RIEMANNIAN GEOMETRY
on
METRIC CANTOR SETS

Jean BELLISSARD

Georgia Institute of Technology, Atlanta
School of Mathematics & School of Physics

Collaboration:
J. PEARSON (Georgia Tech, Atlanta)
I. PALMER (Georgia Tech, Atlanta)

*e-mail: jeanbel@math.gatech.edu
Main References

I. Palmer,
Noncommutative Geometry and Compact Metric Spaces,
PhD Thesis, Georgia Institute of Technology, May 2010

J. Pearson, J. Bellissard,
Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets,

A. Connes,
Noncommutative Geometry,

G. Michon,
Les Cantors réguliers,

K. Falconer,
Fractal Geometry: Mathematical Foundations and Applications,
John Wiley and Sons 1990.
Content

1. Michon’s Trees
2. Spectral Triples
3. ζ-function and Metric Measure
4. The Laplace-Beltrami Operator
5. To conclude
I - Michon’s Trees

I.1)- Cantor sets
I.1) Cantor sets

The triadic Cantor set
Definition A Cantor set is a compact, completely disconnected set without isolated points.
Definition A Cantor set is a compact, completely disconnected set without isolated points

Theorem Any Cantor set is homeomorphic to \(\{0, 1\}^\mathbb{N} \).

Definition A Cantor set is a compact, completely disconnected set without isolated points

Theorem Any Cantor set is homeomorphic to $\{0, 1\}^\mathbb{N}$.

Hence without extra structure there is only one Cantor set.
I.2) - Metrics

Definition Let X be a set. A metric d on X is a map $d : X \times X \mapsto \mathbb{R}_+$ such that, for all $x, y, z \in X$

(i) $d(x, y) = 0$ if and only if $x = y$,
(ii) $d(x, y) = d(y, x)$,
(iii) $d(x, y) \leq d(x, z) + d(z, y)$.
I.2)- Metrics

Definition Let X be a set. A metric d on X is a map $d : X \times X \to \mathbb{R}_+$ such that, for all $x, y, z \in X$

(i) $d(x, y) = 0$ if and only if $x = y$,
(ii) $d(x, y) = d(y, x)$,
(iii) $d(x, y) \leq d(x, z) + d(z, y)$.

Definition A metric d on a set X is an ultrametric if it satisfies

$$d(x, y) \leq \max\{d(x, z), d(z, y)\}$$

for all family x, y, z of points of C.
Given \((C,d)\) a metric space, for \(\epsilon > 0\) let \(\sim\) be the equivalence relation defined by

\[
x \sim y \iff \exists x_0 = x, x_1, \ldots, x_{n-1}, x_n = y \quad d(x_{k-1}, x_k) < \epsilon
\]
Given \((C, d)\) a metric space, for \(\epsilon > 0\) let \(\sim\) be the equivalence relation defined by

\[
x \sim y \iff \exists x_0 = x, x_1, \ldots, x_{n-1}, x_n = y \quad d(x_{k-1}, x_k) < \epsilon
\]

Theorem Let \((C, d)\) be a metric Cantor set. Then there is a sequence \(\epsilon_1 > \epsilon_2 > \cdots \epsilon_n > \cdots \geq 0\) converging to 0, such that \(\sim = \sim_n\) whenever \(\epsilon_n \geq \epsilon > \epsilon_{n+1}\).
Given \((C,d)\) a metric space, for \(\epsilon > 0\) let \(\sim^\epsilon\) be the equivalence relation defined by

\[
x \sim^\epsilon y \iff \exists x_0 = x, x_1, \cdots, x_{n-1}, x_n = y \quad d(x_{k-1}, x_k) < \epsilon
\]

Theorem Let \((C,d)\) be a metric Cantor set. Then there is a sequence \(\epsilon_1 > \epsilon_2 > \cdots \epsilon_n > \cdots \geq 0\) converging to 0, such that \(\sim^\epsilon = \sim^{\epsilon_n}\) whenever \(\epsilon_n \geq \epsilon > \epsilon_{n+1}\).

For each \(\epsilon > 0\) there is a finite number of equivalence classes and each of them is close and open.
Given \((C,d)\) a metric space, for \(\epsilon > 0\) let \(\sim\) be the equivalence relation defined by

\[x \sim y \iff \exists x_0 = x, x_1, \ldots, x_{n-1}, x_n = y \quad d(x_{k-1}, x_k) < \epsilon \]

Theorem Let \((C,d)\) be a metric Cantor set. Then there is a sequence \(\epsilon_1 > \epsilon_2 > \cdots \epsilon_n > \cdots \geq 0\) converging to 0, such that \(\sim = \epsilon_n\sim\) whenever \(\epsilon_n \geq \epsilon > \epsilon_{n+1}\).

For each \(\epsilon > 0\) there is a finite number of equivalence classes and each of them is close and open.

Moreover, the sequence \([x]_{\epsilon_n}\) of clopen sets converges to \(\{x\}\) as \(n \to \infty\).
I.3) Michon’s graph
I.3)- Michon’s graph

Set

- $\mathcal{V}_0 = \{C\}$ (called the *root*),
1.3) Michon’s graph

Set

- $V_0 = \{C\}$ (called the root),
- for $n \geq 1$, $V_n = \{[x]_{e_n}; x \in C\}$,
Set

• \(V_0 = \{C\}\) (called the \textit{root}),
• for \(n \geq 1\), \(V_n = \{[x]_{e_n}; x \in C\}\),
• \(V\) is the disjoint union of the \(V_n\)’s,
I.3)- Michon’s graph

