1D-Quantum Systems
(1980-1993)
a review

Jean BELLISSARD
Georgia Institute of Technology, Atlanta
School of Mathematics & School of Physics
e-mail: jeanel@math.gatech.edu

Sponsoring
NSF grant No. 0901514
Main References

M. Kohmoto, L.P. Kadanoff, C. Tang,
Localization problem in one dimension: mapping and escape,

S. Ostlund, R. Pandit, D. Rand, H.J. Schellnhuber, E.D Sigia,
One dimensional Schrödinger equation with an almost periodic potential,

J. Bellissard,
Gap Labeling Theorems for Schrödinger’s Operators,
in *From Number Theory to Physics*, pp.538-630, Les Houches March 89,
Content

2. Formalism
3. Cantor Spectra
4. Open Problems
I - The Situation in 1980
The 1D discrete Schrödinger eigenvalue equation
\[\psi(n + 1) + \psi(n - 1) + V_n \psi(n) = E \psi(n) \]
can be written as
\[\Phi_{n+1} = \begin{bmatrix} \psi(n + 1) \\ \psi(n) \end{bmatrix} = \begin{bmatrix} E - V_n & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \psi(n) \\ \psi(n - 1) \end{bmatrix} = M_n \Phi_n \]

The matrix \(M_n \) is called the transfer matrix.

If, for instance, \(V_{n+p} = V_n \) is periodic, then the Floquet matrix
\[F = M_p M_{p-1} \cdots M_1 \]
defines the behaviour of the wave function \(\psi \) at infinity, in terms of the energy \(E \).
Aperiodic Potentials

In 1979, the following potentials were under scrutiny

- the V_n’s are *i.i.d. random variables* for which the spectrum is pure point, *(Pastur ’73, Goldsheid-Molchanov-Pastur ’78, Kunz-Souillard ’79)*

- the sequence $(V_n)_{n \in \mathbb{Z}}$ is *quasiperiodic*: at small coupling, the *KAM theorem* applies and gives a large a.c. spectrum *(Dinaburg-Sinai ’75, for the continuum)*

- There is a class of bounded non-decreasing potential leading to a purely s.c. spectrum, *(Jona-Lasinio, Martinelli, Scoppola, ’79)*
The Harper and Almost-Mathieu models

• For the almost-Mathieu equation $V_n = 2\lambda \cos 2\pi n \alpha$, $\alpha \notin \mathbb{Q}$, Aubry’s duality predicts a transition between a.c. spectrum for $|\lambda| < 1$ to p.p. spectrum for $|\lambda| > 1$, (Aubry-André ‘78)

• The Lebesgue measure of the spectrum of the almost-Mathieu equation is $4|\lambda - 1|$, (numerical result of Aubry-André ‘78)

• The spectrum of the Harper equation looks Cantorian, self similar and the gap edges look continuous in α (numerical calculation Hofstadter ‘76)
• The gaps of the Hofstadter spectrum can be labeled by integers
 (Claro-Wannier, ’78),
 (the coloring encoding the labels is due to Osadchy-Avron ’01)
II - Formalism

\[(H_c \psi)(x) = -\psi''(x) + V(x)\psi(x) \quad \text{on} \quad L^2(\mathbb{R})\]

\[(H\psi)(n) = \psi(n + 1) + \psi(n - 1) + V_n\psi(n) \quad \text{on} \quad \ell^2(\mathbb{Z})\]
Tight Binding Representation

• Correspondence between the continuum Schrödinger equation and an equivalent discrete one, through a transfer matrix over some unit length; example of a Krönig-Penney model: the French connection (Bellissard-Formoso-Lima-Testard '81)

• Analogy with the Poincaré section in dynamical system; the inverse operation is called suspension

• Same operation as the tight-binding representation in Solid State Physics

• This can be extended to higher dimension, also in the context of C^*-algebras through the notion of Morita equivalence
The Hull

- If the sequence $\xi_0 = (V_n)_{n \in \mathbb{Z}}$ is bounded by C, its **Hull** is the closure Ξ of its orbit under the shift $t\xi_0 = (V_{n-1})_{n \in \mathbb{Z}}$, in the compact metrizable space $[-C, C]^\mathbb{Z}$.

