Linear Response Theory
& Kubo’s Formula
for Electronic Transport

Jean BELLISSARD

Georgia Institute of Technology, Atlanta, GA 30332-0160
&
Institut Universitaire de France

Collaborations:

H. SCHULZ-BALDES (T.U. Berlin, Germany)
D. SPEHNER (Essen, Germany)
R. REBOLLED0 (Pontificia Universidad Catolica de Chile)
H. von WALDENFELS (U. Heidelberg, Germany)

1Georgia Institute of Technology, School of Mathematics, Atlanta, GA 30332-0160
2e-mail: jeanbel@math.gatech.edu
Main References

Content

1. Linear Response Theory: Heuristic Background
2. Transport Coefficients
3. Kubo’s Formula

Warning

This lecture gives a heuristic discussion of problems posed by the linear response theory in view of a more rigorous study. It does not intend to give mathematically rigorous results.
I - Linear Response Theory: Heuristic Background
Linear Response

Experiments show that if a force \vec{F} is imposed to a system, its response is a current \vec{j} vanishing as the force vanishes. Thus for \vec{F} small

$$\vec{j} = L \cdot \vec{F} + O(\vec{F}^2),$$

Here L is a matrix of transport coefficients.

Examples:

1. **Fourier**'s law: a temperature gradient produces a heat current $\vec{j}_{\text{heat}} = -\lambda \vec{\nabla}T$.

2. **Ohm**'s law: a potential gradient (electric field) produces an electric current $\vec{j}_{\text{el}} = -\sigma \vec{\nabla}V$.

3. **Fick**'s law: a density gradient produce a flow of matter $\vec{j}_{\text{matter}} = -\kappa \vec{\nabla}\rho$.

- What is the domain of validity?
- What happens for quantum systems?
A No-Go Theorem: Bloch’s oscillations

If \(H = H^* \), the one-electron Hamiltonian, is bounded and if \(\vec{R} = (R_1, \cdots, R_d) \) is the position operator (self-adjoint, commuting coordinates), the current is

\[
\vec{J} = \text{const.} \frac{i}{\hbar} [H, \vec{R}],
\]

Adding a force \(\vec{F} \) at time \(t = 0 \) leads to a new evolution with Hamiltonian \(H_F = H - \vec{F} \cdot \vec{R} \). The 0-frequency component of the current is

\[
\vec{j} = \lim_{t \to \infty} \int_0^t \frac{ds}{t} e^{isH_F/\hbar} \vec{J} e^{-isH_F/\hbar},
\]

Simple algebra shows that (since \(\|H\| < \infty \))

\[
\vec{F} \cdot \vec{j} = \text{const.} \lim_{t \to \infty} \frac{H(t) - H}{t} = 0,
\]

WHY?

This is called **Bloch’s Oscillations**
Dissipation

Dissipation is the loss of information experienced by the system observed as the time goes on.

SECOND PRINCIPLE OF THERMODYNAMICS

Clausius-Boltzman entropy

The sources of dissipation can take various aspects

1. External noise random in time
2. Exchange with a thermal bath (reservoir with infinite energy)
3. Collisions/interactions with other particles
4. Loss of energy at infinity (infinite volumes)
5. Chaotic motion: sensitivity to initial conditions
 Kolmogorov-Sinai entropy
6. Quantum measurement (wave function collapse)
7. Quantum Chaos: the Hamiltonian behaves like a random matrix. *Voiculescu entropy*
Length, Time & Energy Scales

1. Length scales:
 - *Scattering length*: range of interactions between colliding particles.
 - *Mean free path*: minimum distance between collisions
 - *Mesoscopic scale*: minimum size for the system to reach a local thermodynamical equilibrium.
 - *Sample size*

2. Times scales:
 - *Scattering time*
 - *Collision time*: time between two consecutive collisions
 - *Relaxation time*: time for a mesoscopic size to relax to equilibrium
 - *Mesurement time*
 - Other times: Heisenbeg times $\hbar/\Delta E$, ⋯

3. Energy scales
Exchanges of Limits

1. *Infinite volume* limit & *low dissipation* limit:
 - Usually
 \[\text{mean free path} \ll \text{sample size} \]
 (i) infinite volume limit (ii) low dissipation limit.
 - In nanoscopic systems linear response may fail! The *resistivity* of a molecule is meaningless!