Set

- $\mathcal{V}_0 = \{C\}$ (called the *root*),
- for $n \geq 1$, $\mathcal{V}_n = \{[x]_{e_n}; x \in C\}$,
- \mathcal{V} is the disjoint union of the \mathcal{V}_n’s,
- $\mathcal{E} = \{(v, v') \in \mathcal{V} \times \mathcal{V}; \exists n \in \mathbb{N}, v \in \mathcal{V}_n, v' \in \mathcal{V}_{n+1}, v' \subset v\}$,
I.3)- Michon's graph

Set

- $V_0 = \{C\}$ (called the *root*),
- for $n \geq 1$, $V_n = \{[x]_{\varepsilon_n}; x \in C\}$,
- V is the disjoint union of the V_n's,
- $E = \{(v, v') \in V \times V; \exists n \in \mathbb{N}, v \in V_n, v' \in V_{n+1}, v' \subset v\}$,
- $\delta(v) = \text{diam}\{v\}$.
I.3) Michon’s graph

Set

- $V_0 = \{C\}$ (called the root),
- for $n \geq 1$, $V_n = \{[x]_{e_n}; x \in C\}$,
- V is the disjoint union of the V_n’s,
- $E = \{(v, v') \in V \times V ; \exists n \in \mathbb{N}, v \in V_n, v' \in V_{n+1}, v' \subset v\}$,
- $\delta(v) = \text{diam}\{v\}$.

The family $\mathcal{T} = (C, V, E, \delta)$ defines a weighted rooted tree, with root C, set of vertices V, set of edges E and weight δ.
The Michon tree for the triadic Cantor set

\[C = \text{root} \]

\[\varepsilon_1 = \frac{1}{3} \]
The Michon tree for the triadic Cantor set

$\epsilon_2 = \frac{1}{3^2}$
The Michon tree for the triadic Cantor set
The Michon tree for the triadic Cantor set

\[\varepsilon_4 = \frac{1}{3^4} \]
The Michon tree for the triadic Cantor set
The Michon tree for the triadic Cantor set

\[\varepsilon_n = \frac{1}{3^n} \]
The Michon tree for the triadic ring $\mathbb{Z}(3)$

$C = \text{root}$

$\varepsilon_1 = 1/3$
The Michon tree for the triadic ring $\mathbb{Z}(3)$
The Michon tree for the triadic ring $\mathbb{Z}(3)$

ν_2

$\varepsilon_3 = 1/3^3$
The Michon tree for the triadic ring $\mathbb{Z}(3)$
I.4) The boundary of a tree
I.4) - The boundary of a tree

Let $\mathcal{T} = (0, \mathcal{V}, \mathcal{E})$ be a rooted tree. It will be called *Cantorian* if
1.4)- The boundary of a tree

Let $T = (0, V, E)$ be a rooted tree. It will be called *Cantorian* if

- Each vertex admits one descendant with more than one child
I.4) The boundary of a tree

Let $T = (0, V, E)$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.
I.4) The boundary of a tree

Let $T = (0, V, E)$ be a rooted tree. It will be called **Cantorian** if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.

Then ∂T is the set of infinite paths starting from the root. If $v \in V$ then $[v]$ will denote the set of such paths passing through v.
I.4) The boundary of a tree

Let $\mathcal{T} = (0, \forall, \mathcal{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.

Then $\partial \mathcal{T}$ is the set of infinite path starting form the root. If $\nu \in \forall$ then $[\nu]$ will denote the set of such paths passing through ν

Theorem The family $\{[\nu]; \nu \in \forall\}$ is the basis of a topology making $\partial \mathcal{T}$ a Cantor set.
A *weight* on \mathcal{T} is a map $\delta : \mathcal{V} \mapsto \mathbb{R}_+$ such that
A *weight* on \mathcal{T} is a map $\delta : \mathcal{V} \mapsto \mathbb{R}_+$ such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
A weight on \mathcal{T} is a map $\delta : \mathcal{V} \mapsto \mathbb{R}_+$ such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathcal{V}$ has only one child w then $\delta(v) = \delta(w)$,
A weight on \mathcal{T} is a map $\delta : \mathcal{V} \mapsto \mathbb{R}_+$ such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathcal{V}$ has only one child w then $\delta(v) = \delta(w)$,
- If v_n is the decreasing sequence of vertices along an infinite path $x \in \partial \mathcal{T}$ then $\lim_{n \to \infty} \delta(v_n) = 0$.

A **weight** on \mathcal{T} is a map $\delta : \mathcal{V} \mapsto \mathbb{R}_+$ such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathcal{V}$ has only one child w then $\delta(v) = \delta(w)$,
- If v_n is the decreasing sequence of vertices along an infinite path $x \in \partial \mathcal{T}$ then $\lim_{n \to \infty} \delta(v_n) = 0$.

Theorem If \mathcal{T} is a Cantorian rooted tree with a weight δ, then $\partial \mathcal{T}$ admits a canonical ultrametric d_δ defined by

$$d_\delta(x, y) = \delta([x \land y])$$

where $[x \land y]$ is the least common ancestor of x and y.
The least common ancestor of x and y
Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.

Conversely, if \mathcal{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v) = \text{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $(\partial \mathcal{T}, d_\delta)$ and d_δ is the smallest ultrametric dominating d.
Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.

Conversely, if \mathcal{T} is the Michon tree of a metric Cantor set (C,d), with weight $\delta(v) = \text{diam}(v)$, then there is a contracting homeomorphism from (C,d) onto $(\partial \mathcal{T}, d_\delta)$ and d_δ is the smallest ultrametric dominating d.

In particular, if d is an ultrametric, then $d = d_\delta$ and the homeomorphism is an isometry.
Theorem Let T be a Cantorian rooted tree with weight δ. Then if $v \in V$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.