- The pair (Ξ, t) is a **topological dynamical system**, a \mathbb{Z}-action on Ξ by homeomorphisms.

- There is a **continuous** function $v : \Xi \to \mathbb{R}$ such that $V_n = v(t^{-n}\xi_0)$.

- Any point in the Hull $\xi \in \Xi$ defines a potential $V_\xi(n) = v(t^{-n}\xi)$, which satisfies $T^nV_\xi T^{-n} = V_{T^n\xi}$, ($T$ is the translation operator on $\ell^2(\mathbb{Z})$).
Groupoid

The set $\Gamma_\Xi = \Xi \times \mathbb{Z}$ can be seen as a locally compact groupoid as follows

- **Set of units:** $\Gamma^{(0)} = \Xi$
- **Range and Source:** $r(\xi, n) = \xi$, $s(\xi, n) = T^{-n}\xi$
- **Product:** $(\xi, m) \circ (T^{-m}\xi, n) = (\xi, m + n)$
- **Inverse:** $(\xi, n)^{-1} = (T^{-n}\xi, -n)$
The convolution algebra on the space $C_c(\Xi \times \mathbb{Z})$ of continuous functions with compact support is defined as follows

- **Product:** $fg(\xi, n) = \sum_{m \in \mathbb{Z}} f(\xi, m)g(T^{-m}\xi, n - m)$
- **Adjoint:** $f^*(\xi, n) = f(T^{-n}\xi, -n)$
- **Representation:** on $\ell^2(\mathbb{Z})$

\[
(\pi_\xi(f)\psi)(n) = \sum_{m \in \mathbb{Z}} f(T^{-n}\xi, m - n) \psi(m)
\]

- **Covariance:** $T\pi_\xi(f)T^{-1} = \pi_{T\xi}(f))$
- **C^*-norm:** $\|f\| = \sup_{\xi \in \Xi} \|\pi_\xi(f)\|$

The completion is denoted by $\mathcal{A} = C^*(\Gamma_\Xi) = C(\Xi) \rtimes \mathbb{Z}$.

C^*-algebra
• **Hamiltonian:** \(h(\xi, n) = \delta_{n,1} + \delta_{n,-1} + \delta_{n,0} \nu(\xi) \)

\[\pi_\xi(h) = H_\xi \Rightarrow \left(H_\xi \psi \right)(n) = \psi(n + 1) + \psi(n - 1) + V_\xi(n)\psi(n) \]

• **Trace:** if \(\mathbb{P} \) is a \(\mathbb{Z} \)-invariant *ergodic* probability on \(\Xi \), then

\[T_\mathbb{P}(f) = \int_\Xi f(\xi, 0) \mathbb{P}(d\xi) = \lim_{L \to \infty} \frac{1}{2L} \text{Tr}_{[-L,L]}(\pi_\xi(f)) \quad \mathbb{P}\text{-a.s.} \]

• **Shubin’s formula:** The integrated density of state is given by

\[\mathcal{N}(E) = T_\mathbb{P}(\chi(h \leq E)) \]
Gap labeling Theorem

• **K_0-group:** it is the Grothendieck group generated by (unitary) equivalence classes of projections in $\bigcup_{n \in \mathbb{N}} \mathcal{A} \otimes M_n(\mathbb{C})$ with addition given by the *direct sum*. K_0 is *countable abelian*. The equivalence class $[P]$ of a projection is *homotopy invariant*.

• **Gap labels:** The trace on \mathcal{A} induces a group homomorphism $\tau : K_0(\mathcal{A}) \rightarrow \mathbb{R}$. The image $\tau(K_0(\mathcal{A}))$ is the set of *gap labels*.

• **Algebraic spectrum:** $\text{Sp}_\mathcal{A}(h) = \bigcup_{\xi \in \Xi} \text{Sp}(H_\xi) = \text{Sp}(H_{\xi_0})$

• **Spectral gaps:** If S is a clopen subset in $\text{Sp}(h)$ the spectral projection $P_S = \chi(h \in S)$ belongs to \mathcal{A}. The IDS on this gap is $\tau([P_S])$.

