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Motivation
A tiling of Rd or a Delone set describing the atomic positions in
a solid defines a tiling space: a suitable closure of its translated.
This space is compact. Various metrics may help describing the
properties of the tiling itself such as

• Its algorithmic complexity or its configurational entropy.

• The atomic diffusion process

•Hopefully the mechanic of the solid (friction, fracture, ...)



Motivation

The octagonal tiling



Motivation

The tiling space of the octagonal tiling is a Cantor set
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I - Spectral Triples

A. C, Noncommutative Geometry, Academic Press, 1994.



I.1)- Spectral Triples
A spectral triple is a family (H ,A,D), such that

• H is a Hilbert space

• D is a self-adjoint operator onH with compact resolvent

• A is a C∗-algebra with a representation π into H such that
A0 = {a ∈ A ; ‖[D, π(a)‖ < ∞} is dense inA.

• (H ,A,D) is called even if there is G ∈ B(H) such that

– G = G∗ = G−1

– [G, π( f )] = 0 for f ∈ A
– GD = −DG



I.2)- Example of Spectral Triples

IfT is the 1D-torus then takeA = C(T),H = L2(T) and D = −ıd/dx.
A is represented by pointwise multiplication. This is a spectral
triple such that

|x − y| = sup{| f (x) − f (y)| ; f ∈ C(T) , ‖[D, π( f )]‖ ≤ 1}

If M is compact spinc Riemannian manifold, then take A = C(M),
H be the Hilbert space of L2-sections of the spinor bundle and D
the Dirac operator. A is represented by pointwise multiplication.
This is a spectral triple such that the geodesic distance is given by

d(x, y) = sup{| f (x) − f (y)| ; f ∈ C(T) , ‖[D, π( f )]‖ ≤ 1}



I.3)- Properties of Spectral Triples
Definition A spectral triple (H ,A,D) will be called regular whenever
the following two properties hold
(i) the commutantA′ = {a ∈ A ; [D, π(a)] = 0} is trivial
(ii) the Lipshitz ball BLip = {a ∈ A ; ‖[D, π(a)]‖ ≤ 1} is precompact in
A/A′

Theorem A spectral triple (H ,A,D) is regular if and only if the Connes
metric, defined on the state space ofA by

dC(ω,ω′) = sup{|ω(a) − ω′(a)| ; ‖[D, π(a)]‖ ≤ 1}

is well defined and equivalent to the weak∗-topology



I.4)- ζ-function and Spectral Dimension
Definition A spectral triple (H ,A,D) is called summable is there is
p > 0 such that Tr (|D|−p) < ∞. Then, the ζ-function is defined as

ζ(s) = Tr
(

1
|D|s

)
The spectral dimension is

sD = inf
{

s > 0 ; Tr
(

1
|D|s

)
< ∞

}
Then ζ is holomorphic in<(s) > sD

Remark For a Riemannian manifolds sD = dim(M)



I.5)- Connes state & Volume Form
The spectral triple is spectrally regular if the following limit is
unique

ωD(a) = lim
s↓sD

1
ζ(s)

Tr
(

1
|D|s

π(a)
)

a ∈ A

Then ωD is called the Connes state.

Remark
(i) By compactness, limit states always exist, but the limit may not be
unique.
(ii) Even if unique this state might be trivial.
(iii) In the example of compact Riemannian manifold the Connes state
exists and defines the volume form.



I.6)- Hilbert Space
If the Connes state is well defined, it induces a GNS-representation
as follows
• The Hilbert space L2(A, ωD) is defined fromA through the inner

product

〈a|b〉 = ωD(a∗b)

• The algebraA acts by left multiplication.
• If the quadratic form

Q(a, b) = lim
s↓sD

1
ζ(s)

Tr
(

1
|D|s

[D, π(a)]∗[D, π(b)]
)

extends to L2(A, ωD) as a closable quadratic form, then, it defines
a positive operator which generates a Markov semi-group and is
a candidate for being the analog of the Laplace-Beltrami operator.



II - Compact Metric Spaces

I. P, Noncommutative Geometry of compact metric spaces, PhD Thesis, May 3rd, 2010.



II.1)- Open Covers
Let (X, d) be a compact metric space with an infinite number of
points. LetA = C(X).