Conversely, if T is the Michon tree of a metric Cantor set (C,d), with weight $\delta(v) = \text{diam}(v)$, then there is a contracting homeomorphism from (C,d) onto $(\partial T,d_\delta)$ and d_δ is the smallest ultrametric dominating d.

In particular, if d is an ultrametric, then $d = d_\delta$ and the homeomorphism is an isometry.

This gives a representation of all ultrametric Cantor sets together with a parametrization of the space of ultrametrics.
I.5)- Sub-trees

A similar construction might be done by replacing the vertices by a sequence \((\Pi_n)_{n\in\mathbb{N}}\) of \textit{finite clopen partitions} such that

- \(\Pi_0\) is reduced to \(\{C\}\)
- \(\Pi_{n+1}\) is a refinement of \(\Pi_n\)
- if \(\delta_n\) is the diameter of the largest atom of \(\Pi_n\), then \(\lim_{n\to\infty} \delta_n = 0\)
- An \textit{edge} is a pair \((v, w) \in \Pi_n \times \Pi_{n+1}\), for some \(n \geq 0\) such that \(w \subset v\)

Such a tree will be \textit{reduced} if each vertex has more than one child.
II.1)- Spectral Triples
II.1)- Spectral Triples

A *spectral triple* is a family \((\mathcal{H}, \mathcal{A}, D)\), such that
II.1)- Spectral Triples

A *spectral triple* is a family \((\mathcal{H}, \mathcal{A}, D)\), such that

- \(\mathcal{H}\) is a Hilbert space
II.1)- Spectral Triples

A *spectral triple* is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a \ast-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
II.1)- Spectral Triples

A *spectral triple* is a family \((\mathcal{H}, \mathcal{A}, D)\), such that

- **\(\mathcal{H}\)** is a Hilbert space
- **\(\mathcal{A}\)** is a \(\ast\)-algebra invariant by holomorphic functional calculus, with a representation \(\pi\) into \(\mathcal{H}\) by bounded operators
- **\(D\)** is a self-adjoint operator on \(\mathcal{H}\) with *compact resolvent* such that \([D, \pi(f)] \in \mathcal{B}(\mathcal{H})\) is a bounded operator for all \(f \in \mathcal{A}\).
II.1)- Spectral Triples

A *spectral triple* is a family \((\mathcal{H}, \mathcal{A}, D)\), such that

- \(\mathcal{H}\) is a Hilbert space
- \(\mathcal{A}\) is a \(\ast\)-algebra invariant by holomorphic functional calculus, with a representation \(\pi\) into \(\mathcal{H}\) by bounded operators
- \(D\) is a self-adjoint operator on \(\mathcal{H}\) with *compact resolvent* such that \([D, \pi(f)] \in \mathcal{B}(\mathcal{H})\) is a bounded operator for all \(f \in \mathcal{A}\).
- \((\mathcal{H}, \mathcal{A}, D)\) is called *even* if there is \(G \in \mathcal{B}(\mathcal{H})\) such that
A spectral triple is a family \((\mathcal{H}, \mathcal{A}, D)\), such that

- \(\mathcal{H}\) is a Hilbert space
- \(\mathcal{A}\) is a \(*\)-algebra invariant by holomorphic functional calculus, with a representation \(\pi\) into \(\mathcal{H}\) by bounded operators
- \(D\) is a self-adjoint operator on \(\mathcal{H}\) with compact resolvent such that \([D, \pi(f)] \in \mathcal{B}(\mathcal{H})\) is a bounded operator for all \(f \in \mathcal{A}\).
- \((\mathcal{H}, \mathcal{A}, D)\) is called even if there is \(G \in \mathcal{B}(\mathcal{H})\) such that
 - \(G = G^* = G^{-1}\)
II.1)- Spectral Triples

A *spectral triple* is a family \((\mathcal{H}, \mathcal{A}, D)\), such that

- \(\mathcal{H}\) is a Hilbert space
- \(\mathcal{A}\) is a \(\ast\)-algebra invariant by holomorphic functional calculus, with a representation \(\pi\) into \(\mathcal{H}\) by bounded operators
- \(D\) is a self-adjoint operator on \(\mathcal{H}\) with *compact resolvent* such that \([D, \pi(f)] \in \mathcal{B}(\mathcal{H})\) is a bounded operator for all \(f \in \mathcal{A}\).
- \((\mathcal{H}, \mathcal{A}, D)\) is called *even* if there is \(G \in \mathcal{B}(\mathcal{H})\) such that
 - \(G = G^\ast = G^{-1}\)
 - \([G, \pi(f)] = 0\) for \(f \in \mathcal{A}\).
II.1)- Spectral Triples

A *spectral triple* is a family \((\mathcal{H}, \mathcal{A}, D)\), such that

- \(\mathcal{H}\) is a Hilbert space
- \(\mathcal{A}\) is a \(*\)-algebra invariant by holomorphic functional calculus, with a representation \(\pi\) into \(\mathcal{H}\) by bounded operators
- \(D\) is a self-adjoint operator on \(\mathcal{H}\) with *compact resolvent* such that \([D, \pi(f)] \in \mathcal{B}(\mathcal{H})\) is a bounded operator for all \(f \in \mathcal{A}\).
- \((\mathcal{H}, \mathcal{A}, D)\) is called *even* if there is \(G \in \mathcal{B}(\mathcal{H})\) such that
 - \(G = G^* = G^{-1}\)
 - \([G, \pi(f)] = 0\) for \(f \in \mathcal{A}\)
 - \(GD = -DG\)
II.2)- The spectral triple of an ultrametric Cantor set
II.2)- The spectral triple of an ultrametric Cantor set