2. *Zero external force* limit & *large time measurement* limit:
 - in solids
 \[\frac{\hbar}{eV} \approx 10^{-12} - 10^{-15} \text{s.} \ll \text{measurement time} \]
 (i) infinite measurement time limit
 (ii) low external field.
 - In *pico-femtosecond* laser experiments, failures of linear response theory are observed.
II - Transport Coefficients
Local Equilibrium Approximation

• **Length Scales:**

\[\ell \ll \delta L \ll L \]

\(\ell \) is a typical *microscopic* length scale
\(L \) the typical *macroscopic* length scale.
Then \(\delta L \) is called *mesoscopic*.

• **Time Scales:**

\[\tau_{rel} \ll \delta t \ll t \]

\(\tau_{rel} \) is a typical *microscopic* time scale
\(t \) the typical *macroscopic* time scale.
Then \(\delta t \) is called *mesoscopic*.

• The system is partitionned into *mesoscopic cells* the time is partitionned into *mesoscopic intervals*.

• Mesoscopic cells are *completely open* systems
After a time \(O(\delta t) \) they return to *equilibrium*.

• Let H be the Hamiltonian of the part of the subsystem contained in the mesoscopic cell located at \vec{x} at time t.

• Let $\hat{X}_1 = H, \hat{X}_2, \ldots, \hat{X}_K$ be a complete family of first integral, namely observables commuting with the Hamiltonian.

• Let $Q(\vec{x}, t)$ be the set of indices labeling a common eigenbasis of the \hat{X}_α’s: it is the set of microstates of the system contained in the mesoscopic cell.

• If $P(\vec{x}, t)(q)$ denotes the Gibbs probability of the microstate $q \in Q(\vec{x}, t)$, its Boltzmann entropy is given by

$$S(P) = -k_B \sum_{q \in Q(\vec{x}, t)} P(\vec{x}, t)(q) \ln P(\vec{x}, t)(q)$$

• The maximum entropy principle gives Lagrange multipliers $T(\vec{x}, t), F_2(\vec{x}, t), \ldots, F_K(\vec{x}, t)$ called conjugate variables. (In the following $F_1 = 1$)
The Gibbs state for the mesoscopic cell centered at \(\vec{x} \in \mathbb{R}^d \) at time \(t \) is:

\[
\mathbb{P}(\vec{x}, t)(q) = \frac{1}{\mathcal{Z}(\vec{x}, t)} e^{-\sum_{k=1}^{K} \frac{F_\alpha(\vec{x}, t) \hat{X}_\alpha(q)}{k_B T(\vec{x}, t)}}
\]

The average values of the first integrals are

\[
\delta X_\alpha(\vec{x}, t) = \sum_{q \in \mathcal{Q}(\vec{x}, t)} \mathbb{P}(\vec{x}, t)(q) \hat{X}_\alpha(q).
\]

The *volume* of the cell \(\delta V(\vec{x}, t) = \delta V \) is mesoscopic and chosen constant in space and time.

Then \(\delta X_\alpha(\vec{x}, t) = O(\delta V) \) and the *local density* of \(X_\alpha \) is

\[
\rho_\alpha(\vec{x}, t) = \frac{\delta X_\alpha(\vec{x}, t)}{\delta V}.
\]

Under an infinitesimal change of equilibrium the entropy changes as

\[
TdS = \sum_\alpha F_\alpha d\delta X_\alpha
\]
• Transfer of X_α from cell $\Delta^{(1)}$ to cell $\Delta^{(0)}$ across area $\delta \Sigma$ during time δt gives a variation in time

$$\delta X_\alpha(\vec{x}, t) = -\vec{j}_\alpha(\vec{x}, t) \cdot \vec{n}^{(1)} \delta \Sigma \delta t.$$

where $\vec{n}^{(1)}$ is the normal to area oriented from $\Delta^{(1)}$ to $\Delta^{(0)}$.