• An open coverU is a family of open sets of X with union equal
to X. Then diamU = sup{diam(U) ; U ∈ U}. All open covers
used here will be at most countable

• A resolving sequence is a family (Un)n∈N such that

lim
n→∞

diam(Un) = 0

• A resolving sequence is strict if allUn’s are finite and if

diam(Un) < inf{diam(U) ; U ∈ Un−1} ∀n



II.2)- Choice Functions
Given a resolving sequence ξ = (Un)n∈N a choice function is a map
τ :U(ξ) =

∐
nUn 7→ X × X such that

• τ(U) = (τ+(U), τ−(U)) ∈ U ×U

• there is C > 0 such that

diam(U) ≥ d(τ+(U), τ−(U)) ≥
diam(U)

1 + C diam(U)
, ∀U ∈ U(ξ)

The set of such choice functions is denoted by Υ(ξ).



II.3)- A Family of Spectral Triples

• Given a resolving sequence ξ, letHξ = `2(U(ξ)) ⊗ C2

• For τ a choice let Dξ,τ be the Dirac operator defined by

Dξ,τψ (U) =
1

d(τ+(U), τ−(U))

[
0 1
1 0

]
ψ(U) ψ ∈ H

• For f ∈ C(X) let πξ,τ be the representation ofA = C(X) given by

πξ,τ( f )ψ (U) =
[

f (τ+(U)) 0
0 f (τ−(U))

]
ψ(U) ψ ∈ H



II.4)- Regularity
Theorem EachTξ,τ = (Hξ,A,Dξ,τ, πξ,τ) defines a spectral triple such
thatA0 = CLip(X, d) is the space of Lipshitz continuous functions on X.
Such a triple is even when endowed with the grading operator

Gψ(U) =
[

1 0
0 −1

]
ψ(U) ψ ∈ H

In addition, the family {Tξ,τ ; τ ∈ Υ(ξ)} is regular in that

d(x, y) = sup{| f (x − f (y)| ; sup
τ∈Υ(ξ)

‖[Dξ,τ, πξ,τ( f )]‖ ≤ 1}



II.5)- Summability

Theorem There is a resolving sequence leading to a family Tξ,τ of
summable spectral triples if and only if the Hausdorff dimension of X is
finite.

If so, the spectral dimension sD satisfies sD ≥ dimH(X).

If dimH(X) < ∞ there is a resolving sequence leading to a family Tξ,τ of
summable spectral triples with spectral dimension sD = dimH(X).



II.6)- HausdorffMeasure
Theorem There exist a resolving sequence leading to a family Tξ,τ of
spectrally regular spectral triples if and only if the Hausdorffmeasure of
X is positive and finite.

In such a case the Connes state coincides with the normalized Hausdorff
measure on X.

Then the Connes state is given by the following limit independently
of the choice τ∫

X f (x)HsD(dx)

HsD(X)
= lim

s↓sD

1
ζξ,τ(s)

Tr
(

1
|Dξ,τ|s

πξ,τ( f )
)

f ∈ C(X)



III - The Laplace-Beltrami Operator
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III.1)- Dirichlet Forms
Let (X, µ) be a probability space space. For f a real valued measur-
able function on X, let f̂ be the function obtained as

f̂ (x) =


1 if f (x) ≥ 1
f (x) if 0 ≤ f (x) ≤ 1
0 if f (x) ≤ 0

A Dirichlet form Q on X is a positive definite sesquilinear form
Q : L2(X, µ) × L2(X, µ) 7→ C such that

• Q is densely defined with domain D ⊂ L2(X, µ)

• Q is closed

• Q is Markovian, namely if f ∈ D, then Q( f̂ , f̂ ) ≤ Q( f , f )



Markovian cut-off of a real valued function



The simplest typical example of Dirichlet form is related to the
Laplacian ∆Ω on a bounded domain Ω ⊂ RD

QΩ( f , g) =
∫
Ω

dDx ∇ f (x) · ∇g(x)

with domain D = C1
0(Ω) the space of continuously differentiable

functions on Ω vanishing on the boundary.

This form is closable in L2(Ω) and its closure defines a Dirichlet form.



Any closed positive sesquilinear form Q on a Hilbert space, de-
fines canonically a positive self-adjoint operator −∆Q satisfying

〈 f | − ∆Q g〉 = Q( f , g)

In particular Φt = exp (t∆Q) (defined for t ∈ R+) is a strongly
continuous contraction semigroup.

If Q is a Dirichlet form on X, then the contraction semigroup
Φ = (Φt)t≥0 is a Markov semigroup.



A Markov semi-group Φ on L2(X, µ) is a family (Φt)t∈[0,+∞) where

• For each t ≥ 0, Φt is a contraction from L2(X, µ) into itself

• (Markov property) Φt ◦Φs = Φt+s

• (Strong continuity) the map t ∈ [0,+∞) 7→ Φt is
strongly continuous

• ∀t ≥ 0, Φt is positivity preserving : f ≥ 0 ⇒ Φt( f ) ≥ 0

• Φt is normalized, namely Φt(1) = 1.