Let $\mathcal{T} = (\mathcal{C}, \mathcal{V}, \mathcal{E}, \delta)$ be a reduced Michon tree associated with an ultrametric Cantor set (\mathcal{C}, d). Then
II.2)- The spectral triple of an ultrametric Cantor set

Let $\mathcal{T} = (\mathcal{C}, \mathcal{V}, \mathcal{E}, \delta)$ be a reduced Michon tree associated with an ultrametric Cantor set (\mathcal{C}, d). Then

- $\mathcal{H} = \ell^2(\mathcal{V}) \otimes \mathbb{C}^2$: any $\psi \in \mathcal{H}$ will be seen as a sequence $(\psi_v)_{v \in \mathcal{V}}$ with $\psi_v \in \mathbb{C}^2$
II.2)- The spectral triple of an ultrametric Cantor set

Let $\mathcal{T} = (\mathcal{C}, \mathcal{V}, \mathcal{E}, \delta)$ be a reduced Michon tree associated with an ultrametric Cantor set (\mathcal{C}, d). Then

- $\mathcal{H} = \ell^2(\mathcal{V}) \otimes \mathbb{C}^2$: any $\psi \in \mathcal{H}$ will be seen as a sequence $(\psi_v)_{v \in \mathcal{V}}$ with $\psi_v \in \mathbb{C}^2$

- G, D are defined by

\[
(D\psi)_v = \frac{1}{\delta(v)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi_v \quad \quad (G\psi)_v = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \psi_v
\]

so that they anticommute.
II.2)- The spectral triple of an ultrametric Cantor set

Let $\mathcal{J} = (\mathcal{C}, \mathcal{V}, \mathcal{E}, \delta)$ be a reduced Michon tree associated with an ultrametric Cantor set (\mathcal{C}, d). Then

- $\mathcal{H} = \ell^2(\mathcal{V}) \otimes \mathbb{C}^2$: any $\psi \in \mathcal{H}$ will be seen as a sequence $(\psi_v)_{v \in \mathcal{V}}$ with $\psi_v \in \mathbb{C}^2$

- G, D are defined by

 \[(D\psi)_v = \frac{1}{\delta(v)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi_v \quad (G\psi)_v = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \psi_v \]

 so that they anticommute.

- $\mathcal{A} = \mathcal{C}_{\text{Lip}}(\mathcal{C})$ is the space of Lipshitz continuous functions on (\mathcal{C}, d)
II.3)- Choices
II.3)- Choices

The tree \mathcal{T} is *reduced*, meaning that only the vertices with more than one child are considered.
II.3) Choices

The tree \mathcal{T} is *reduced*, meaning that only the vertices with more than one child are considered.

A *choice* will be a function $\tau : V \mapsto C \times C$ such that if $\tau(v) = (x, y)$ then
The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau : V \mapsto \mathbb{C} \times \mathbb{C}$ such that if $\tau(v) = (x, y)$ then

- $x, y \in [v]$
II.3)- Choices

The tree \mathcal{T} is *reduced*, meaning that only the vertices with more than one child are considered.

A *choice* will be a function $\tau : V \mapsto C \times C$ such that if $\tau(v) = (x, y)$ then

- $x, y \in [v]$
- $d(x, y) = \delta(v) = \text{diam}([v])$
II.3) Choices

The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau : \mathcal{V} \mapsto \mathcal{C} \times \mathcal{C}$ such that if $\tau(v) = (x, y)$ then

- $x, y \in [v]$
- $d(x, y) = \delta(v) = \text{diam}([v])$

Let $\text{Ch}(v)$ be the set of children of v. Consequently, the set $\Upsilon(\mathcal{C})$ of choices is given by

$$\Upsilon(\mathcal{C}) = \prod_{v \in \mathcal{V}} \Upsilon_v$$

$$\Upsilon_v = \bigsqcup_{w \neq w' \in \text{Ch}(v)} [w] \times [w']$$
The set \mathcal{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.
The set \mathcal{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

Similarly, the set \mathcal{Y}_v can be seen as a coarse-grained approximation the unit tangent vectors at v.
The set \mathcal{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

Similarly, the set \mathcal{Y}_v can be seen as a coarse-grained approximation the unit tangent vectors at v.

Within this interpretation, the set $\mathcal{Y}(C)$ can be seen as the unit sphere bundle inside the tangent bundle.
II.4) - Representations of \mathcal{A}
Let \(\tau \in \mathcal{Y}(C) \) be a choice. If \(v \in \mathcal{V} \) write \(\tau(v) = (\tau_+(v), \tau_-(v)) \). Then \(\pi_\tau \) is the representation of \(C_{\text{Lip}}(C) \) into \(\mathcal{H} \) defined by
II.4)- Representations of \mathcal{A}

Let $\tau \in \mathcal{Y}(C)$ be a choice. If $v \in \mathcal{V}$ write $\tau(v) = (\tau_+(v), \tau_-(v))$. Then π_τ is the representation of $C_{\text{Lip}}(C)$ into \mathcal{H} defined by

$$
(\pi_\tau(f)\psi)_v = \begin{bmatrix} f(\tau_+(v)) & 0 \\ 0 & f(\tau_-(v)) \end{bmatrix} \psi_v \quad f \in C_{\text{Lip}}(C)
$$
II.4)- Representations of \mathcal{A}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathcal{V}$ write $\tau(v) = (\tau_+(v), \tau_-(v))$. Then π_τ is the representation of $C_{\text{Lip}}(C)$ into \mathcal{H} defined by

$$(\pi_\tau(f)\psi)_v = \begin{bmatrix} f(\tau_+(v)) & 0 \\ 0 & f(\tau_-(v)) \end{bmatrix} \psi_v \quad f \in C_{\text{Lip}}(C)$$

