The

TRANSVERSE GEOMETRY

of

TLING SPACES

Jean BELLISSARD

Georgia Institute of Technology, Atlanta
School of Mathematics & School of Physics
e-mail: jeanbel@math.gatech.edu
Collaborations

J. Pearson, (Gatech, Atlanta, GA)

J. Savinien, (U. Metz, Metz, France)

A. Julien, (U. Victoria, Victoria, BC)

I. Palmer, (NSA, Washington DC)

R. Parada, (Gatech, Atlanta, GA)
Main References

Content

1. Tilings and their Transversal
2. Spectral Triple
3. The Pearson Laplacian
4. Open Problems
I - Tilings and their Transversal
The Fibonacci Tiling

The Fibonacci Substitution
The Fibonacci Tiling

\[a_0 \]

\[a_1 \]

\[a_2 \]

\[a_3 \]

\[a \]

\[ab \]

\[aba \]

\[abaab \]
The Fibonacci Tiling

cut-and-project version of the Fibonacci sequence

\[\text{Slope} = \frac{\sqrt{5} - 1}{2} = \sigma \]
The Fibonacci Tiling

cut-and-project version of the Fibonacci sequence
The Fibonacci Tiling

cut-and-project version of the Fibonacci sequence
The Fibonacci Tiling

cut-and-project version of the Fibonacci sequence

Symmetry around (.5,.5)

window
unit cell

E_{\perp}

$E_{||}$

a_1, a_2, a_3
The Octagonal Tiling

Octagonal Lattice

$\mathbb{Z}^4 \rightarrow \mathbb{R}^2$
The Octagonal Tiling

Octagonal Lattice

$Z^4 \rightarrow \mathbb{R}^2$

Substitution
The Octagonal Tiling

Octagonal Lattice

$\mathbb{Z}^4 \rightarrow \mathbb{R}^2$

The Transversal or Window
The Octagonal Tiling

Octagonal Lattice

$\mathbb{Z}^4 \rightarrow \mathbb{R}^2$

Local Environments
Inverse Limit

Let \mathcal{P}_R be the set of patches of radius R, modulo translation.

The tiling has finite local complexity (FLC), if and only if \mathcal{P}_R is a finite set for all R. In particular $R \to \mathcal{P}_R$ is locally constant and non-decreasing. Thus there is a sequence $R_0 = 0 < R_1 < \cdots < R_n < \cdots$ with $R_n \to \infty$ such that $\mathcal{P}_R = \mathcal{P}_n$ for $R_n \leq R < R_{n+1}$.
There is a restriction map $\pi : P_{n+1} \to P_n$. Then the transversal is defined by the inverse limit

$$\Xi = \lim_{\leftarrow \pi} P_n$$
Since all the P_n's are finite set, Ξ is a Cantor set.

A point of Ξ is an infinite sequence $\xi = (p_n)_{n=0}^{\infty}$ of compatible patches, so it defines a unique tiling.

This inverse limit can be represented by a rooted tree.
Rooted Tree

For the *Fibonacci sequence* this gives

The Fibonacci Tree
II - Spectral Triples
A spectral triple for a C*-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that
A \textit{spectral triple} for a C\(^*\)-algebra \(\mathcal{A}\) is a family \(X = (\mathcal{A}, \mathcal{H}, D)\) where \(\mathcal{H}\) is a Hilbert space, \(D\) and unbounded operator on \(\mathcal{H}\) such that

- there is a (faithful) representation \(\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})\)
A *spectral triple* for a \mathbb{C}^*-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi : \mathcal{A} \rightarrow \mathbb{B}(\mathcal{H})$
- D is selfadjoint with compact resolvent (*Dirac operator*)
A spectral triple for a C*-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where $
abla$ is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi : \mathcal{A} \to B(\mathcal{H})$
- D is selfadjoint with compact resolvent (*Dirac operator*)
- the set $C^1(X)$ of elements $a \in \mathcal{A}$ leaving the domain of D invariant and such that $\|[D, \pi(a)]\| < \infty$, is dense in \mathcal{A}
Spectral Triples

A spectral triple for a C*-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi : \mathcal{A} \to B(\mathcal{H})$
- D is selfadjoint with compact resolvent (Dirac operator)
- the set $C^1(X)$ of elements $a \in \mathcal{A}$ leaving the domain of D invariant and such that $\|[D, \pi(a)]\| < \infty$, is dense in \mathcal{A}

