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Abstract

A mathematical framework based on Non-Commutative Geometry is pro-
posed to described the Integer Quantum Hall Effect. It takes localization
effects into account. It permits to prove rigorously that the Hall conductiv-
ity is quantized and that plateaus occur when the Fermi energy varies in a
region of localized states.

1 Introduction

In 1880, E.H. Hall [14] undertook the classical experiment which led to the so-called
Hall effect. A century later, von Klitzing and his co-workers [17] showed that the
Hall conductivity was quantized at very low temperatures as an integer multiple
of the universal constant e?/h. Here e is the electron charge whereas h is Planck’s
constant. This is the Integer Quantum Hall Effect (IQHE). This discovery led to
a new accurate measurement of the fine structure constant and a new definition
of the standard of resistance [21].

On the other hand, during the seventies, A. Connes [8, 10] extended most of
the tools of differential geometry to non-commutative C*-algebras, thus creating
a new branch of mathematics called Non-Commutative Geometry. The main new
result obtained in this field was the definition of cyclic cohomology and the proof of
an index theorem for elliptic operators on a foliated manifold. He recently extended
this theory to what is now called Quantum Calculus [11].

After the works by Laughlin [19] and especially by Kohmoto, den Nijs,
Nightingale and Thouless [23] (called TK Ny below), it became clear that the
quantization of the Hall conductance at low temperature had a geometric origin.
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The universality of this effect had then an explanation. Moreover, as proposed by
Prange [20, 16], Thouless [22] and Halperin [15], the Hall conductance plateaus,
appearing while changing the magnetic field or the charge-carrier density, are due
to localization. Neither the original Laughlin paper nor the TK N, one however
could give a description of both properties in the same model. Developing a mathe-
matical framework able to reconcile topological and localization properties at once
was a challenging problem. Attempts were made by Avron et al. [2] who exhibited
quantization but were not able to prove that these quantum numbers were insen-
sitive to disorder. In 1986, H. Kunz [18] went further on and managed to prove
this for disorder small enough to avoid filling the gaps between Landau levels.

But in [3, 5, 4], we proposed to use Non-Commutative Geometry to extend
the T K N, argument to the case of arbitrary magnetic field and disordered crystal.
It turned out that the condition under which plateaus occur was precisely the
finiteness of the localization length near the Fermi level. This work was rephrased
later on by Avron et al. [1] in terms of charge transport and relative index, filling
the remaining gap between experimental observations, theoretical intuition and
mathematical frame.

It is our aim in this talk to describe the main steps of this construction. The
reader interested by details of the physical phenomena or of the mathematical
proofs is kindly invited to look into the recent work [7].
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2 IQHE: experiments and theories

Let us consider a very flat conductor, considered as two-dimensional, placed in a
constant uniform magnetic field B in the z direction perpendicular to the plane
Ozy of the plate (see Fig.1). If we force a constant current j in the z direction, the
electron fluid will be submitted to the Lorentz force perpendicular to the current
and the magnetic field creating an electric field £ along the y axis. In a stationary
state, writing that the total force acting on the charge vanishes leads to the relation
f = o€ with a2x2 antidiagonal antisymmetric matrix with matrix element +og
given by

€2 nh
OH = V— V= —
) eB,

where n is the two-dimensional density of charge carriers, h is Planck’s constant,
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Figure 1: The classical Hall effect: the sample is a thin metallic plate of width d.
The magnetic field is uniform and perpendicular to the plate. The current density
j parallel to the wx-axis is stationary. The magnetic field pushes the charges as

indicated creating the electric field g along the y direction. The Hall voltage is
measured between opposite sides along the y-axis

e is the electron charge and v is called the filling factor. We remark that the sign
of o depends upon the sign of the carrier charge. In particular, the orientation of
the Hall field will change when passing from electrons to holes. This observation is
commonly used nowadays to determine which kind of particles carries the current.
The quantity Ry = h/e? is called the Hall resistance. It is a universal constant
with value Ry = 25812.80f2. Ry can be measured directly with an accuracy better
than 10~® in QHE experiments. Since January 1990, this is the new standard of
resistance at the national bureau of standards [21].