• **Sum rule:** if $S = S_1 \cup S_2$ with $S_1 \cap S_2 = \emptyset$ and S_i clopen, then $[P_S] = [P_{S_1}] + [P_{S_2}]$.
The number $\Phi_{\xi}(n) = \psi(n) + i\psi(n - 1)$ does not vanish if $\psi \neq 0$ is a solution of the Schrödinger equation. If E is in a gap, there is a unique solution $\Phi_{\xi,\pm}$ (up to a multiplicative constant) vanishing at $\pm\infty$.

If $\theta_{\xi,\pm}(n)$ is the argument of $\Phi_{\xi,\pm}(n)$

$$N(E) = \tau([P_E]) = \frac{1}{\pi} \int_\Xi \left(\theta_{\xi,\pm}(1) - \theta_{\xi,\pm}(0) \right) P(d\xi)$$

No analog of this formula is available in higher dimension.
III - Cantor Spectra
Moser’s Result

• Cantor spectrum: A limit periodic potential of the form

\[V(x) = a_0 + \sum_{k \in \mathbb{N}} a_{k,l} \cos\left(\frac{2\pi lx}{2^k}\right) + b_{k,l} \sin\left(\frac{2\pi lx}{2^k}\right) \]

leads to a Cantor spectrum for a generic choice of the Fourier coefficients in the uniform topology.

• Gap Labels: The IDS on the gaps has the form \(l/2^k \), \(l, k \in \mathbb{N} \).

• a.c spectrum: if the Fourier coefficient of \(V \) decay fast enough the spectrum is a.c. (Gordon ‘76)
The Almost-Mathieu model

• For $\lambda \neq 0$ and $\alpha \notin \mathbb{Q}$, the spectrum of the almost-Mathieu Hamiltonian is a Cantor set.

• The Lebesgue measure of the spectrum is $4|\lambda - 1|$ for $\alpha \notin \mathbb{Q}$.

• $\lambda \neq 0$ and $\alpha \notin \mathbb{Q}$ the gap labels are given by $n\alpha - [n\alpha]$ for some $n \in \mathbb{Z}$ and all gaps but for the central one at $E = 0$ are open.

• The gap edges are Lipschitz continuous in α as long as the gap does not close, and are Hölder continuous with exponent $1/2$ otherwise.

• The gap edges are left and right differentiable near any rational α and the two derivatives are distinct and computable explicitly.
1D-quasicrystals

• \(V(n) = \lambda \) if \(n\alpha \in (0, \alpha] \mod 1 \) and \(V(n) = 0 \) otherwise. This leads to two values of the transfer matrix, called \(A, B \)

• For \(\alpha = (\sqrt{5} - 1)/2 \), the transfer matrix can be computed from the substitution \(A \rightarrow BA \), \(B \rightarrow A \).

• Note that \(\det(A) = \det(B) = 1 \).
The three variables $x = \text{Tr}(A), y = \text{Tr}(B), z = \text{Tr}(AB)$ are sufficient to compute the spectrum. Under the substitution, it becomes (trace map)

$$x_{n+1} = z_n, \quad y_{n+1} = x_n, \quad z_{n+1} = x_nz_n - y_n$$

$I(x, y, z) = x^2 + y^2 + z^2 - xyz$ is invariant by substitution.

The spectrum is the set of E's such that (x_n, y_n, z_n) stay bounded.

The spectral measure is purely s.c. for $\lambda \neq 0, \alpha \notin \mathbb{Q}$ and the spectrum has zero Lebesgue measure.

Estimates on the Hausdorff dimension of the spectrum are available (Damanik et al. '10)
Spectrum of the 1D-quasicrystal

Horizontal axis E, vertical axis $0 \leq \alpha \leq 1$

(after Ostlundt, Kim '85)
Are there potential that are not almost periodic

leading to a Cantor spectrum?
The Thue-Morse model

J. Bellissard, *Spectral properties of Schrödinger’s operator with a Thue-Morse potential.*

- The Thue-Morse sequence is obtained from the substitution $A \rightarrow BA$, $B \rightarrow AB$ and a trace map.
- The corresponding sequence $(V_n)_{n \in \mathbb{Z}}$ is not almost periodic (Kakutani ’54)
- If $\lambda \neq 0$, the Thue-Morse model has a Cantor spectrum with zero Lebesgue measure. The spectral measure is s.c.
- The gap edges are computable in terms of a nonlinear implicit equation.
- Gap labels: $l/(3 \cdot 2^k)$ for $l, k \in \mathbb{N}$. Gaps with $l = 0 \mod 3$ are closed.
- For gap width behave like $|\lambda|^{\sigma}$, $|\lambda| \downarrow 0$ for some $\sigma > 0$.
Gap labeling for substitution sequences

- **Data:** a finite alphabet \mathcal{A}, the set \mathcal{W}_k of words of length k, \mathcal{W}, set of finite words, \mathcal{W}_* the set of infinite sequences of letters.