Proposition: Then $C^1(X)$ is a dense ∗-subalgebra of \mathcal{A}, invariant under the holomorphic functional calculus.
Example

Let M be a spinc Riemannian manifold, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.
Example

Let M be a spin^c Riemannian manifold, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through
Example

Let M be a spinc Riemannian manifold, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$d(x, y) = \sup\{|f(x) - f(y)|; f \in \mathcal{A}, \|[D, f]\| \leq 1\}$$
Example

Let M be a spinc Riemannian manifold, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$d(x, y) = \sup \{|f(x) - f(y)| ; f \in \mathcal{A}, \|[D, f]\| \leq 1\}$$

Actually $\|[D, f]\| = \|\nabla f\|_\infty = \|f\|_{C_{\text{Lip}}} and C^1(X) = \text{Lip}(M)$.
Example

Let M be a spinc Riemannian manifold, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$d(x, y) = \sup \{|f(x) - f(y)| ; f \in \mathcal{A}, \|[D, f]\| \leq 1\}$$

Actually $\|[D, f]\| = \|\nabla f\|_{L^\infty} = \|f\|_{C^{\text{Lip}}} \text{ and } C^1(X) = \text{Lip}(M)$.

Hence the algebra \mathcal{A} encodes the *space*, the Dirac operator D encodes the *metric*. \mathcal{H} is needed to define D.
Ultrametric on Ξ

A *weight* on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch p (vertex of the graph), such that
A weight on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non-increasing as p changes from father to son,
A *weight* on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\kappa(p)$ converges to zero as p tends to the end of the path.
A weight on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\kappa(p)$ converges to zero as p tends to the end of the path.

Theorem, (Michon ‘84) If $\xi, \eta \in \Xi$ let $\xi \land \eta$ be the least common ancestor of the path ξ and η. Then $d_\kappa(\xi, \eta) = \kappa(\xi \land \eta)$ defines an ultrametric on Ξ.
Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\kappa(p)$ converges to zero as p tends to the end of the path.

Theorem, (Michon '84) If $\xi, \eta \in \Xi$ let $\xi \wedge \eta$ be the least common ancestor of the path ξ and η. Then $d_{\kappa}(\xi, \eta) = \kappa(\xi \wedge \eta)$ defines an ultrametric on Ξ.

Then $\kappa(p)$ is the diameter of the set of tilings compatible with p.
A weight on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\kappa(p)$ converges to zero as p tends to the end of the path.

Theorem, (Michon ‘84) If $\xi, \eta \in \Xi$ let $\xi \land \eta$ be the least common ancestor of the path ξ and η. Then $d_\kappa(\xi, \eta) = \kappa(\xi \land \eta)$ defines an ultrametric on Ξ.

Then $\kappa(p)$ is the diameter of the set of tilings compatible with p.

Each ultrametric on Ξ can be obtained in such a way through a rooted tree defined from the metric.
Ultrametric on Ξ
Ultrametric on Ξ

Examples:

- If p is a patch of radius R, take $\kappa(p) = 1/R$,
Examples:

• If p is a patch of radius R, take $\kappa(p) = 1/R$,

• If p is a patch, take $\kappa(p)$ to be the maximum potential energy difference at the origin, produced by atoms outside p on all tilings of Ξ compatible with p.
The Pearson-Palmer Spectral Triple

Given p a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with p at the origin. The family $(\Xi(p))_{p \in \mathcal{P}}$ is a basis of clopen set for the topology of Ξ.
The Pearson-Palmer Spectral Triple

Given p a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with p at the origin. The family $(\Xi(p))_{p \in P}$ is a basis of clopen set for the topology of Ξ.

A *clopen cover* \mathcal{P} is a finite family of patches partitionning Ξ.
The Pearson-Palmer Spectral Triple

ea clopen cover
Given a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with p at the origin. The family $(\Xi(p))_{p\in P}$ is a basis of clopen set for the topology of Ξ.

