Algebraic Approach
 to

 Localization

 Localization}

Jean BELLISSARD
Westfülische Wilhelms-Universitüt, Münster
Department of Mathematics
Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

Sponsoring

SFB 878, Münster, Germany

Wilhelms-Universität Münster

IRMA Strasbourg
October 31, 2019

Contributors

H. Schulz-Baldes, Department Mathematik, Erlangen-Nürnberg, Germany

Main References

J. Bellissard,

Non Commutative Methods in Semiclassical Analysis, Lecture Notes in Mathematics, 1589, Springer, (1994).
J. Bellissard, H. Schulz-Baldes, A. van Elst,

The Non Commutative Geometry of the Quantum Hall Effect, J. Math. Phys., 35, 5373-5471, (1994).
J. Bellissard,

The Non Commutative Geometry of the Quantum Hall Effect, Proc. I.C.M. (Zürich 94), Birkhäuser (1995)
H. Schulz-Baldes, J. Bellissard,

Anomalous transport: a mathematical framework,
Rev. Math. Phys., 10, 1-46, (1998).

Content

1. What is Localization ?
2. The Toolbox: Algebra.
3. Localization Length.

I -What Is Localization?

Semi-conductors

- Semi-conductors like $S i, G a$ As, have a diamond crystal structure: atoms are located on a perfectly periodic lattice \mathcal{L}.
- Electron-electron interaction on site induces a large gap at the Fermi level: without impurities, perfect insulators.
- Doping: according to a Poisson Law (thermal effects) with concentration of
$-O\left(10^{-9}\right)$ for Light doping,
$-O\left(10^{-6}\right)$ for Strong doping:
- At room temperature, impurity electrons jump in the conduction band leading to "large" conductivity.
- At very low temperature, electrons are confined on the impurity sites: electrons see only a random sub-lattice $\mathcal{L}_{\omega} \subset \mathcal{L}$.

Semi-conductors

- Bands and gaps in semi-conductors -

Semi-conductors

- Typical length scales for electron hopping -

Doping

- Each impurity has been shown (slater' '49) to behave like an hydrogen atom for the electron in excess. Its Bohr radius is typically $a \sim 100 \AA$.
- Let W denote the impurity band width. Hence $W \sim 1 m e V$.
- The hoping terms between two impurity sites can be estimated by tunneling effect. Typically, it is given by $t \simeq t_{0} e^{-\ell / a}$ if ℓ is the distance between two impurities. Typically $t_{0} \sim 1-6 \mathrm{eV}$.
- - Light doping: the average distance of impurities free of electron in excess is $\ell \sim 100 a$. Thus $t \ll W$ strong localization.
-Strong doping: $\ell \sim a$, then $t \geq W$ weak localization.

Anderson's Model

- This led Anderson to propose a simplified model, a discrete Schrödinger operator, in which the impurities are located on a cubic lattice \mathbb{Z}^{d}.
- The potential $V(x)$ at site x is a random variable uniformly distributed in an interval $[-W, W]$ (with W being the impurity band width).
- This leads to

$$
H \psi(x)=t \sum_{|x-y|=1}\{\psi(x)-\psi(y)\}+V(x) \psi(x) \quad \psi \in \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

Localization is Interference

Strong Localization: Interferences on the electron wave build up constructively to trap the electrons in deep wells of the Anderson random potential.

Figure 3. The Anderson model. Imagine an electron (silver) hopping on a two-dimensional lattice with random potential energies at each site. Quantum mechanics allows the electron to tunnel from one site to another through large energy barriers as depicted by the red arrows. The electron's energy thus changes randomly, although at each lattice site the spatial extent of its wavefunction (sketched below the potential) is assumed constant, leading to a constant tunneling rate. On an ordered lattice with all wells the same depth, the electron would be completely mobile for a range of energies. But here, a critical amount of randomness in the well depths localizes the electron, although on a scale larger than the lattice constant. For another perspective of what occurs as a lattice changes from perfect to disordered, see this month's cover.

Localization is Interference

PHYSICS REPORTS (Review Section of Physics Letters) 107, No. 1 (1984) 1-58. North-Holland, Amsterdam weak localization in thin films
a time-od-filght experiment with conduction electrons
Gerd BERGMANN

Fig. 2.5. Diffusion path of the conduction electron in the disordered syztem. The electron propagates in both directions (full and dashed lines). In the case of quantum diffusion the probability to return to the origin is twice as great as in classical diffusion since the amplitudes add coherently.

