GENERATING SYMMETRIC AND ALTERNATING GROUPS WITH ELEMENTS OF FIXED ORDER

JUSTIN LANIER

Many of the commonly-used generating sets for the symmetric group \(\Sigma_n \) and the alternating group \(A_n \) either consist of a number of generators that grows as \(n \) grows or else contain an element whose order grows as \(n \) grows. For instance, \(\Sigma_n \) is generated by the set of adjacent transpositions, and it is also generated by a single transposition along with an \(n \)-cycle. Similarly, \(A_n \) is generated by all 3-cycles, and it is also generated by a single 3-cycle and a longest cycle of odd length.

We show that \(\Sigma_n \) and \(A_n \) can be generated by a uniformly small number of elements of fixed order \(k \). Note that since all permutations of odd order are even permutations, elements of odd order \(k \) cannot generate \(\Sigma_n \). For the case \(k = 2 \), two elements of order 2 cannot generate \(\Sigma_n \) or \(A_n \) except for small values of \(n \), since any group generated by two involutions is a quotient of a dihedral group. Therefore the result by Nuzhin [6] that three elements of order 2 generate \(A_n \) for \(n = 5 \) and \(n \geq 9 \) is the best possible in general.

We take up the cases where \(k \geq 3 \).

Proposition 1. Let \(k \geq 3 \) and \(n \geq k \). Then three elements of order \(k \) suffice to generate \(\Sigma_n \) when \(k \) is even and to generate \(A_n \) when \(k \) is odd.

Proposition 2. Let \(k \geq 3 \) and \(n \geq k+2 \). Then four elements of order \(k \) suffice to generate \(A_n \) when \(k \) is even.

The bound in Proposition 2 is \(n \geq k+2 \), and this is different from the bound in Proposition 1. In the case when \(k \) is even and \(k = n - 1 \), \(A_n \) is not always generated by elements of order \(k \). For instance, if \(k = n - 1 \) is a power of 2, then the only elements of order \(k \) are the \(k \)-cycles, but these are odd permutations and so cannot generate \(A_n \).

It is possible that two elements of order \(k \) may in fact suffice for \(k \geq 3 \). In this direction, Miller [5] shows that if \(2 \leq k \leq n \leq 2k - 1 \), two \(k \)-cycles suffice to generate \(\Sigma_n \) when \(k \) is even or \(A_n \) when \(k \) is odd. At the end of the paper, we give a construction for a pair of elements of order \(k \) that have generated \(\Sigma_n \) for \(k \) even and \(A_n \) for \(k \) odd for all values \((k, n)\) that we have tested by computer calculation, excepting a few small values that can be handled separately.

It would be interesting to determine the likelihood of generating \(\Sigma_n \) or \(A_n \) with two (or more) random elements of order \(k \), just as Dixon [2] determined for two random elements without order constraints. One could also ask about the more restrictive case where the random elements are products of the maximum number of disjoint \(k \)-cycles. Showing that either \(\Sigma_n \) or \(A_n \) is generated with positive probability could also be used as an approach to showing the existence of a generating set of two elements of order \(k \).
Prior results. There are of course many results about generating sets for Σ_n and A_n. We provide here a few examples about generating sets consisting of a universally bounded number of elements of small or fixed order. Miller [4] showed that except for a few cases when $n \leq 8$, every Σ_n and A_n is generated by two elements, one of order 2 and one of order 3. Later, Miller [5] showed that whenever A_n contains an element of order $k > 3$, the group may be generated by two elements, one of order 2 and one of order k. He also showed that the same holds for Σ_n, except for the case when $k = 4$ and $n = 6$ and in the cases when $k > 3$ is an odd prime and $n = 2k - 1$. As mentioned above, Nuzhin [6] showed that A_n is generated by three involutions (where two commute) if and only if $n \geq 9$ or $n = 5$. This implies that there is a universal upper bound on the number of involutions needed to generate A_n whenever they generate A_n at all. Annin and Maglione [1] determined that $\max\{2, \lceil(n-1)/(k-1)\rceil\}$ is the smallest number of k-cycles needed to generate Σ_n when k is even and to generate A_n when k is odd.

Preliminaries. We take $N = \{0, \ldots, n-1\}$ as our underlying permuted set. Denote by $h_{k,n}(a)$ a step k-cycle, which is a k-cycle of the form $(a, a+1, \ldots, a+k-1)$ with entries taken mod n. We further define $s_{k,n}(a,\ell)$ to be a sequential step product so that

$$s_{k,n}(a,\ell) = \prod_{i=1}^{\ell} h_{k,n}(a + (i-1) \cdot k)$$

with entries taken mod n. By way of example, we have

$$s_{4,15}(6,3) = (6 7 8 9)(10 11 12 13)(14 0 1 2).$$

Note that in order to obtain a product of disjoint cycles, the largest value that ℓ may take is $\lfloor n/k \rfloor$.