A *clopen cover* \mathcal{P} is a finite family of patches partitioning Ξ. Then

$$\text{diam } \mathcal{P} = \max\{\kappa(p) ; p \in \mathcal{P}\}$$

An infinite sequence $(\mathcal{P}_n)_{n\in \mathbb{N}}$ of clopen cover is called *resolving* if $\lim_{n\to \infty} \text{diam } \mathcal{P}_n = 0$.
The Pearson-Palmer Spectral Triple

- Algebra: $\mathcal{A} = C(\Xi)$,
The Pearson-Palmer Spectral Triple

- **Algebra:** \(\mathcal{A} = C(\Xi) \),

- **Hilbert Space:** \(\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2 \), with \((\mathcal{P}_n)_{n \in \mathbb{N}} \) a resolving sequence of clopen covers.
The Pearson-Palmer Spectral Triple

- **Algebra:** $\mathcal{A} = C(\Xi)$,
- **Hilbert Space:** $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2$, with $(\mathcal{P}_n)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- **Dirac Operator:** for $\psi \in \mathcal{H}$
 $$ (D\psi)(p) = \frac{1}{\kappa(p)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi(p). $$
The Pearson-Palmer Spectral Triple

- **Algebra:** $\mathcal{A} = C(\Xi)$,

- **Hilbert Space:** $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2$, with $(\mathcal{P}_n)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.

- **Dirac Operator:** for $\psi \in \mathcal{H}$

$$
(D\psi)(p) = \frac{1}{\kappa(p)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi(p).
$$

- **Choice:** it is an assignment, for each $p \in \bigcup_n \mathcal{P}_n$ of two points

$\tau(p) = (\xi_p, \eta_p)$, with $\xi_p, \eta_p \in \Xi(p)$ and $\xi_p \wedge \eta_p = p$.
The Pearson-Palmer Spectral Triple

- **Algebra:** \(\mathcal{A} = C(\Xi) \),

- **Hilbert Space:** \(\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2 \), with \((\mathcal{P}_n)_{n \in \mathbb{N}} \) a resolving sequence of clopen covers.

- **Dirac Operator:** for \(\psi \in \mathcal{H} \)
 \[
 (D\psi)(p) = \frac{1}{\kappa(p)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi(p).
 \]

- **Choice:** it is an assignment, for each \(p \in \bigcup_n \mathcal{P}_n \) of two points \(\tau(p) = (\xi_p, \eta_p) \), with \(\xi_p, \eta_p \in \Xi(p) \) and \(\xi_p \wedge \eta_p = p \).

- **Representation:** for each choice \(\tau \) and \(f \in C(\Xi) \)
 \[
 (\pi_\tau(f)\psi)(p) = \begin{bmatrix} f(\xi_p) & 0 \\ 0 & f(\eta_p) \end{bmatrix} \psi(p).
 \]
The ζ-function is defined by

$$\zeta(s) = \text{Tr} \left(\frac{1}{|D|^s} \right)$$
The ζ-function: is defined by

$$\zeta(s) = \text{Tr} \left(\frac{1}{|D|^s} \right)$$

Theorem: There is a resolving sequence of clopen covers and an $s > 0$ such that $\zeta(s) < \infty$ if and only if the metric space (Ξ, d_κ) has finite Hausdorff dimension.
The ζ-function: is defined by

$$\zeta(s) = \text{Tr}\left(\frac{1}{|D|^s}\right)$$

Theorem: There is a resolving sequence of clopen covers and an $s > 0$ such that $\zeta(s) < \infty$ if and only if the metric space (Ξ, d_κ) has finite Hausdorff dimension.

If so, the abscissa of convergence, defined by $s_0 = \inf\{s > 0 ; \zeta(s) < \infty\}$ satisfies

$$s_0 \geq \dim_H(\Xi)$$
ζ-function

The ζ-function: is defined by

\[
ζ(s) = \text{Tr} \left(\frac{1}{|D|^s} \right)
\]

Theorem: There is a resolving sequence of clopen covers and an \(s > 0 \) such that \(ζ(s) < \infty \) if and only if the metric space \((Ξ, d_κ) \) has finite Hausdorff dimension.