Lowering the temperature below 1K leads to the observation of plateaus for integer
values of the Hall conductance (see Fig.2). The accuracy of the Hall conductance
on the plateaus is better than 1078, For values of the filling factor corresponding
to the plateaus, the direct conductivity o,,, namely the conductivity along the
current density axis, vanishes: the sample becomes insulating. To summarize:

(1) At very low temperature, in the limit of large sample size, and provided the
system can be considered as two-dimensional, Hall plateaus appear at integer
values of the Hall conductance in unit of the inverse Hall resistance.

(ii) On plateaus the sample is an insulator. This is due to disorder in the sample
which produce the localization of charge carriers wave functions.

(iii) for the Hall plateaus with large index (namely indices > 2) one can ignore
the Coulomb interaction between charge carriers without too much error.
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Figure 2: Schematic representation of the experimental observations in the IQHE.
The Hall conductivity oy is drawn in units of e?/h versus filling factor v. The
dashed line shows the Hall conductivity of the Landau Hamiltonian without dis-
order. The direct conductivity o,, is shown in arbitrary units.

3 The Kubo-Chern formula

Since we can ignore Coulomb interactions between particles, the fermion fluid
made of the charge carriers is entirely described by the one-particle theory. The
quantum motion can be derived from the data of a self adjoint operator called the
Hamiltonian of the system. A typical example of one-particle Hamiltonian involved
in the QHE for spinless particles, is given by

(P + eA)?

H, =
2m

+ V(@) (1)
where where P is the 2D momentum operator and m, is the effective mass of the
particle, A = (A, Ay) is the vector potential given by the magnetic field while
V., (Z) describes the potential created by disorder in the plate. Here w, which de-
notes the configuration of disorder, can be seen as a point in a compact metrizable
Hausdorff space Q on which the translation group R? acts by homeomorphisms.
Then the covariance condition V,(Z — @) = Vpa, (Z) expresses that moving the
sample or changing the reference axis backward are equivalent.

Such a model is typical but may be replaced by others, such as lattice approx-
imants, or particle with spin. In any cases, the one-particle Hamiltonian describing
the fermion fluid satisfies the following general properties:

(i) The translation group G acting on the sample is R? or Z2. It acts by home-
omorphism 7% a € G on the space (2 of the disorder configurations. It also



acts by unitary projective representation 7'(a),a € G, on the one-particle
Hilbert space H.

(ii) The one-particle Hamiltonian is a norm resolvent strongly continuous family
(H,)weq of selfadjoint operators on H, bounded from below and satisfying
the covariance condition T'(a)H,T (a) ! = Hra,,.

Such Hamiltonian actually generalizes the case of a periodic operator, namely
the case for which there is a sufficiently large discrete subgroup of G leaving the
Hamiltonian invariant. In this latter case, the Bloch theorem permits to describe
the quantum motion in term of quasi-momenta k belonging to the so-called Bril-
louin zone, which is a manifold diffeomorphic to a torus. Both magnetic field and
disorder break this translation symmetry in a non trivial way, so that the notion
of Brillouin becomes meaningless in the classical sense. Actually it is still possible
to describe such a manifold in term of Non Commutative Geometry, by replacing
the algebra of continuous functions over the Brillouin zone by a Non Commutative
C*-algebra. In our case this C'*-algebra is nothing but the one generated by the
bounded functions of the H,’s, w € 1. It turns out that it is a closed subalgebra of
the twist crossed product A = C*(Q2,G, B) = C(QQ) xp G [6] where the product is
twisted by a module defined by the magnetic field. A differential and integral cal-
culus exists on such an algebra making it a non commutative differential manifold
that we have proposed to called the Non Commutative Brillouin zone. More pre-
cisely in our two dimensional situation, we can define two derivations 9; (i = 1,2)
through using the position operators X;,i = 1,2 as

(0iA)w = 1[X4, Au] AeA.

