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I - What Is Localization ?
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Semi-conductors
• Semi-conductors like Si,Ga As, have a diamond crystal structure:

atoms are located on a perfectly periodic lattice L.

• Electron-electron interaction on site induces a large gap at the
Fermi level: without impurities, perfect insulators.

• Doping: according to a Poisson Law (thermal effects) with con-
centration of

– O(10−9) for Light doping,
– O(10−6) for Strong doping:

• At room temperature, impurity electrons jump in the conduction
band leading to "large" conductivity.

• At very low temperature, electrons are confined on the impurity
sites: electrons see only a random sub-lattice Lω ⊂ L.
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Semi-conductors

- Bands and gaps in semi-conductors -
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Semi-conductors

- Typical length scales for electron hopping -
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Doping
• Each impurity has been shown (Slater ‘49) to behave like an hydrogen

atom for the electron in excess. Its Bohr radius is typically a ∼ 100Å.

• Let W denote the impurity band width. Hence W ∼ 1meV.

• The hoping terms between two impurity sites can be estimated by
tunneling effect. Typically, it is given by t ' t0e−`/a if ` is the
distance between two impurities. Typically t0 ∼ 1 − 6eV.

• – Light doping: the average distance of impurities free of elec-
tron in excess is ` ∼ 100a. Thus t�W strong localization.

– Strong doping: ` ∼ a, then t ≥W weak localization.
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Anderson’s Model
• This led Anderson to propose a simplified model, a discrete

Schrödinger operator, in which the impurities are located on a
cubic lattice Zd.

• The potential V(x) at site x is a random variable uniformly dis-
tributed in an interval [−W,W] (with W being the impurity band
width).

• This leads to

Hψ(x) = t
∑
|x−y|=1

{
ψ(x) − ψ(y)

}
+ V(x)ψ(x) ψ ∈ `2(Zd) .
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Localization is Interference

Strong Localization: Interferences
on the electron wave build up construc-
tively to trap the electrons in deep wells
of the Anderson random potential.
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Localization is Interference

Weak Localization: electron diffusion, enhanced backscattering.
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Localization Length

• For ψ ∈ `2(Zd) with ‖ψ‖ = 1, its localization length is defined as

`2(ψ)2 = ‖(X − 〈X〉)ψ‖2 =
∑

x∈Zd

|x − 〈X〉|2 |ψ(x)|2

〈X〉 = 〈ψ|Xψ〉 =
∑

x∈Zd

x |ψ(x)|2

•However, in the Anderson model, the potential is random, so are
its eigenfunctions !!
Hence this concept of localization length is a random variable.

• In addition, the eigenvalue (the energy) is never strictly defined in
practice, and the localization length depends on it.
How to take this fact into account ?
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II - The Toolbox: Algebra
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Randomness
• In Anderson’s model the potential V = (V(x))x∈Zd has each of its

components being i.i.d random variables with values in the inter-
val [−W,W]. Hence V ∈ Ω = [−W,W]Z

d
.

• The space Ω is compact with its product topology andZd acts as a
shift on it:

taω(x) = ω(x − a) , ω ∈ Ω .

• The probability measure P defining the distribution of random
potential is both shift invariant and ergodic.
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Randomness & Aperiodicity

• Actually Ω can be replaced by any compact Hausdorff metrizable
space equipped with an action of Zd by homeomorphisms.

• Any configuration of atoms in Rd, with a minimum distance be-
tween atoms and size-limited holes, can be represented by such a
dynamical system where the translation group is Rd.
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Random Operators
• Both the potential and the Anderson Hamiltonian are self-adjoint

bounded operators acting on the Hilbert space of statesH = `2(Zd).
Both have the following property

– they are short range, namely their matrix elements 〈y|Aω|x〉
vanish for |x − y| large.

– they are strongly continuous in the parameter ω ∈ Ω

– they are covariant under the Zd-action, namely

U(a)AωU(a)−1 = Ataω ,
(
U(a)ψ

)
(x) = ψ(x − a) ψ ∈ H

• Let A0 denote the observable algebra, namely the space of all such
operators onH .
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Random Operators
• If A ∈ A0 it has matrix elements defined by a(ω, x) = 〈0|Aω|x〉 since,

by covariance,

〈y|Aω|x〉 = 〈0|At−yω|x − y〉 = A(t−yω, x − y)

• The function (ω, x) ∈ Ω×Zd
→ A(ω, x) is continuous with compact

support.

• The adjoint is given by the function A∗(ω, x) = A(t−xω,−x).