If so, the abscissa of convergence, defined by \(s_0 = \inf\{s > 0 ; ζ(s) < \infty\} \) satisfies

\[
s_0 \geq \dim_H(Ξ)
\]

There exists a (non unique) resolving sequence of clopen covers \((P_n)_{n \in \mathbb{N}} \), called a Hausdorff sequence, such that \(s_0 = \dim_H(Ξ) \).
The Connes State

The Connes state is defined by

$$ T(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \text{Tr} \left(\frac{1}{|D|^s} \pi_\tau(f) \right), \quad f \in \mathbb{C}(\Xi) $$
The Connes State

The Connes state is defined by

\[\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \text{Tr} \left(\frac{1}{|D|^s} \pi_{\tau}(f) \right), \quad f \in C(\Xi) \]

Theorem: If \((\Xi, d_\kappa)\) has finite Hausdorff dimension and if \((P_n)_{n \in \mathbb{N}}\) is a Hausdorff sequence, the Connes state exists if and only if \(\Xi\) has a finite nonzero Hausdorff measure.
The Connes State

The Connes state is defined by

\[
\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \text{Tr} \left(\frac{1}{|D|^s} \pi_\tau(f) \right), \quad f \in C(\Xi)
\]

Theorem: If \((\Xi, d_\kappa)\) has finite Hausdorff dimension and if \((P_n)_{n \in \mathbb{N}}\) is a Hausdorff sequence, the Connes state exists if and only if \(\Xi\) has a finite nonzero Hausdorff measure.

If so, \(\mathcal{T}\) is independent of the choice \(\tau\).
The Connes State

The Connes state is defined by

\[\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \text{Tr} \left(\frac{1}{|D|^s} \pi_\tau(f) \right), \quad f \in C(\Xi) \]

Theorem: If \((\Xi, d_\kappa)\) has finite Hausdorff dimension and if \((\mathcal{P}_n)_{n \in \mathbb{N}}\) is a Hausdorff sequence, the Connes state exists if and only if \(\Xi\) has a finite nonzero Hausdorff measure.

If so, \(\mathcal{T}\) is independent of the choice \(\tau\).

If so, \(\mathcal{T}\) coincides with the normalized Hausdorff measure on \(\Xi\).
III - The Pearson Laplacian
Directional Derivative, Tangent Space

If \(\tau(p) = (\xi_p, \eta_p) \) then

\[
[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \psi(p)
\]
Directional Derivative, Tangent Space

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative.
Directional Derivative, Tangent Space

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \, \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \, \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a unit tangent vector at p.
Directional Derivative, Tangent Space

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_\tau(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a *directional derivative*. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a *unit tangent vector* at p.
- the set Υ of all possible choices, can be seen as the set of *sections of the tangent sphere bundle*.

Directional Derivative, Tangent Space

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_\tau(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a unit tangent vector at p.
- the set Υ of all possible choices, can be seen as the set of sections of the tangent sphere bundle.
- $[D, \pi_\tau(f)]$ could be written as $\nabla_\tau f$.
Choice Averaging

- The *choice space* Υ is given by $\prod_p \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
Choice Averaging

- The *choice space* Υ is given by $\prod_p \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.

- Let ν_p be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_H \otimes \mu_H$ on $\Xi(p) \times \Xi(p)$.
Choice Averaging

• The choice space \mathcal{Y} is given by $\prod_p \mathcal{Y}(p)$ where $\mathcal{Y}(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.

• Let ν_p be the probability measure on $\mathcal{Y}(p)$ induced by the Hausdorff measure $\mu_H \otimes \mu_H$ on $\Xi(p) \times \Xi(p)$.

• This leads to the probability

$$\nu = \bigotimes_p \nu_p$$
Choice Averaging

- The choice space \mathcal{Y} is given by $\prod_p \mathcal{Y}(p)$ where $\mathcal{Y}(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let ν_p be the probability measure on $\mathcal{Y}(p)$ induced by the Hausdorff measure $\mu_H \otimes \mu_H$ on $\Xi(p) \times \Xi(p)$.
- This leads to the probability

$$\nu = \bigotimes_p \nu_p$$

Hence ν_p can be interpreted as the average over the tangent unit sphere at p.
The Pearson quadratic form is defined by (if \(f, g \in C(\Xi) \))

\[
Q_s(f, g) = \int_{\Upsilon} d\nu(\tau) \; \text{Tr} \left(\frac{1}{|D|} [D, \pi_\tau(f)]^* [D, \pi_\tau(g)] \right)
\]
The Pearson Quadratic Form

The Pearson quadratic form is defined by (if \(f, g \in C(\Xi) \))

\[
Q_s(f, g) = \int_{\Upsilon} d\nu(\tau) \operatorname{Tr} \left(\frac{1}{|D|^s}[D, \pi_\tau(f)]^* [D, \pi_\tau(g)] \right)
\]