Fig. 26. The probability distribution of a difusing electron which starts at $r=0$ at the time $t=0$. In quantum diffusion (dashed peak) the probability to return to the origin is twice as great as in classical difusion (full curve). Large spin-orbit scattering reduces the probability by a factor of two (dotted peak) and yields a weak antilocalization.

Weak Localization: electron diffusion, enhanced backscattering.

Localization Length

- For $\psi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$ with $\|\psi\|=1$, its localization length is defined as

$$
\begin{gathered}
\ell_{2}(\psi)^{2}=\|(X-\langle X\rangle) \psi\|^{2}=\sum_{x \in \mathbb{Z}^{d}}|x-\langle X\rangle|^{2}|\psi(x)|^{2} \\
\langle X\rangle=\langle\psi \mid X \psi\rangle=\sum_{x \in \mathbb{Z}^{d}} x|\psi(x)|^{2}
\end{gathered}
$$

- However, in the Anderson model, the potential is random, so are its eigenfunctions !!
Hence this concept of localization length is a random variable.
- In addition, the eigenvalue (the energy) is never strictly defined in practice, and the localization length depends on it.
How to take this fact into account ?

II - The Toolbox: Algebra

Randomness

- In Anderson's model the potential $V=(V(x))_{x \in \mathbb{Z}^{d}}$ has each of its components being i.i.d random variables with values in the inter-$\operatorname{val}[-W, W]$. Hence $V \in \Omega=[-W, W]^{\mathbb{Z}^{d}}$.
- The space Ω is compact with its product topology and \mathbb{Z}^{d} acts as a shift on it:

$$
\mathrm{T}^{a} \omega(x)=\omega(x-a), \quad \omega \in \Omega .
$$

- The probability measure \mathbb{P} defining the distribution of random potential is both shift invariant and ergodic.

Randomness \& Aperiodicity

- Actually Ω can be replaced by any compact Hausdorff metrizable space equipped with an action of \mathbb{Z}^{d} by homeomorphisms.
- Any configuration of atoms in \mathbb{R}^{d}, with a minimum distance between atoms and size-limited holes, can be represented by such a dynamical system where the translation group is \mathbb{R}^{d}.

Random Operators

- Both the potential and the Anderson Hamiltonian are self-adjoint bounded operators acting on the Hilbert space of states $\mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right)$. Both have the following property
- they are short range, namely their matrix elements $\langle y| A_{\omega}|x\rangle$ vanish for $|x-y|$ large.
- they are strongly continuous in the parameter $\omega \in \Omega$
- they are covariant under the \mathbb{Z}^{d}-action, namely

$$
U(a) A_{\omega} U(a)^{-1}=A_{\mathrm{T}^{a} \omega}, \quad(U(a) \psi)(x)=\psi(x-a) \quad \psi \in \mathcal{H}
$$

- Let \mathcal{A}_{0} denote the observable algebra, namely the space of all such operators on \mathcal{H}.

Random Operators

- If $A \in \mathcal{A}_{0}$ it has matrix elements defined by $a(\omega, x)=\langle 0| A_{\omega}|x\rangle$ since, by covariance,

$$
\langle y| A_{\omega}|x\rangle=\langle 0| A_{\mathrm{T}^{-}-y_{\omega}}|x-y\rangle=A\left(\mathrm{~T}^{-y} \omega, x-y\right)
$$

- The function $(\omega, x) \in \Omega \times \mathbb{Z}^{d} \rightarrow A(\omega, x)$ is continuous with compact support.
- The adjoint is given by the function $A^{*}(\omega, x)=\overline{A\left(\mathrm{~T}^{-x} \omega,-x\right)}$.
- Let $\|A\|_{\infty, 1}=\sup _{\omega \in \Omega} \sum_{x \in \mathbb{Z}^{d}}|A(\omega, x)|$ then

$$
\sup _{\omega \in \Omega}\left\|A_{\omega}\right\| \leq \max \left\{\|A\|_{\infty, 1},\left\|A^{*}\right\|_{\infty, 1}\right\}
$$

Random Operators

The space \mathcal{A}_{0} is invariant by the operator product and the adjoint. Its is a *-algebra over the complex field.

Definition The observable algebra \mathcal{A} is the operator norm completion of \mathcal{A}_{0}. It is a C^{*}-algebra.