• Let ‖A‖∞,1 = supω∈Ω
∑

x∈Zd |A(ω, x)| then

sup
ω∈Ω
‖Aω‖ ≤ max{‖A‖∞,1, ‖A

∗
‖∞,1}
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Random Operators

The space A0 is invariant by the operator product and the adjoint.
Its is a ∗-algebra over the complex field.

Definition The observable algebra A is the operator norm completion of
A0. It is a C∗-algebra.

Remark: It can be shown that, for Anderson like models A is the
smallest C∗-algebra containing the Hamiltonian (energy) and the action
of the translations. In particular H ∈ A
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Trace per Unit Volume
• Since 〈x|Aω|x〉 = a(t−xω, 0), the Birkhoff Ergodic Theorem implies

that with probability one on ω, the trace per unit volume is given by

lim
Λ↑Zd

1
|Λ|

∑
x∈Λ
〈x|Aω|x〉 =

∫
Ω

A(ω, 0) dP(ω) = TP(A) .

• Then TP : A→ C is a linear continuous map such that

A ∈ A, A , 0 ⇒ TP(A∗A) > 0 TP(1) = 1

TP(AB) = TP(BA) A,B ∈ A

Hence TP is a tracial state on A.
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Density of States
• The number of eigenstates of energy less than or equal to E in a

finite volume Λ ⊂ Zd is given by

NΛ(E, ω) =
{
E′ ∈ Spec(Hω �Λ) ; E′ < E

}
• Let PH(E) be the spectral projection of H ∈ A corresponding to the

interval of energies (−∞,E].

• Shubin’s Formula: there is a probability measure N on R, called
the density of states with support in Spec(H) such that, for P-almost
every ω ∈ Ω, the following holds

lim
Λ↑Zd

NΛ(E, ω)
|Λ|

= TP(PH(E)) =

∫ E

−∞

dN(E)
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Density of States

Theorem: In the Anderson’s model

1. The spectrum coincides with the interval [−(2d + W),+(2d + W)]

2. The density of state is absolutely continuous

Remark: In the analogous model on the Penrose lattice instead,
without disorder, there is an isolated eigenvalue at E = 0 of infinite
multiplicity (Kohmoto, Sutherland, 1986) (Lenz et al.) and the spectrum is conjectured
to be singular continuous for any potential strength.
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Trace per Unit Volume
Remark: the trace per unit volumeTP defines a Hilbert space denoted
by L2(A,TP) (Gelfand-Naı̆mark-Segal construction). The C∗-algebra A

acts on this space (GNS representation). Then L∞(A,TP) is defined
as the von Neumann Algebra (namely the weak closure) generated by
this representation on this space. Then

• The trace per unit volume TP extends as a normal state (monotone
convergence property) on L∞(A,TP).

• The spectral projections are well defined in L∞(A,TP) (Measurable
Functional Calculus).
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Derivation
• Let X = (X1, · · · ,Xd) denotes the (self-adjoint) position operator

defined by
Xψ(x) = xψ(x) , ψ ∈ `2(Zd)

• For A ∈ A0 the commutator with X satisfies

〈0|ı[X,Aω]|x〉 = −ıx A(ω, x)
de f
= −(∂A)(ω, x)

• Then ∂A ∈ A0 and ∂ : A0 → A0 is a ∗-derivation namely a linear
map such that (Leibniz rule)

∂A∗ = (∂A)∗ , ∂(AB) = (∂A) B + A (∂B)
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III - Localization Length
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The Wiener Criterion

Wiener’ Criterion: Let µ be a finite complex valued measure on the real
line. Let Fµ denote its Fourier transform

∫
R

eıtx dµ(x). Then

lim
T→+∞

1
T

∫ T

0

∣∣∣Fµ(t)
∣∣∣2 =

∑
e∈R

∣∣∣µ({E})
∣∣∣2 .
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Inverse Participation Ratio
• If ψ ∈ `2(Zd), its participation ratio is defined by

p(ψ) =

∑
x∈Zd |ψ(x)|4(∑

x∈Zd |ψ(x)|2
)2

• Examples: if ψ(x) = 1/
√

N on a finite subset of N sites inZd, then
1/p(ψ) = N. In particular this inverse participation ratio gives a
measure of how many sites are really contributing to ψ. Hence it
could be used as a measure of how much ψ is localized.



IRMA Strasbourg, 31 October 2019 28

Return Probability
For ∆ ⊂ R a Borel set, let Pω(∆) denote the eigenprojector of the
covariant self-adjoint operator Hω acting onH = `2(Zd).

• The quantum probability amplitude for vectors starting at site x ∈ Zd

at time t = 0 to belong to the subspace Pω(∆)H and to return to
the site x after time t is

〈x|eıtHω Pω(∆)|x〉 .