Theorem The distance d on C can be recovered from the following Connes formula

$$d(x, y) = \sup \left\{ \left| f(x) - f(y) \right| ; \sup_{\tau \in \Upsilon(C)} \| [D, \pi_\tau(f)] \| \leq 1 \right\}$$
Remark: the commutator $[D, \pi_\tau(f)]$ is given by

$$([D, \pi_\tau(f)]\psi)_v = \frac{f(\tau_+(v)) - f(\tau_-(v))}{d_\delta(\tau_+(v), \tau_-(v))} \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} \psi_v$$
Remark: the commutator $[D, \pi_\tau(f)]$ is given by

$$([D, \pi_\tau(f)] \psi)_v = \frac{f(\tau_+(v)) - f(\tau_-(v))}{d_\delta(\tau_+(v), \tau_-(v))} \begin{bmatrix} 0 & -1 \\ +1 & 0 \end{bmatrix} \psi_v$$

In particular $\sup_\tau \|[D, \pi_\tau(f)]\|$ is the Lipschitz norm of f

$$\|f\|_{\text{Lip}} = \sup_{x \neq y \in \mathbb{C}} \left| \frac{f(x) - f(y)}{d_\delta(x, y)} \right|$$
III - \(\zeta\)-function and Metric Measure

III.1) ζ-function
III.1) ζ-function

The ζ-function of the Dirac operator is defined by

$$\zeta(s) = \text{Tr} \left(\frac{1}{|D|^s} \right) \quad s \in \mathbb{C}$$
III.1) ζ-function

The ζ-function of the Dirac operator is defined by

\[\zeta(s) = \text{Tr} \left(\frac{1}{|D|^s} \right), \quad s \in \mathbb{C} \]

The abscissa of convergence is the smallest positive real number \(s_0 > 0 \) so that the series defined by the trace above converges for \(\Re(s) > s_0 \).
III.1) - \(\zeta \)-function

The \(\zeta \)-function of the Dirac operator is defined by

\[
\zeta(s) = \text{Tr} \left(\frac{1}{|D|^s} \right) \quad s \in \mathbb{C}
\]

The abscissa of convergence is the smallest positive real number \(s_0 > 0 \) so that the series defined by the trace above converges for \(\Re(s) > s_0 \).

Thanks to the definition of the Dirac operator

\[
\zeta(s) = 2 \sum_{v \in \mathcal{V}} \delta(v)^s
\]
Theorem Let \((C,d)\) be an ultrametric Cantor set associated with a reduced Michon tree.

- The abscissa of convergence of the \(\zeta\)-function of the corresponding Dirac operator is always larger than or equal to the Hausdorff dimension of \((C,d)\).

- If the Hausdorff dimension is finite, then there is a choice of the Michon tree so that \(s_0 = \dim_H(C,d)\).
III.2) Dixmier Trace & Metric Measure
If the abscissa of convergence is finite, then a \textit{probability measure} \(\mu \) on \((C, d)\) can be defined as follows (if the limit exists)

\[
\mu(f) = \lim_{s \downarrow s_0} \frac{\text{Tr} \left(|D|^{-s} \pi_\tau(f) \right)}{\text{Tr} \left(|D|^{-s} \right)} \\
\text{for } f \in C_{\text{Lip}}(C)
\]
If the abscissa of convergence is finite, then a *probability measure* \(\mu \) on \((C,d)\) can be defined as follows (if the limit exists)

\[
\mu(f) = \lim_{s \downarrow s_0} \frac{\text{Tr} (|D|^{-s}\pi_\tau(f))}{\text{Tr} (|D|^{-s})} \quad f \in \mathcal{C}_{\text{Lip}}(C)
\]

This limit coincides with the *normalized Dixmier trace*

\[
\frac{\text{Tr}_{\text{Dix}} (|D|^{-s_0}\pi_\tau(f))}{\text{Tr}_{\text{Dix}} (|D|^{-s_0})}
\]
Theorem

- The definition of the measure μ is independent of the choice τ.
- The Dixmier trace is unique if and only if the Hausdorff measure of (C,d) exists, is positive and finite.
- In the latter case μ coincides with the normalized Hausdorff measure of (C,d).
If ζ admits an *isolated simple pole at* $s = s_0$, then $|D|^{-1}$ belongs to the *Mačaev ideal* $\mathcal{L}^{s_0+}(\mathcal{H})$. Therefore the measure μ is well defined.
• If ζ admits an isolated simple pole at $s = s_0$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_0+}(\mathcal{H})$. Therefore the measure μ is well defined.

• In particular μ is the metric analog of the Lebesgue measure class on a Riemannian manifold, in that the measure of a ball of radius r behaves like r^{s_0} for r small

$$\mu(B(x, r)) \overset{r \downarrow 0}{\sim} r^{s_0}$$
• If ζ admits an isolated simple pole at $s = s_0$, then $|D|^{-1}$ belongs to the Mačaev ideal $L^{s_0+}(H)$. Therefore the measure μ is well defined.