Remark: It can be shown that, for Anderson like models \mathcal{A} is the smallest C^{*}-algebra containing the Hamiltonian (energy) and the action of the translations. In particular $H \in \mathcal{A}$

Trace per Unit Volume

- Since $\langle x| A_{\omega}|x\rangle=a\left(\mathrm{~T}^{-x} \omega, 0\right)$, the Birkhoff Ergodic Theorem implies that with probability one on ω, the trace per unit volume is given by

$$
\lim _{\Lambda \uparrow \mathbb{Z}^{d}} \frac{1}{|\Lambda|} \sum_{x \in \Lambda}\langle x| A_{\omega}|x\rangle=\int_{\Omega} A(\omega, 0) d \mathbb{P}(\omega)=\mathcal{T}_{\mathbb{P}}(A)
$$

- Then $\mathcal{T}_{\mathbb{P}}: \mathcal{A} \rightarrow \mathbb{C}$ is a linear continuous map such that

$$
\begin{array}{cl}
A \in \mathcal{A}, \quad A \neq 0 & \Rightarrow \mathcal{T}_{\mathbb{P}}\left(A^{*} A\right)>0
\end{array} \quad \mathcal{T}_{\mathbb{P}}(1)=1 .
$$

Hence $\mathcal{T}_{\mathbb{P}}$ is a tracial state on \mathcal{A}.

Density of States

- The number of eigenstates of energy less than or equal to E in a finite volume $\Lambda \subset \mathbb{Z}^{d}$ is given by

$$
N_{\Lambda}(E, \omega)=\left\{E^{\prime} \in \operatorname{Spec}\left(H_{\omega} \upharpoonright_{\Lambda}\right) ; E^{\prime}<E\right\}
$$

- Let $P_{H}(E)$ be the spectral projection of $H \in \mathcal{A}$ corresponding to the interval of energies $(-\infty, E]$.
- Shubin's Formula: there is a probability measure \mathcal{N} on \mathbb{R}, called the density of states with support in $\operatorname{Spec}(H)$ such that, for \mathbb{P}-almost every $\omega \in \Omega$, the following holds

$$
\lim _{\Lambda \uparrow \mathbb{Z}^{d}} \frac{N_{\Lambda}(E, \omega)}{|\Lambda|}=\mathcal{T}_{\mathbb{P}}\left(P_{H}(E)\right)=\int_{-\infty}^{E} d \mathcal{N}(E)
$$

Density of States

Theorem: In the Anderson's model

1. The spectrum coincides with the interval $[-(2 d+W),+(2 d+W)]$
2. The density of state is absolutely continuous

Remark: In the analogous model on the Penrose lattice instead, without disorder, there is an isolated eigenvalue at $E=0$ of infinite multiplicity (Kohmoto, Sutherland, 1986) (Lenz et all) and the spectrum is conjectured to be singular continuous for any potential strength.

Trace per Unit Volume

Remark: the trace per unit volume $\mathcal{T}_{\mathbb{P}}$ defines a Hilbert space denoted by $L^{2}\left(\mathcal{A}, \mathcal{T}_{\mathbb{P}}\right)$ (Gelfand-Naı̆mark-Segal construction). The C^{*}-algebra \mathcal{A} acts on this space (GNS representation). Then $L^{\infty}\left(\mathcal{A}, \mathcal{T}_{\mathbb{P}}\right)$ is defined as the von Neumann Algebra (namely the weak closure) generated by this representation on this space. Then

- The trace per unit volume $\mathcal{T}_{\mathbb{P}}$ extends as a normal state (monotone convergence property) on $L^{\infty}\left(\mathcal{A}, \mathcal{T}_{\mathbb{P}}\right)$.
- The spectral projections are well defined in $L^{\infty}\left(\mathcal{A}, \mathcal{T}_{\mathbb{P}}\right)$ (Measurable Functional Calculus).

Derivation

- Let $X=\left(X_{1}, \cdots, X_{d}\right)$ denotes the (self-adjoint) position operator defined by

$$
X \psi(x)=x \psi(x), \quad \psi \in \ell^{2}\left(\mathbb{Z}^{d}\right)
$$

- For $A \in \mathcal{A}_{0}$ the commutator with X satisfies

$$
\langle 0| \imath\left[X, A_{\omega}\right]|x\rangle=-\imath x A(\omega, x) \stackrel{\text { def }}{=}-(\partial A)(\omega, x)
$$

- Then $\partial A \in \mathcal{A}_{0}$ and $\partial: \mathcal{A}_{0} \rightarrow \mathcal{A}_{0}$ is a *-derivation namely a linear map such that (Leibniz rule)

$$
\partial A^{*}=(\partial A)^{*}, \quad \partial(A B)=(\partial A) B+A(\partial B)
$$