• Therefore the corresponding time average probability is defined as

Ax(∆, ω) = lim
T→+∞

∫ T

0

dt
T

∣∣∣〈x|eıtHω Pω(∆)|x〉
∣∣∣2
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Return Probability
• By covariance Ax(∆, ω) = A0(∆, t−xω) so that averaging over the

disorder leads to the time and disorder average probability of return

ξ(∆) =

∫
Ω

dP(ω) A0(∆, ω)

• This can also be expressed algebraically as

ξ(∆) = lim
T→+∞

∫ T

0

dt
T

∫
Td

dθd

(2π)d
TP

(
(e−ıtHP(∆)) eıθ·∂ (e+ıtHP(∆))

)
.
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Return Probability
Let σpp(ω) denote the set of eigenvalues of Hω. For E ∈ σpp(ω) let ψω,E
denotes the corresponding normalized eigenstate. Using the Wiener
criterion and the ergodicity of P leads to

Theorem: the “time and disorder average probability of return” satisfies

ξ(∆) =

∫
Ω

dP(ω)
∑

E∈σpp(ω)∩∆

∣∣∣ψω,E(0)
∣∣∣4

In some sense, this formula provides an average over energy and
disorder of the participation ratio.

In particular, with probability one, only a finite number of eigenvalues
have a significant contribution near any given site.
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Localization Length

• The position at time t is given by Xω(t) = eıtHωXe−ıtHω, so that

Xω(t) − Xω(0) = ı eıtHω
(
∂e−ıtH

)
ω

• It follows that the average distance spanned by a state starting at
the site x at time t = 0 over the period of time T is

δXω,x(T) =

∫ T

0

dt
T
〈x|(Xω(t) − Xω(0))2

|x〉
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Localization Length
• Averaging over the disorder leads to

δX(T) =

∫ T

0

dt
T
TP

(∣∣∣∂(e−ıtH)
∣∣∣2)

• Localizing the evolution in a spectral set ∆ leads to the following
definition of the energy dependent localization length

l(∆)2 = lim sup
T→+∞

∫ T

0

dt
T
TP

(∣∣∣∂(e−ıtHP(∆))
∣∣∣2)
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Localization Length
Theorem If l(∆)2 < ∞ then

1. the spectral measure of Hω inside ∆ is pure point for P-almost every ω.

2. If N denotes the density of state, then there is a measurable function
l ∈ L2(∆,N) such that for ∆′ ⊂ ∆ measurable

l(∆′)2 =

∫
∆′

l(E)2 dN(E)

and

l(∆′)2 =

∫
Ω

dP(ω)
∑

x∈Zd

∑
E∈σpp(ω)∩∆′

|x|2 |ψω,E(0)|2 |ψω,E(x)|2
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Current-Current Correlation
• From the Riesz-Markov-Kakutani Theorem, if H is a covariant self-

adjoint bounded operator such that ‖∂H‖ < ∞, then there is a
matrix of complex valued bounded N ⊗ N- integrable functions M =
(mi j)i, j∈[1,d] on R2 satisfying for any pair of continuous functions
f and g on R vanishing at infinity

TP

(
f (H)∂iHg(H)∂ jH

)
=

∫
R2

f (E) g(E′) mi j(E,E
′) dN(E) dN(E′) .

• The function m =
∑d

i=1 mii is nonnegative and integrable.

Definition: each mi j is called a current-current correlation
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Current-Current Correlation

Theorem: With the notation and the assumptions used previously, the
localization length l(E) is given by the following formula

l(E)2 = 2
∫
R

m(E,E′)
(E − E′)2 dN(E′) .

forN-almost every E.

Remarks:

• A finite localization length implies that the current-current correlation must van-
ish on the diagonal E = E′ so as staying integrable as divided by (E − E′)2.

• For the Anderson model, this vanishing is expected to be of infinite order at large
disorder.
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IV - Numerical Approach
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Numerical Method

• In the early 2010’s Emil Prodan found a way to approximate the
C∗-algebra by a periodic approximation liable to reduce the problem
to a well-known method called Floquet-Bloch Theory.

• Using a formula for the conductivity, valid for aperiodic media (JB,

Schulz-Baldes ‘98), he could numerically computed it for the Quantum
Hall Effect.

• From his numerical results, a critical point of the conductivity
could be analyzed in terms of a singularity of the current-current
correlation on the diagonal (Prodan, JB ‘15).

• At this energy of this singularity, the localization length diverges
leading to a change of Chern Number for the transverse conduc-
tivity.
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Numerical Method
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Numerical Method
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Thanks for Listening!!