• $\vec{j}_\alpha(\vec{x}, t)$ is the local current associated with X_α. It is mesoscopic rather than microscopic.
• Since X_α is conserved under evolution the balance leads to the *continuity equation*

$$\frac{\partial \rho_\alpha(x, t)}{\partial t} + \nabla \cdot \vec{j}_\alpha(x, t) = 0.$$

• The *entropy density* is $s = \frac{\delta S}{\delta V}$

The entropy variation is then given by

$$\frac{\partial s}{\partial t} = \sum_{\alpha=1}^{K} \frac{F_\alpha}{T} \frac{\partial }{\partial t} \rho_\alpha.$$

• The *current entropy* is define through

$$\vec{j}_s(x, t) = \sum_{\alpha=1}^{K} \frac{F_\alpha}{T} \vec{j}_\alpha(x, t).$$

• The *entropy production rate* is then

$$\frac{ds}{dt} = \frac{\partial s}{\partial t} + \nabla \cdot \vec{j}_s = \sum_{\alpha=1}^{K} \nabla \left(\frac{F_\alpha}{T} \right) \vec{j}_\alpha(x, t).$$

and is *positive* thanks to the 2nd Principle.
Linear Response

- A variation of the F_α/T's produces currents. In the local equilibrium approximation

$$\vec{J}_\alpha = \sum_{\beta=1}^{K} L_{\alpha,\beta} \vec{\nabla} \left(\frac{F_\beta}{T} \right) + O \left\{ \mid \vec{\nabla} \left(\frac{F_\beta}{T} \right) \mid^2 \right\}$$

- The $L_{\alpha,\beta}$'s are $d \times d$ matrices called Onsager coefficients.
- The gradient of F_α/T is an affinity. It plays a role similar to forces.

- By 2nd Principle, the positivity of entropy production rate implies

$$\mathbb{L} = ((L_{\alpha,\beta}))^{K}_{\alpha,\beta=1} \Rightarrow \mathbb{L} + \mathbb{L}^t \geq 0$$

- Reciprocity Relations: if, under time reversal symmetry, $X_\alpha \xrightarrow{TR} \varepsilon_\alpha X_\alpha$ then

$$L_{\beta,\alpha}(\text{parameters}) = \varepsilon_\alpha \varepsilon_\beta L_{\alpha,\beta}^t (\text{TR-parameters}).$$
Dissipative & Nondissipative Response

• **Dissipation = Loss of Information**

 Dissipation contributes to entropy production. Hence

 \[
 L^{(diss)} = \frac{1}{2} (L + L^t)
 \]

 - The **nondissipative** part

 \[
 L^{(nondis)} = \frac{1}{2} (L - L^t)
 \]

 contains quantities exhibiting *quantization* at very low temperature!

 - The *Hall conductivity* is nondissipative. It is quantized at \(T = 0 \).

 - Quantization of currents in superconductors.

• **Warning:** In *mesoscopic* systems, the quantization of conductance, thermal conductance, mechanical response, is due to the lack of dissipation. The system is too small for the local equilibrium approximation to hold.
III - Kubo’s Formula
Mesoscopic Quantum Evolution

- **Observable algebra** \(\mathcal{A} = \mathcal{A}_S \otimes \mathcal{A}_E \)
 \((S = \text{system}, E = \text{environment}).\)

- **Quantum evolution** \(\eta_t \in \text{Aut}(\mathcal{A}), \)
 \(t \in \mathbb{R} \mapsto \eta_t(B) \in \mathcal{A} \) continuous \(\forall B \in \mathcal{A}. \)

- **Initial state** \(\rho \otimes \rho_E \)

- **System evolution**
 \[\rho(\Phi_t(A)) = \rho_t(A) = \rho \otimes \rho_E(\eta_t(A \otimes 1)) \]
 \(\Phi_t : \mathcal{A}_S \mapsto \mathcal{A}_S \) is completely positive,
 \(\Phi_t(1) = 1 \) and \(t \mapsto \Phi_t(A) \in \mathcal{A}_S \) is continuous.

- **Markov approximation**: for \(\delta t \) mesoscopic
 \[\Phi_{t+\delta t} \approx \Phi_t \circ \Phi_{\delta t} \approx \Phi_{\delta t} \circ \Phi_t \]

Then
 \[\frac{\delta \Phi_t}{\delta t} = \mathfrak{L} \circ \Phi_t = \Phi_t \circ \mathfrak{L} \]

\(\mathfrak{L} \) is the **Linbladian**.