III - Localization Length

The Wiener Criterion

Wiener' Criterion: Let μ be a finite complex valued measure on the real line. Let F_{μ} denote its Fourier transform $\int_{\mathbb{R}} e^{i t x} d \mu(x)$. Then

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}\left|F_{\mu}(t)\right|^{2}=\sum_{e \in \mathbb{R}}|\mu(\{E\})|^{2}
$$

Inverse Participation Ratio

- If $\psi \in \ell^{2}\left(\mathbb{Z}^{d}\right)$, its participation ratio is defined by

$$
p(\psi)=\frac{\sum_{x \in \mathbb{Z}^{d}}|\psi(x)|^{4}}{\left(\sum_{x \in \mathbb{Z}^{d}}|\psi(x)|^{2}\right)^{2}}
$$

- Examples: if $\psi(x)=1 / \sqrt{N}$ on a finite subset of N sites in \mathbb{Z}^{d}, then $1 / p(\psi)=N$. In particular this inverse participation ratio gives a measure of how many sites are really contributing to ψ. Hence it could be used as a measure of how much ψ is localized.

Return Probability

For $\Delta \subset \mathbb{R}$ a Borel set, let $P_{\omega}(\Delta)$ denote the eigenprojector of the covariant self-adjoint operator H_{ω} acting on $\mathcal{H}=\ell^{2}\left(\mathbb{Z}^{d}\right)$.

- The quantum probability amplitude for vectors starting at site $x \in \mathbb{Z}^{d}$ at time $t=0$ to belong to the subspace $P_{\omega}(\Delta) \mathcal{H}$ and to return to the site x after time t is

$$
\langle x| e^{\imath t H_{\omega}} P_{\omega}(\Delta)|x\rangle .
$$

- Therefore the corresponding time average probability is defined as

$$
\left.A_{x}(\Delta, \omega)=\lim _{T \rightarrow+\infty} \int_{0}^{T} \frac{d t}{T}\left|\langle x| e^{\imath t H_{\omega}} P_{\omega}(\Delta)\right| x\right\rangle\left.\right|^{2}
$$

Return Probability

- By covariance $A_{x}(\Delta, \omega)=A_{0}\left(\Delta, \mathrm{~T}^{-x} \omega\right)$ so that averaging over the disorder leads to the time and disorder average probability of return

$$
\xi(\Delta)=\int_{\Omega} d \mathbb{P}(\omega) A_{0}(\Delta, \omega)
$$

- This can also be expressed algebraically as

$$
\xi(\Delta)=\lim _{T \rightarrow+\infty} \int_{0}^{T} \frac{d t}{T} \int_{\mathbb{T}^{d}} \frac{d \theta^{d}}{(2 \pi)^{d}} \mathcal{T}_{\mathbb{P}}\left(\left(e^{-\imath t H} P(\Delta)\right) e^{\imath \theta \cdot \partial}\left(e^{+\imath t H} P(\Delta)\right)\right)
$$

Return Probability

Let $\sigma_{p p}(\omega)$ denote the set of eigenvalues of H_{ω}. For $E \in \sigma_{p p}(\omega)$ let $\psi_{\omega, E}$ denotes the corresponding normalized eigenstate. Using the Wiener criterion and the ergodicity of \mathbb{P} leads to

Theorem: the "time and disorder average probability of return" satisfies

$$
\xi(\Delta)=\int_{\Omega} d \mathbb{P}(\omega) \sum_{E \in \sigma_{p p}(\omega) \cap \Delta}\left|\psi_{\omega, E}(0)\right|^{4}
$$

In some sense, this formula provides an average over energy and disorder of the participation ratio.

In particular, with probability one, only a finite number of eigenvalues have a significant contribution near any given site.

Localization Length

- The position at time t is given by $X_{\omega}(t)=e^{\imath t H_{\omega}} X e^{-\imath t H_{\omega}}$, so that

$$
X_{\omega}(t)-X_{\omega}(0)=\imath e^{\imath t H_{\omega}}\left(\partial e^{-\imath t H}\right)_{\omega}
$$

- It follows that the average distance spanned by a state starting at the site x at time $t=0$ over the period of time T is

$$
\delta X_{\omega, x}(T)=\int_{0}^{T} \frac{d t}{T}\langle x|\left(X_{\omega}(t)-X_{\omega}(0)\right)^{2}|x\rangle
$$

Localization Length

- Averaging over the disorder leads to

$$
\delta X(T)=\int_{0}^{T} \frac{d t}{T} \mathcal{T}_{\mathbb{P}}\left(\left|\partial\left(e^{-\imath t H}\right)\right|^{2}\right)
$$