Theorem: If \((\Xi, d_\kappa)\) has positive finite Hausdorff measure, for each \(s \in \mathbb{R} \), the quadratic forms \(Q_s \) is densely defined, closable in \(L^2(X, \mu_H) \) and is a Dirichlet form.
The Pearson Quadratic Form

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$Q_s(f, g) = \int_{\Upsilon} d\nu(\tau) \operatorname{Tr} \left(\frac{1}{|D|^s} [D, \pi_\tau(f)]^* [D, \pi_\tau(g)] \right)$$

Theorem: If (Ξ, d_κ) has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_s is densely defined, closable in $L^2(X, \mu_H)$ and is a Dirichlet form.

The corresponding positive operator Δ_s has pure point spectrum. It is bounded if and only if $s > \dim_H(\Xi) + 2$ and has compact resolvent otherwise.
The Pearson Quadratic Form

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$Q_s(f, g) = \int_{\gamma} d\nu(\tau) \text{Tr} \left(\frac{1}{|D|^s} [D, \pi_\tau(f)]^* [D, \pi_\tau(g)] \right)$$

Theorem: If (Ξ, d_κ) has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_s is densely defined, closable in $L^2(X, \mu_H)$ and is a Dirichlet form.

The corresponding positive operator Δ_s has pure point spectrum. It is bounded if and only if $s > \dim_H(\Xi) + 2$ and has compact resolvent otherwise.

The eigenspaces are common to all s’s and can be explicitly computed.
Jump Process

Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t \geq 0}$ where the X_t's takes on values in Ξ.
Δs generates a Markov semigroup, thus a stochastic process $(X_t)_{t\geq 0}$ where the X_t’s take on values in Ξ.

Given a patch p, its spine is the set of vertices located along the finite path joining the root to p. The vine $\mathcal{V}(p)$ of p is the set of patches, not in the spine, which are children of one vertex of the spine.
The vine of a vertex v

The vine of p
Jump Process

\(\Delta_s \) generates a Markov semigroup, thus a stochastic process \((X_t)_{t \geq 0}\) where the \(X_t\)'s takes on values in \(\Xi\).

Given a patch \(p\), its spine is the set of vertices located along the finite path joining the root to \(p\). The vine \(\mathcal{V}(p)\) of \(p\) is the set of patches, not in the spine, which are children of one vertex of the spine.

If \(\chi_p\) is the characteristic function of \(\Xi(p)\), the Pearson operator acts as

\[
\Delta_s \chi_p = \sum_{q \in \mathcal{V}(p)} M(p, q)(\chi_q - \chi_p)
\]
Jump Process

\(\Delta_s \) generates a Markov semigroup, thus a stochastic process \((X_t)_{t \geq 0}\) where the \(X_t\)'s takes on values in \(\Xi\).

Given a patch \(p\), its spine is the set of vertices located along the finite path joining the root to \(p\). The vine \(\mathcal{V}(p)\) of \(p\) is the set of patches, not in the spine, which are children of one vertex of the spine.

If \(\chi_p\) is the characteristic function of \(\Xi(p)\), the Pearson operator acts as

\[
\Delta_s \chi_p = \sum_{q \in \mathcal{V}(p)} M(p, q)(\chi_q - \chi_p)
\]

where \(M(p, q) > 0\) represents the probability rate (per unit time) for \(X_t\) to jump from \(\Xi(p)\) to \(\Xi(q)\).
Jump process from \(p \) to \(q \)

Jump process from \(v \) to \(w \)
Jump Process

Concretely, if \hat{q} denotes the father of q (which belongs to the spine)

$$M(p, q) = 2\kappa(\hat{q})^{s-2} \frac{\mu_p}{Z_{\hat{q}}} \quad \mu_p = \mu_H(\Xi(p))$$

where $Z_{\hat{q}}$ is the normalization constant for the measure $\nu_{\hat{q}}$ on the set of choices at \hat{q}, namely

$$Z_{\hat{q}} = \sum_{q' \neq q'' \in \text{Ch}(\hat{q})} \mu_{q'} \mu_{q''}$$

where $\text{Ch}(\hat{q})$ denotes the set of children of \hat{q}.
Thanks for Listening!