- **Dual evolution** \(\Phi_t^\dagger(\rho) = \rho \circ \Phi_t \) giving rise to \(\mathfrak{L}^\dagger. \)
Theorem 1 (Linblad ’76) If $A_S = \mathcal{B}(\mathcal{H})$ and if Φ_t is pointwise norm continuous, there is a bounded selfadjoint operator H on \mathcal{H} and a countable family of operators L_i such that

$$\mathcal{L}(A) = i[H, A] + \sum_i \left(L_i^\dagger AL_i - \frac{1}{2}\{L_i^\dagger L_i, A\} \right)$$

The first term of \mathcal{L} is the coherent part and corresponds to a usual Hamiltonian evolution. The second one, denoted by $\mathcal{D}(A)$ is the dissipative part and produces damping.

- **Stationary** states correspond to solutions of $\mathcal{L}^\dagger \rho = 0$.

- **Equilibrium** states are stationary states with maximum entropy. They are equivalent to KMS states with respect to the thermal dynamics which is generated by

$$H_{th} = H + \sum_{\alpha=2}^K F_{\alpha} \hat{X}_\alpha$$
Derivation of Greene-Kubo Formulae

• In many cases there is a position operator acting on the Hilbert space of states and given by a commuting family \(\vec{R} = (R_1, \cdots, R_d) \) of selfadjoint operators. They describe the position of particles in the system \(S \).

• \(\vec{R} \) generates a \(d \)-parameter group of automorphisms \(\vec{k} \in \mathbb{R}^d \mapsto e^{i \vec{k} \cdot \vec{R}} A e^{-i \vec{k} \cdot \vec{R}} \) of the \(C^* \)-algebra \(\mathcal{A}_S \). Thus \(\vec{\nabla} = i[\vec{R}, \cdot] \) defines a \(* \)-derivation of \(\mathcal{A}_S \).

• The mesoscopic velocity of the particles is given by

\[
\vec{V} = \mathfrak{L}(\vec{R}) = \vec{\nabla} H + \mathfrak{D}(\vec{R})
\]

The first part corresponds to the coherent velocity the other to the dissipative one.

• The current associated with \(\hat{X}_\alpha \) is given by

\[
\vec{J}_\alpha = \frac{1}{2}\{\vec{V}, \hat{X}_\alpha\} = \vec{J}_\alpha^{(coh)} + \vec{J}_\alpha^{(diss)}
\]
• At time $t = 0$, S is at equilibrium

$$\Rightarrow \rho S = \rho_{eq.} \quad \mathfrak{L}^\dagger \rho_{eq.} = 0$$

• At $t > 0$, forces are switched on

$$\mathcal{E} = (\vec{\mathcal{E}}_1, \cdots, \vec{\mathcal{E}}_K) \quad \text{with} \quad \vec{\mathcal{E}}_\alpha = \vec{\nabla}(F_\alpha/T)$$

so that

$$\mathfrak{L}_\mathcal{E} = \mathfrak{L} + \sum_{\alpha, j} \mathcal{E}^j_\alpha \mathfrak{L}^j_\alpha + O(\mathcal{E}^2)$$

• Hence the current becomes

$$J_\alpha^\mathcal{E},i = J_\alpha^i + \sum_{\alpha', j} \mathcal{E}^j_{\alpha'} \{ \mathfrak{L}^j_{\alpha'}(R^i), \hat{X}_\alpha \} + O(\mathcal{E}^2)$$

• Then, if the forces are constant in time

$$\vec{j}_\alpha = \lim_{t \uparrow \infty} \int_0^t ds \frac{\rho_{eq.}}{t} \left(e^{s\mathfrak{L}_\mathcal{E}} \vec{j}_\alpha^\mathcal{E} \right)$$

$$= \lim_{\epsilon \downarrow 0} \int_0^\infty \epsilon dt \ e^{-t\epsilon} \rho_{eq.} \left(e^{t\mathfrak{L}_\mathcal{E}} \vec{j}_\alpha^\mathcal{E} \right)$$

$$= \lim_{\epsilon \downarrow 0} \rho_{eq.} \left(\frac{\epsilon}{\epsilon - \mathfrak{L}_\mathcal{E}} \vec{j}_\alpha^\mathcal{E} \right)$$

