any subinterval �0 of �. We propose to call `(E) the localization length atenergy E.We can now conclude. Thanks to eq. (11) the �niteness of the localization lengthin the interval � implies that [7](i) PF 2 S whenever the Fermi level EF lies in �,(ii) EF 2 � 7! PF 2 S is continuous (for the Sobolev norm) at every regularitypoint of N .(iii) Ch(PF ) is constant on �, leading to existence of plateaus for the transverseconductivity.(iv) If the Hamiltonian is changed continuously (in the norm resolvent topology),Ch(PF ) stay constant as long as the localization length remains �nite at theFermi level.As a Corollary, we notice that between two Hall plateaus with di�erent indices,the localization length must diverge [15, 18]. The reader will �nd in [7] how tocompute practically the Hall index using homotopy (property (iv)) and explicitcalculation for simple models.References[1] J.E. Avron, R. Seiler, B. Simon, Charge de�ciency, charge transportand comparison of dimensions, Commun. Math. Phys. 159, 399 (1994).[2] J.E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett 51, 51 (1983).9
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