• In particular μ is the metric analog of the Lebesgue measure class on a Riemannian manifold, in that the measure of a ball of radius r behaves like r^{s_0} for r small

\[
\mu(B(x, r)) \downarrow 0 \sim r^{s_0}
\]

• μ is the analog of the volume form on a Riemannian manifold.
As a consequence μ defines a canonical probability measure ν on the space of choices Υ as follows

$$\nu = \bigotimes_{v \in \mathcal{V}} \nu_v$$

$$\nu_v = \frac{1}{Z_v} \sum_{w \neq w' \in \text{Ch}(v)} \mu \otimes \mu |_{[w] \times [w]}$$

where Z_v is a normalization constant given by

$$Z_v = \sum_{w \neq w' \in \text{Ch}(v)} \mu([w]) \mu([w'])$$
IV - The Laplace-Beltrami Operator

J. Pearson, J. Bellissard,
Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets,

A. Julien, J. Savinien,
IV.1)- Dirichlet Forms
IV.1) Dirichlet Forms

Let \((X, \mu)\) be a probability space. For \(f\) a real valued measurable function on \(X\), let \(\hat{f}\) be the function obtained as

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } f(x) \geq 1 \\
 f(x) & \text{if } 0 \leq f(x) \leq 1 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]
Markovian cut-off of a real valued function
IV.1)- Dirichlet Forms

Let \((X, \mu)\) be a probability space. For \(f\) a *real valued* measurable function on \(X\), let \(\hat{f}\) be the function obtained as

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } f(x) \geq 1 \\
f(x) & \text{if } 0 \leq f(x) \leq 1 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]

A Dirichlet form \(Q\) on \(X\) is a *positive definite sesquilinear form* \(Q : L^2(X, \mu) \times L^2(X, \mu) \mapsto \mathbb{C}\) such that
IV.1) Dirichlet Forms

Let \((X, \mu)\) be a probability space. For \(f\) a real valued measurable function on \(X\), let \(\hat{f}\) be the function obtained as

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } f(x) \geq 1 \\
f(x) & \text{if } 0 \leq f(x) \leq 1 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]

A Dirichlet form \(Q\) on \(X\) is a positive definite sesquilinear form \(Q : L^2(X, \mu) \times L^2(X, \mu) \mapsto \mathbb{C}\) such that

- \(Q\) is densely defined with domain \(\mathcal{D} \subset L^2(X, \mu)\)
Let \((X, \mu)\) be a probability space. For \(f\) a \textit{real valued} measurable function on \(X\), let \(\hat{f}\) be the function obtained as

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } f(x) \geq 1 \\
f(x) & \text{if } 0 \leq f(x) \leq 1 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]

A Dirichlet form \(Q\) on \(X\) is a \textit{positive definite sesquilinear form} \(Q : L^2(X, \mu) \times L^2(X, \mu) \mapsto \mathbb{C}\) such that

- \(Q\) is densely defined with domain \(\mathcal{D} \subset L^2(X, \mu)\)
- \(Q\) is closed
IV.1) Dirichlet Forms

Let \((X, \mu)\) be a probability space. For \(f\) a real valued measurable function on \(X\), let \(\hat{f}\) be the function obtained as

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } f(x) \geq 1 \\
f(x) & \text{if } 0 \leq f(x) \leq 1 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]

A Dirichlet form \(Q\) on \(X\) is a positive definite sesquilinear form \(Q : L^2(X, \mu) \times L^2(X, \mu) \mapsto \mathbb{C}\) such that

- \(Q\) is densely defined with domain \(\mathcal{D} \subset L^2(X, \mu)\)
- \(Q\) is closed
- \(Q\) is Markovian, namely if \(f \in \mathcal{D}\), then \(Q(\hat{f}, \hat{f}) \leq Q(f, f)\)
The simplest typical example of Dirichlet form is related to the Laplacian Δ_Ω on a bounded domain $\Omega \subset \mathbb{R}^D$

$$Q_\Omega(f, g) = \int_\Omega d^p x \, \nabla f(x) \cdot \nabla g(x)$$

with domain $\mathcal{D} = C^1_0(\Omega)$ the space of continuously differentiable functions on Ω vanishing on the boundary.

This form is closeable in $L^2(\Omega)$ and its closure defines a Dirichlet form.
Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a *positive self-adjoint operator* $-\Delta_Q$ satisfying

$$\langle f| - \Delta_Q g \rangle = Q(f, g)$$
Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a *positive self-adjoint operator* $-\Delta_Q$ satisfying

$$\langle f | -\Delta_Q g \rangle = Q(f, g)$$

In particular $\Phi_t = \exp (t\Delta_Q)$ (defined for $t \in \mathbb{R}_+$) is a strongly continuous *contraction* semigroup.
Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_Q$ satisfying

$$\langle f| - \Delta_Q g \rangle = Q(f,g)$$

In particular $\Phi_t = \exp(t\Delta_Q)$ (defined for $t \in \mathbb{R}_+$) is a strongly continuous contraction semigroup.

If Q is a Dirichlet form on X, then the contraction semigroup $\Phi = (\Phi_t)_{t \geq 0}$ is a Markov semigroup.
A Markov semi-group Φ on $L^2(X, \mu)$ is a family $(\Phi_t)_{t \in [0, +\infty)}$ where
A Markov semi-group Φ on $L^2(X, \mu)$ is a family $(\Phi_t)_{t \in [0, +\infty)}$ where

- For each $t \geq 0$, Φ_t is a contraction from $L^2(X, \mu)$ into itself.
A Markov semi-group \(\Phi \) on \(L^2(X, \mu) \) is a family \((\Phi_t)_{t \in [0, +\infty)} \) where

- For each \(t \geq 0 \), \(\Phi_t \) is a contraction from \(L^2(X, \mu) \) into itself
- (Markov property) \(\Phi_t \circ \Phi_s = \Phi_{t+s} \)
A Markov semi-group \(\Phi \) on \(L^2(X, \mu) \) is a family \((\Phi_t)_{t \in [0, +\infty)}\) where

- For each \(t \geq 0 \), \(\Phi_t \) is a contraction from \(L^2(X, \mu) \) into itself
- (Markov property) \(\Phi_t \circ \Phi_s = \Phi_{t+s} \)
- (Strong continuity) the map \(t \in [0, +\infty) \mapsto \Phi_t \) is strongly continuous
A *Markov semi-group* Φ on $L^2(X, \mu)$ is a family $(\Phi_t)_{t \in [0, +\infty)}$ where