• Since $\mathfrak{L}^\dagger \rho_{eq.} = 0$, $\rho_{eq.} \left(\frac{\epsilon}{\epsilon - \mathfrak{L}_\mathcal{E}} \vec{j}_\alpha^\mathcal{E} \right) = 0$
Thus
\[
\mathbf{j}_\alpha = \lim_{\epsilon \downarrow 0} \rho_{eq.} \frac{\epsilon}{\epsilon - \mathcal{L}_\epsilon} \mathbf{j}_\alpha^{\mathcal{E}} - \frac{\epsilon}{\epsilon - \mathcal{L}_\epsilon} \mathbf{j}_\alpha
\]
\[
= \lim_{\epsilon \downarrow 0} \rho_{eq.} \left(\frac{\epsilon}{\epsilon - \mathcal{L}_\epsilon} \sum_{\alpha'} \mathcal{E}_{\alpha'} \cdot \nabla_{\alpha'} \mathbf{j}_\alpha \right)
\]
\[
+ \lim_{\epsilon \downarrow 0} \rho_{eq.} \left(\frac{\epsilon}{\epsilon - \mathcal{L}_\epsilon} \sum_{\alpha'} \mathcal{E}_{\alpha'} \cdot \left\{ \mathcal{L}_{\alpha'}(\mathbf{R}_i), \dot{X}_\alpha \right\} \right)
\]
\[
+ O(\mathcal{E}^2)
\]

Since \(\rho_{eq.} \circ \mathcal{L} = 0 \) this gives
\[
\mathbf{j}_\alpha^i = - \sum_{\alpha',j} \mathcal{E}_{\alpha'}^j \rho_{eq.} \left(\mathcal{L}_{\alpha'}^j \frac{1}{\mathcal{L}_\epsilon} \mathbf{j}_\alpha^i \right)
\]
\[
+ \rho_{eq.} \left(\left\{ \mathcal{L}_{\alpha'}^j(\mathbf{R}_i^i), \dot{X}_\alpha \right\} \right)
\]
\[
+ O(\mathcal{E}^2)
\]

Hence the \textit{Onsager coefficients} are
\[
L_{\alpha,\alpha'}^{i,j} = - \rho_{eq.} \left(\mathcal{L}_{\alpha'}^j \frac{1}{\mathcal{L}_\epsilon} \mathbf{j}_\alpha^i + \left\{ \mathcal{L}_{\alpha'}^j(\mathbf{R}_i^i), \dot{X}_\alpha \right\} \right)
\]
Validity of Greene-Kubo Formulæ

The previous derivation is formal. Various conditions must be assumed.

- The explicit expressions for \(\mathcal{L} \) and the \(\mathcal{L}_{\alpha} \)'s are model dependent.
- It is necessary to prove that \(\mathcal{L}_\mathcal{E}(\vec{R}) \in \mathcal{A}_s \).
- The inverse of \(\mathcal{L} \) is not a priori well defined.

However, the dissipative part \(\mathfrak{D} \) is usually responsible for the existence of the inverse. This is because

\[
\text{Spec}(\iota[H, \cdot]) \subset \iota\mathbb{R}
\]

while \(\mathfrak{D} \) gives a non zero real part to eigenvalues.

In the Relaxation Time Approximation,

\[
\mathfrak{D}(A) = A/\tau \quad \Rightarrow \quad \text{Spec} \left(\iota[H, \cdot] + \frac{1}{\tau} \right) \subset \iota\mathbb{R} + \frac{1}{\tau}
\]

where \(\tau \) is the relaxation time.
IV - Relaxation Time Approximation
Conclusion

1. Linear response theory requires taking \textit{dissipation} into account. Various limits take care of time or length scales. These limits usually do not commute!

2. Dissipation is described through the \textit{local equilibrium approximation} (LEA), leading to entropy creation by constant return to local equilibrium.

3. Thanks to the LEA, the currents becomes smooth functions of the \textit{affinities} leading to the \textit{transport} or \textit{Onsager} coefficients.

4. A quantum treatment of transport coefficients must be provided for electrons in a solid. The \textit{Master equation} describes the dynamics within the LEA.

5. The Master Equation leads to the Greene-Kubo formula for Onsager coefficients.