Thus C! elements of A are well defined.
The integral depends upon the choice of a G-invariant ergodic probability P
on Q. It is then given by the trace per unit area Tp namely

1
Te(A) =lim —Try(Ay) A e A, for P-almost all w’s (2)
ATG |A]

where A denotes a sequence of squares in G centered at the origin and covering G
and Try is the restriction to A of the usual trace.

Due to the Fermi statistics obeyed by the charge carriers (electrons or holes), two
different particles of the fluid must occupy different quantum eigenstates of the
Hamiltonian H,,. In the limit of zero temperature they occupy the levels of lowest
energy, namely all eigenstates with energy lower than some maximal one Ef called
the Fermi level. We will denote by Pf, the corresponding eigenprojection of the
Hamiltonian.

Standard results in transport theory permit to compute the conductivity in
term of the linear response of the fermion fluid under the influence of an external
field. This is the famous Green-Kubo formula. In the QHE-limit, namely in the limit
of (i) zero temperature, (ii) infinite sample size, (iii) negligible collision processes,



(iv) vanishingly small electric fields, the direct conductivity either vanishes or is
infinite, whereas the transverse conductivity, when defined, is given by
2 2

7 = 5 Ch(Py) = -2 T (Pr (01 Pr,0:Pr) )

It turns out that Ch is nothing but the non commutative analog of a Chern
character. Thus Kubo’s formula gives rise to a Chern character in the QHE limit.
This is why we propose to call eq (3) the Kubo-Chern formula, associating Japan
with China.

The main properties of the non commutative Chern character are the follow-

ing

(i) homotopy invariance: given two equivalent C! projections P and @ in A,
namely such that there is U € C'(A) with P = U*U and Q = UU*, then
Ch(P) = Ch(Q). This is actually what happens if P and @ are homotopic
in C1(A).

(ii) additivity: given two C' orthogonal projections P and () in A, namely such
that PQ = QP = 0 then Ch(P @ Q) = Ch(P) + Ch(Q).

In particular, the homotopy invariance shows that Ch(Pr), when it is defined,
is a topological quantum number. One of the main results of Non Commutative
Geometry is that this Chern character is an integer provide it is well defined. Thus
thank to eq. (3) we get the Hall conductance quantization. We will see in Section 5
below that this Chern character is well defined precisely whenever the Fermi level
lies in a region of localized states. Moreover changing the value of the filling factor
produces the moving of the Fermi level, which does not change the Chern character
as long as the localization length stay bounded.

4 The four traces way

In this section we use four different traces that are technically needed to express
the complete results of this theory. The first one is the usual trace on matrices or
on trace-class operators. The second one, introduced in the Section 3 above, is the
trace per unit volume. The third one is the graded trace or supertrace introduced
in this Section below. This is the first technical tool proposed by A. Connes [8] to
define the cyclic cohomology and constitutes the first important step in proving
quantization of the Hall conductance [4]. The last one is the Dizmier trace defined
by Dixmier in 1964 [12] and of which the importance for Quantum Differential
Calculus was emphasized by A. Connes [9, 10, 11]. It will be used in connection
with Anderson’s localization.

Let H be the physical one-particle Hilbert space of Section 3. We then built the
new Hilbert space H = H4+ & H_ with Hy = H. The grading operator G' and the
“Hilbert transform” F' are defined as follows:
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where X = X; +1X5 (here the dimension is D = 2). It is clear that F is selfadjoint
and satisfies F2 = 1. An operator T on H will said to be of degree 0 if it commutes
with @ and of degree 1 if it anticommutes with G. The graded commutator (or
supercommutator) of two operators and the graded differential dT are defined by

[T,T")s = TT' — (—)%es(Mdes(T) i dT = [F,T)s .

Then, d?T = 0. The graded trace Trg (or supertrace) is defined by

Trs(T) = 3 Trg (GFIF, T)s) = Ten(Tyy —uT ), (5)

where v = X/|X| and Ty 4 and T__ are the diagonal components of T' with respect
to the decomposition of #. It is a linear map on the algebra of operators such that
Trg(TT') = Trg(T'T). However, this trace is not positive. Observables in A will
become operators of degree 0, namely A € A will be represented by A, = A, ®A,.