- **Potential:** if $\text{ev} : \mathcal{A} \rightarrow \mathbb{R}$, any sequence $(V_n)_{n \in \mathbb{Z}}$ with $V_n \in \text{ev}(\mathcal{A})$.

- If \mathbb{P} is an ergodic probability of the Hull of the previous V, the set of gap labels is the \mathbb{Z}-module generated by the occurrence probabilities of all finite words in V.

- **Substitution:** $\sigma : \mathcal{A} \rightarrow \mathcal{W}$ extended as a map $\sigma : \mathcal{W}_* \rightarrow \mathcal{W}_*$ by concatenation.

- **Extension:** σ_k is the substitution induced by σ on the set of words of length k.
• **Regularity:** \(\sigma \) is *regular* if (i) the substitution is primitive, (ii) the length of \(\sigma^n(a) \) diverges as \(n \to \infty \), (iii) there is a letter \(0 \in \mathcal{A} \) such that \(\sigma(0) = w0w' \) with \(w, w' \) non empty words.

If \(\sigma \) is regular, there is a unique infinite sequence \(\underline{u} \) such that \(\sigma(\underline{u}) = \underline{u} \). Through ev this gives a potential.

• **Matrices:** If \(a, b \in \mathcal{A}_k \) let \(M_{ba}^{(k)} \) be the number of occurrences of \(b \) in \(\sigma_k(a) \). The Perron-Frobenius eigenvalue \(\theta \) of \(M^{(k)} \) is the same for all \(k \)'s. *(Queffelec '87)*

• **Gap Labels:** the set of gap labels for a potential coming from a regular substitution is the \(\mathbb{Z}[\theta^{-1}] \)-module generated by the coordinates of the Perron-Frobenius normalized vectors of \(M \) and \(M^{(2)} \). *(Bellissard '93)*
VI - Open Problems

\[(H_\xi \psi)(n) = \psi(n + 1) + \psi(n - 1) + \lambda V_\xi(n)\psi(n),\]

\[\lambda \geq 0\]
Gap Opening

The IDS at $\lambda = 0$ is

$$N_0(E) = \frac{1}{\pi} \arccos \left(\frac{E}{2} \right) \iff E = 2 \cos \pi N_0(E)$$

The set of *gap labels* give the energies at which values of E a gap may open as $\lambda > 0$.

- **Problem # 1:** find the condition on V for gaps with a given label to open.
- **Problem # 2:** find a theory predicting the *asymptotic gap widths* at $\lambda \downarrow 0$. (Luck ‘89)
Entropy

Let the dynamical system \((\mathcal{X}, \tau)\) have positive topological entropy

- **Problem # 3:** prove or disprove that the Schrödinger operator has only a **finite number of gaps**.

 (Note: if the set of periodic orbit is dense this is known. What about minimal \(\mathbb{Z}\)-action with positive entropy ?)

- **Problem # 4:** prove or disprove that the Schrödinger operator has **pure point spectrum**. *(see Simon-Wolf ’86, Damanik & Avila ’10)*

- **Problem # 5:** same problem with algorithmic complexity larger than 1 *(see Levitov ’88)*
For $\lambda = 0$ an expression of the form

$$C(t) = \langle \psi | e^{itH} \psi \rangle = \int_T |\psi(k)|^2 e^{ith(k)} \, dk$$

admits an asymptotic expansion as $t \uparrow \infty$ depending only upon the nature of the local singularities of the Fourier transform h of H. Malgrange used the Gauss-Manin connection to derive this expansion systematically.

Problem #6: is there an analog of the Gauss-Manin connection liable to predict the asymptotic behavior of $C(t)$ if a potential is added?