- For each $t \geq 0$, Φ_t is a *contraction* from $L^2(X, \mu)$ into itself
- *(Markov property)* $\Phi_t \circ \Phi_s = \Phi_{t+s}$
- *(Strong continuity)* the map $t \in [0, +\infty) \mapsto \Phi_t$ is strongly continuous
- $\forall t \geq 0$, Φ_t is *positivity preserving* : $f \geq 0 \Rightarrow \Phi_t(f) \geq 0$
A *Markov semi-group* Φ on $L^2(X, \mu)$ is a family $(\Phi_t)_{t \in [0, +\infty)}$ where

- For each $t \geq 0$, Φ_t is a *contraction* from $L^2(X, \mu)$ into itself
- (*Markov property*) $\Phi_t \circ \Phi_s = \Phi_{t+s}$
- (*Strong continuity*) the map $t \in [0, +\infty) \mapsto \Phi_t$ is strongly continuous
- $\forall t \geq 0$, Φ_t is *positivity preserving* : $f \geq 0 \Rightarrow \Phi_t(f) \geq 0$
- Φ_t is *normalized*, namely $\Phi_t(1) = 1$.
A Markov semi-group Φ on $L^2(X, \mu)$ is a family $(\Phi_t)_{t \in [0, +\infty)}$ where

- For each $t \geq 0$, Φ_t is a contraction from $L^2(X, \mu)$ into itself
- (Markov property) $\Phi_t \circ \Phi_s = \Phi_{t+s}$
- (Strong continuity) the map $t \in [0, +\infty) \mapsto \Phi_t$ is strongly continuous
- $\forall t \geq 0$, Φ_t is positivity preserving : $f \geq 0 \Rightarrow \Phi_t(f) \geq 0$
- Φ_t is normalized, namely $\Phi_t(1) = 1$.

Theorem (Fukushima) A contraction semi-group on $L^2(X, \mu)$ is a Markov semi-group if and only if its generator is defined by a Dirichlet form.
IV.2) The Laplace-Beltrami Form
IV.2)- The Laplace-Beltrami Form

Let M be a *Riemannian manifold* of dimension D. The *Laplace-Beltrami operator* is associated with the Dirichlet form
Let M be a Riemannian manifold of dimension D. The Laplace-Beltrami operator is associated with the Dirichlet form

$$Q_M(f, g) = \sum_{i,j=1}^{D} \int_M d^Dx \sqrt{\det(g(x))} g^{ij}(x) \partial_i f(x) \partial_j g(x)$$

where g is the metric.
IV.2)- The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The Laplace-Beltrami operator is associated with the Dirichlet form

$$Q_M(f, g) = \sum_{i,j=1}^{D} \int_M d^p x \sqrt{\det(g(x))} \ g^{ij}(x) \ \partial_i f(x) \ \partial_j g(x)$$

where g is the metric. Equivalently (in local coordinates)

$$Q_M(f, g) = \int_M d^p x \sqrt{\det(g(x))} \ \int_{S(x)} d\nu_x(u) \ u \cdot \nabla f(x) \ u \cdot \nabla g(x)$$
IV.2) The Laplace-Beltrami Form

Let M be a *Riemannian manifold* of dimension D. The *Laplace-Beltrami operator* is associated with the Dirichlet form

$$Q_M(f, g) = \sum_{i,j=1}^{D} \int_M d^p x \sqrt{\text{det}(g(x))} \ g^{ij}(x) \ \partial_i f(x) \ \partial_j g(x)$$

where g is the metric. Equivalently (in local coordinates)

$$Q_M(f, g) = \int_M d^p x \sqrt{\text{det}(g(x))} \ \int_{S(x)} d\nu_x(u) \ u \cdot \nabla f(x) \ u \cdot \nabla g(x)$$

where $S(x)$ represents the *unit sphere* in the tangent space whereas ν_x is the *normalized Haar measure* on $S(x)$.
Similarly, if \((C, d)\) is an ultrametric Cantor set, the expression

\[
[D, \pi_\tau(f)]
\]

can be interpreted as a *directional derivative*, analogous to \(u \cdot \nabla f\), since a choice \(\tau\) has been interpreted as a unit tangent vector.
Similarly, if \((C,d)\) is an ultrametric Cantor set, the expression

\[
[D, \pi_\tau(f)]
\]

can be interpreted as a *directional derivative*, analogous to \(u \cdot \nabla f\), since a choice \(\tau\) has been interpreted as a unit tangent vector.

The *Laplace-Pearson operators* are defined, by analogy, by

\[
Q_s(f,g) = \int_\gamma d\nu(\tau) \operatorname{Tr} \left\{ \frac{1}{|D|^s} [D, \pi_\tau(f)]^* [D, \pi_\tau(g)] \right\}
\]

for \(f, g \in C_{\text{Lip}}(C)\) and \(s > 0\).
Let \mathcal{D} be the linear subspace of $L^2(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], \ v \in \mathcal{V}$. Then
Let \mathcal{D} be the linear subspace of $L^2(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], \; v \in \mathcal{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_s defined on \mathcal{D} is closeable on $L^2(C, \mu)$ and its closure is a Dirichlet form.
Let \mathcal{D} be the linear subspace of $L^2(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], \ v \in \mathcal{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_s defined on \mathcal{D} is closeable on $L^2(C, \mu)$ and its closure is a Dirichlet form.

The corresponding operator $-\Delta_s$ leaves \mathcal{D} invariant, has a discrete spectrum.
Let \mathcal{D} be the linear subspace of $L^2(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], \, v \in V$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_s defined on \mathcal{D} is closeable on $L^2(C, \mu)$ and its closure is a Dirichlet form.