Given a Hilbert space H, the characteristic values pi,..., ty,,... of a compact
operator T' are the eigenvalues of |T'| = (T'T*)'/? labeled in the decreasing order.
The Mactaev ideals £P+(H)is the set of compact operators on H with characteritic
values satisfying

N
1
Tl = sup —— S 42 .
1T+ J\f’i‘;lnzv;“” < 00

Let Lim be a positive linear functional on the space of bounded sequences {$°(N)
of positive real numbers which is translation and scale invariant. For 7' € £t (H)
its Dixmier trace is defined by

N
. 1
Trps(T) = Lim(— > tin) -
n=1

Remark that 7 € £'* if and only if Trp,, (|T]) < oo. Moreover, if the sequence

(ﬁ Zgil i) converges, then all functionals Lim of the sequence are equal to
the limit and the Dixmier trace is given by this limit. From this definition, one
can show that Trp,, is a trace [12, 11].

The first important result is provided by a forn_}ula that was suggested by a result
of A. Connes [9]. Namely if A € C*(A) and if V = (01, 0:) we have [7]:
- 1
Te(IVAP) = =Trpi(|dAL?) for P-almost all w . (6)
™

Let now S denote the closure of C!(A) under the non commutative Sobolev norm
|A|I% = Tw(A*A) + To(VA*V A). The eq. (6) shows that for any element A € S,
dA,, belongs to £ (H) P-almost surely.



The following formula, valid for Ag, A1, Ay € C*(A), is the next important result
proved in [8, 4, 1, 7]:

/ dP(w)TrS(AO7wd417wdAQ7w) = 21%7;(1408114162142 — A082A181A2) . (7)
Q

Thanks to eq. (6) this formula extends to 4; € S.

Applying these formula to the Fermi projection, the Chern character Ch(Pr) is
well defined provide Pr € S and

Ch(Pp) = /Q dP(w)Trs(Pr ,dPr ,dPr,,) . (8)

The last step is a consequence of the Fedosov formula [13] namely the operator
P,F*~|p,3_ is Fredholm and its index is an integer given by:

n(w) = Ind(P,F* |p,3_) = Trs(PpdPp ,dPr.,) . (9)

It remains to show that this index is P-almost surely constant. By the covariance
condition Pra,F+~|p.._ 2_ and P,T(a)"'FT~T(a)|p,%_ are unitarily equiva-
lent, so that they have same Fredholm index. Moreover P, T (a) "' F+*~T(a)|p,3_ —
P,F*~|p,3_ is easily seen to be compact so that Pra, F'* ™ |p,._7_ have the same
index as P,F* " |p, #_. In other words, n(w) is a G-invariant function of w. The
probability P being G-invariant and ergodic, n(w) is P-almost surely constant.
Consequently, since F*~ = u, if Pr € S :

Ch(Pr) = Ind(Pruulpy 1) €Z, P-almost surely .

5 Localization

It remains to show how the condition Pr € S is related to the Anderson’s lo-
calization. The easiest way to define the localization length consist in measur-
ing averaged square displacement of a wave packets on the long run. Let A
be an interval. We denote by Pa the eigenprojection of the Hamiltonian cor-
responding to energies in A. Then, if X is the position operator in G we set
Xaw(t) =ewtetPy X PA ,e~#Ht Then we define the A-localization length as:

T
2(a) :limsup/o %/de(w) < Ol(Xa () — Xau(0)*[0 > .

T—o0

In [7] we have shown that equivalently



T
B(A) = limsup / ETe(T (e #Pa)P) (10)
= s 3 (VPP (11)

LN

where P runs in the set of finite partitions of A by Borel subsets. Moreover we
have also shown [7] that £*(A) < co implies that the spectrum of H,, is pure point
in A, P-almost surely.

The density of states is the positive measure A" on R defined by [, dN(E)f(E) =
Te(f(H)) for f a continuous function with compact support. It turns out [7] that
if I?(A) < oo one can find a positive N-square integrable function £ on A such
that

P = [ ane) ey (12)
for any subinterval A’ of A. We propose to call ¢(E) the localization length at
energy E.