Theorem (Fukushima) A contraction semi-group on L2(X, µ) is a
Markov semi-group if and only if its generator is defined by a Dirichlet
form.



III.2)- The Laplace-Beltrami Form
Let M be a Riemannian manifold of dimension D. The Laplace-
Beltrami operator is associated with the Dirichlet form

QM( f , g) =
D∑

i, j=1

∫
M

dDx
√

det(g(x)) gi j(x) ∂i f (x) ∂ jg(x)

where g is the metric. Equivalently (in local coordinates)

QM( f , g) =
∫

M
dDx

√
det(g(x))

∫
S(x)

dνx(u) u · ∇ f (x) u · ∇g(x)

where S(x) represent the unit sphere in the tangent space whereas
νx is the normalized Haar measure on S(x).



III.3)- Choices and Tangent Space
The main remark is that, if τ(U) = (x, y) then

[D, π( f )]τ ψ (U) =
f (x) − f (y)

d(x, y)

[
0 −1
1 0

]
ψ(U)

The commutator with the Dirac operator is a coarse graining ver-
sion of a directional derivative. Therefore

• it could be written as ∇τ f

• τ(U) can be interpreted as a coarse grained version of a normal-
ized tangent vector at U.

• the set Υ(ξ) can be seen as the set of sections of the tangent sphere
bundle.



III.4)- Choice Averaging
To mimic the previous formula, a probability over the set Υ(ξ) is
required.

For each open set U ∈ U(ξ), the set of choices is given by the set of
pairs (x, y) ∈ U×U such that d(x, y) > diam(U) (1 + C diam(U))−1.
This is an open set.

Thus the probability measure νU defined as the normalized measure
obtained from restrictingHsD ⊗H

sD to this set is the right one.

This leads to the probability

ν =
⊗

U∈U(ξ)

νU



III.5)- The Quadratic Form
This leads to the quadratic form (omitting the indices ξ, τ)

Q( f , g) = lim
s→sD

∫
Υ(ξ)

dν(τ)
1
ζ(s)

Tr
(

1
|D|s

[D, π( f )]∗ [D, π(g)]
)

Claim (unproved yet) This quadratic form is closable and Markovian.

Claim If X is a Riemannian manifold equipped with the geodesic dis-
tance this quadratic form coincides with the Laplace-Beltrami one.

Theorem If (X, d) is an ultrametric Cantor set, this quadratic form
vanishes identically.



III.6)- Cantor sets
If (X, d) is an ultrametric Cantor set, the characteristic functions
of clopen sets are continuous. For such a function [D, π( f )] is a
finite rank operator. To replace the previous form simply set, for
any real s ∈ R

Qs( f , g) =
∫
Υ(ξ)

dν(τ) Tr
(

1
|D|s

[D, π( f )]∗ [D, π(g)]
)

Theorem If (X, d) is an ultrametric Cantor set, the quadratic forms Qs
are closable in L2(X,HsD) and Markovian. The corresponding Laplacean
have pure point spectrum. They are bounded if and only if s > sD + 2
and have compact resolvent otherwise. The eigenspaces are common to
all s’s and can be explicitly computed.



IV - Conclusion & Prospect



IV.1)- Results

• A compact metric space can be described as Riemannian mani-
folds, through Noncommutative Geometry.

• An analog of the tangent unit sphere is given by choices

• The Hausdorff dimension plays the role of the dimension.

• A Hausdorff measure is the analog of the volume form

• A Laplace-Beltrami operator can be defined which coincided with
the usual definition if X is a Riemannian manifold.

• It generates a stochastic process playing the role of the Brownian
motion.



IV.2)- Cantor Sets
If the space is an ultrametric Cantor set more is known

• The set of ultrametric can be described and characterized

• The Laplace-Beltrami operator vanishes but can be replaced by
a one parameter family of Dirichlet forms, defined by Pearson in
his PhD thesis

• The Pearson operators have point spectrum and for the right
domain of the parameter, they have compact resolvent.

• A Weyl asymptotics for the eigenvalues can be shown to hold.

• The corresponding stochastic process is a jump process

• This process exhibits anomalous diffusion.



IV.3)- Open Problems

• Prove that the Laplace-Beltrami operator is well defined at least
for a compact metric space with nonzero finite Hausdorffmeasure.

• Prove that the Laplace-Beltrami operator has compact resolvent

• Prove that the Laplace-Beltrami operator coincides with the
generator of diffusion on fractal sets such as the Sierpinski gasket.