The corresponding operator $-\Delta_s$ leaves \mathcal{D} invariant, has a discrete spectrum.

For $s < s_0 + 2$, $-\Delta_s$ is unbounded with compact resolvent.
IV.3)- Jumps Process over Gaps
IV.3)- Jumps Process over Gaps

Δ_s generates a Markov semigroup, thus a stochastic process \((X_t)_{t \geq 0}\) where the \(X_t\)'s takes on values in \(C\).
IV.3)- Jumps Process over Gaps

Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t \geq 0}$ where the X_t's takes on values in C.

Given $v \in V$, its spine is the set of vertices located along the finite path joining the root to v.

IV.3)- Jumps Process over Gaps

Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t\geq 0}$ where the X_t's takes on values in C.

Given $v \in \mathcal{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.
IV.3)- Jumps Process over Gaps

Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t \geq 0}$ where the X_t's takes on values in C.

Given $v \in \mathcal{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.

Then if χ_v is the characteristic function of $[v]$

$$\Delta_s \chi_v = \sum_{w \in \mathcal{V}(v)} p(v, w)(\chi_w - \chi_v)$$
IV.3)- Jumps Process over Gaps

\(\Delta_s \) generates a Markov semigroup, thus a stochastic process \((X_t)_{t \geq 0}\) where the \(X_t\)'s takes on values in \(C\).

Given \(v \in \mathcal{V}\), its spine is the set of vertices located along the finite path joining the root to \(v\). The vine \(\mathcal{V}(v)\) of \(v\) is the set of vertices \(w\), not in the spine, which are children of one vertex of the spine.

Then if \(\chi_v\) is the characteristic function of \([v]\)

\[
\Delta_s \chi_v = \sum_{w \in \mathcal{V}(v)} p(v, w)(\chi_w - \chi_v)
\]

where \(p(v, w) > 0\) represents the probability for \(X_t\) to jump from \(v\) to \(w\) per unit time.
The vine of a vertex v

$v = v_n$

$[w_n] \subseteq [v_{n-1}] \setminus [v_n]$
Jump process from v to w
The tree for the triadic ring $\mathbb{Z}(3)$
Jump process in $\mathbb{Z}(3)$

$\text{Prob}_{\text{jump}} \sim 3^{-1(4-s)}$
$\text{Prob}(\text{jump}) \sim 3^{-2(4-s)}$

Jump process in $\mathbb{Z}(3)$
\[\text{Prob}_{\text{jump}} \sim 3^{-3(4-s)} \]

Jump process in $\mathbb{Z}(3)$
Concretely, if \hat{w} denotes the father of w (which belongs to the spine)

$$p(v, w) = 2\delta(\hat{w})^{s-2} \frac{\mu([v])}{Z_{\hat{w}}}$$

where $Z_{\hat{w}}$ is the normalization constant for the measure $\nu_{\hat{w}}$ on the set of choices at \hat{w}, namely

$$Z_{\hat{w}} = \sum_{u \neq u' \in \text{Ch}(\hat{w})} \mu([u])\mu([u'])$$
IV.4)- Eigenspaces

Let v be a vertex of the Michon graph with $\text{Ch}(v)$ as its set of children.
IV.4)- Eigenspaces

Let \(v \) be a vertex of the Michon graph with \(\text{Ch}(v) \) as its set of children. Let \(\mathcal{E}_v \) be the linear space generated by the characteristic function \(\chi_w \) of the \([w]'s \) with \(w \in \text{Ch}(v) \).
Let v be a vertex of the Michon graph with $\text{Ch}(v)$ as its set of children. Let \mathcal{E}_v be the linear space generated by the characteristic function χ_w of the $[w]$’s with $w \in \text{Ch}(v)$. In particular

$$
\chi_v = \sum_{w \in \text{Ch}(v)} \chi_w \in \mathcal{E}_v.
$$
Let v be a vertex of the Michon graph with $\text{Ch}(v)$ as its set of children. Let \mathcal{E}_v be the linear space generated by the characteristic function χ_w of the $[w]$’s with $w \in \text{Ch}(v)$. In particular

$$\chi_v = \sum_{w \in \text{Ch}(v)} \chi_w \in \mathcal{E}_v.$$

Theorem For any $s \in \mathbb{R}$, the eigenspaces of $-\Delta_s$ are the spaces of the form $\{\chi_v\}^\perp \subset \mathcal{E}_v$, namely, the orthogonal complement of χ_v is \mathcal{E}_v.

V - To conclude
• Ultrametric Cantor sets can be described as *Riemannian manifolds*, through Noncommutative Geometry.

• An analog of the *tangent unit sphere* is given by *choices*

• The *Hausdorff dimension* plays the role of the dimension

• A *volume measure* is defined through the Dixmier trace

• A *Laplace-Beltrami operator* is defined with compact resolvent and Weyl asymptotics

• It generates a *jump process* playing the role of the *Brownian motion*.

• This process exhibits *anomalous diffusion*.
Recent Progress

• The construction of a spectral triple can be extended to any **compact metric space** if the partitions by clopen sets are replaces by suitable **open covers**.

• If the compact metric space \((X, d)\) has **finite Hausdorff dimension** then the spectral triple can be chosen to admits \(\dim_H(X)\) as **abscissa of convergence**.

• If \((X, d)\) admits a **positive finite Hausdorff measure** the spectral triple can be constructed so as to have the measure \(\mu\), defined by the Dixmier trace, equal to the **normalized Hausdorff measure**.

• Under some extra local regularity property on \((X, d)\) a Laplace-Beltrami operator be defined (J. Cheeger).