- Localizing the evolution in a spectral set Δ leads to the following definition of the energy dependent localization length

$$
l(\Delta)^{2}=\limsup _{T \rightarrow+\infty} \int_{0}^{T} \frac{d t}{T} \mathcal{T}_{\mathbb{P}}\left(\left|\partial\left(e^{-l t H} P(\Delta)\right)\right|^{2}\right)
$$

Localization Length

Theorem Ifl $(\Delta)^{2}<\infty$ then

1. the spectral measure of H_{ω} inside Δ is pure point for \mathbb{P}-almost every ω.
2. If \mathcal{N} denotes the density of state, then there is a measurable function $l \in L^{2}(\Delta, \mathcal{N})$ such that for $\Delta^{\prime} \subset \Delta$ measurable

$$
l\left(\Delta^{\prime}\right)^{2}=\int_{\Delta^{\prime}} l(E)^{2} d \mathcal{N}(E)
$$

and

$$
l\left(\Delta^{\prime}\right)^{2}=\int_{\Omega} d \mathbb{P}(\omega) \sum_{x \in \mathbb{Z}^{d}} \sum_{E \in \sigma_{p p}(\omega) \cap \Delta^{\prime}}|x|^{2}\left|\psi_{\omega, E}(0)\right|^{2}\left|\psi_{\omega, E}(x)\right|^{2}
$$

Current-Current Correlation

- From the Riesz-Markov-Kakutani Theorem, if H is a covariant selfadjoint bounded operator such that $\|\partial H\|<\infty$, then there is a matrix of complex valued bounded $\mathcal{N} \otimes \mathcal{N}$ - integrable functions $\mathcal{M}=$ $\left(m_{i j}\right)_{i, j \in[1, d]}$ on \mathbb{R}^{2} satisfying for any pair of continuous functions f and g on \mathbb{R} vanishing at infinity

$$
\mathcal{T}_{\mathbb{P}}\left(f(H) \partial_{i} H g(H) \partial_{j} H\right)=\int_{\mathbb{R}^{2}} f(E) g\left(E^{\prime}\right) m_{i j}\left(E, E^{\prime}\right) d \mathcal{N}(E) d \mathcal{N}\left(E^{\prime}\right)
$$

- The function $m=\sum_{i=1}^{d} m_{i i}$ is nonnegative and integrable.

Definition: each $m_{i j}$ is called a current-current correlation

Current-Current Correlation

Theorem: With the notation and the assumptions used previously, the localization length $l(E)$ is given by the following formula

$$
l(E)^{2}=2 \int_{\mathbb{R}} \frac{m\left(E, E^{\prime}\right)}{\left(E-E^{\prime}\right)^{2}} d \mathcal{N}\left(E^{\prime}\right) .
$$

for \boldsymbol{N}-almost every E.

Remarks:

- A finite localization length implies that the current-current correlation must vanish on the diagonal $E=E^{\prime}$ so as staying integrable as divided by $\left(E-E^{\prime}\right)^{2}$.
- For the Anderson model, this vanishing is expected to be of infinite order at large disorder.

IV - Numerical Approach

E. Prodan, "Quantum transport in disordered systems under magnetic fields: a study based on operator algebras", arXiv:1204.6490; Applied Math. Res. eXpress, 2013(2), 176-265, (2013).
J. Song, E. Prodan, "Characterization of the quantized Hall insulator phase in the quantum critical regime", arXiv: 1301.5305 ;

Europhys. Lett., 105(3), 37001, (2014).
E. Prodan, J. Bellissard, "Mapping the Current-Current Correlation Function Near a Quantum Critical Point", arXiv:1512.02476;

Ann. of Phys., 368, 1-15, (2016).

Numerical Method

- In the early 2010's Emil Prodan found a way to approximate the C^{*}-algebra by a periodic approximation liable to reduce the problem to a well-known method called Floquet-Bloch Theory.
- Using a formula for the conductivity, valid for aperiodic media ${ }_{(J B,}$ Schulz-Baldes '98), he could numerically computed it for the Quantum Hall Effect.
- From his numerical results, a critical point of the conductivity could be analyzed in terms of a singularity of the current-current correlation on the diagonal (Prodan, $\left.\bar{B}{ }^{1} 15\right)$.
- At this energy of this singularity, the localization length diverges leading to a change of Chern Number for the transverse conductivity.

Numerical Method

Numerical Method

ІЯМА

Thanks for Listening!!