We can now conclude. Thanks to eq. (11) the finiteness of the localization length
in the interval A implies that [7]

(i) Pr € S whenever the Fermi level Er lies in A,

(ii) Er € A = Pp € S is continuous (for the Sobolev norm) at every regularity
point of \.

(iii) Ch(Pr) is constant on A, leading to existence of plateaus for the transverse
conductivity.

(iv) If the Hamiltonian is changed continuously (in the norm resolvent topology),
Ch(Py) stay constant as long as the localization length remains finite at the
Fermi level.

As a Corollary, we notice that between two Hall plateaus with different indices,
the localization length must diverge [15, 18]. The reader will find in [7] how to
compute practically the Hall index using homotopy (property (iv)) and explicit
calculation for simple models.

References

[1] J.E. Avron, R. Seiler, B. Simon, Charge deficiency, charge transport
and comparison of dimensions, Commun. Math. Phys. 159, 399 (1994).

[2] J.E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett 51, 51 (1983).



3]

[15]

[16]

[17]

[18]

J. Bellissard, in Statistical Mechanics and Field Theory: Mathemat-
ical Aspects, Lecture Notes in Physics 257, edited by T. Dorlas, M.
Hugenholtz, M. Winnink (Springer-Verlag, Berlin, 1986).

J. Bellissard, in Proc. of the Bad Schandau conference on localization,
edited by Ziesche & Weller, (Teubner-Verlag, Leipzig, 1987).

J. Bellissard, in Operator algebras and applications, Vol. 2, edited by E.
Evans, M. Takesaki (Cambridge University Press, Cambridge, 1988).

J. Bellissard, in From number theory to physics, edited by M. Wald-
schmidt, P. Moussa, J. Luck, C. Itzykson (Springer-Verlag, Berlin,
1991).

J. Bellissard, A. van Elst, H. Schulz-Baldes, The Non-Commutative
Geometry of the Quantum Hall Effect, J. of Math. Phys.,35, (1994),
5373-5451.

A. Connes, Non-commutative differential geometry, Publ. THES 62,
257 (1986).

A. Connes, The action functional in non-commutative geometry, Com-
mun. Math. Phys., 117, 673 (1988).

A. Connes, Géométrie non commutative, (InterEditions, Paris, 1990).

A. Connes, Non-commutative Geometry, (Acad. Press, San Diego,
1994).

J. Dixmier, Existence de traces non normales, Comptes Rendus de
I’Académie des Sciences, 1107 (1966).

B. Fedosov, Funct. Anal. App. 4, 339 (1967).

E. Hall, On a new action of the magnet on electric currents, Amer. J.
Math. 2, 287 (1879)

and in Quantum Hall effect: a perspective, edited by A. Mac Donald
(Kluwer Academic Publishers, Dordrecht, 1989).

B.I. Halperin, Quantized Hall conductance, current-carrying edge
states and the existence of extended states in a two-dimensional disor-
dered potential, Phys. Rev. B 25, 2185 (1982).

R. Joynt, R. Prange, Conditions for the quantum Hall effect, Phys.
Rev. B 29, 3303 (1984).

K. v. Klitzing, G. Dorda, M. Pepper, New method for high accuracy
determination of the fine structure constant based on quantized Hall
resistance, Phys. Rev. Lett. 45, 494 (1980).

H. Kunz, The quantized Hall effect for electrons in a random potential,
Commun. Math. Phys. 112, 121 (1987).

10



[19] R.B. Laughlin, Quantized Hall conductivity in two-dimension, Phys.
Rev. B 23, 5632 (1981).

[20] R.E. Prange, Quantized Hall resistance and the measurement of the
fine structure constant, Phys. Rev. B 23, 4802 (1981).

[21] M. Stone Ed., The Quantum Hall Effect (World Scientific, Singapore,
1992).

[22] D.J. Thousless, J. Phys. C 14, 3475 (1981).

[23] D. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Quantized
Hall conductance in two-dimensional periodic potential, Phys. Rev.
Lett. 49, 405 (1982).

11