The main result about permutation groups that we use in our proof is Jordan’s theorem. Recall that a permutation group G is transitive if it acts transitively on the underlying permuted set, and it is 2-transitive if it acts transitively on ordered pairs of distinct elements of the underlying permuted set. A permutation group G is primitive if it is transitive and if no nontrivial partition of the underlying permuted set is preserved by the action of G.

Theorem (Jordan). Let G be a primitive subgroup of Σ_n, and suppose G contains a p-cycle where p is prime and $p \leq n - 3$. Then G is either A_n or Σ_n.

For additional background on primitivity and Jordan’s theorem, see for instance the book of Isaacs [3, Chapter 8B].

Proof of Proposition 1. Miller [5] showed that for $n \leq 2k - 1$, two k-cycles generate Σ_n when k is even and A_n when k is odd. Thus we may assume that $n \geq 2k$. Consider the
permutation group G on the set N generated by the following elements:

\[a = s_{k,n}(0, \lfloor n/k \rfloor) \]
\[b = \begin{cases}
 s_{k,n}(k-1, \lfloor n/k \rfloor), & \text{if } k \nmid n \\
 s_{k,n}(k-1, \lfloor n/k \rfloor - 1), & \text{if } k \mid n
\end{cases} \]
\[c = \begin{cases}
 (0 \ 1 \ 2), & \text{if } k = 3 \\
 (0 \ 1 \ 2) \ h_{k,n}(0) = (1 \ 0 \ 2 \ \cdots \ k - 1), & \text{if } k > 3
\end{cases} \]

All three elements consist of disjoint k-cycles and so have order k. As an illustration, here are the three elements in the case $k = 5, n = 18$.

\[a = (0 \ 1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8 \ 9)(10 \ 11 \ 12 \ 13 \ 14) \]
\[b = (4 \ 5 \ 6 \ 7 \ 8)(9 \ 10 \ 11 \ 12 \ 13)(14 \ 15 \ 16 \ 17 \ 0) \]
\[c = (1 \ 0 \ 2 \ 3 \ 4) \]

To apply Jordan’s theorem, we must show that G contains a small prime cycle and that G is primitive. Since $n \geq 2k \geq 6$, a 3-cycle will satisfy the small prime cycle requirement in Jordan’s theorem. If $k = 3$, then c is a 3-cycle. If $k > 3$, the commutator $[a, c]$ is the 3-cycle $(0 \ 1 \ k - 2)$.

It remains to show that G is primitive, and it suffices to prove the stronger condition that G is 2-transitive. We thus aim to show that for an arbitrary ordered pair $(i, j) \in N^2$, $i \neq j$, there exists $g \in G$ such that $g(i, j) = (k-2, k-1)$. G is certainly transitive, since the overlapping cycles of a and b allow any element in N to be carried to any other. Let g_1 be a product in a and b such that $g_1(i) = k-2$. We now seek a g_2 that carries j to $k-1$ while keeping i at $k-2$. We reduce to the case where $g_1(j)$ sits outside of $S = \{0, \ldots, k-1\}$. If $g_1(j)$ sits in S, then we may first move $g_1(j)$ outside of S while keeping i at $k-2$. Either b acts on $g_1(j)$ while keeping i at $k-2$—and so can move $g_1(j)$ out of S—or else $c^m b c^{-m}$ does so for some power of c. Therefore i sits at $k-2$ and $g_1(j)$ sits outside of S. Note that b and the product $c^{-1} a$ each fix $k-2$. Since b and $c^{-1} a$ act transitively on $N - \{0, \ldots, k-2\}$, we may form a product g_2 in b and $c^{-1} a$ so that $g_2 g_1(i, j) = (k-2, k-1)$. Thus G is 2-transitive, and so it is primitive.

Applying Jordan’s theorem, we have that G is either A_n or Σ_n. If k is even, then G contains the odd permutation c, and therefore $G \cong \Sigma_n$. If k is odd, then all of the generators are even permutations, and so $G \cong A_n$.

\[\square \]

Proof of Proposition 2. Take k to be even and $n \geq k + 2$. To show that A_n is generated by four elements of order k, we will modify the generating set for Σ_{n-2} comprised of three elements of order k from the proof of Proposition 1 or the two k-cycles given by Miller. First, add elements $\{a, b\}$ to the underlying set of permuted objects $\{0, \ldots, n-3\}$. For each odd permutation in the generating set for Σ_{n-2}, multiply it by the transposition $(a \ b)$ so that it becomes an even permutation. For each even permutation of the generating set for Σ_{n-2}, let it fix a and b so that it remains an even permutation. Finally, add to the generating set the element $t = (a \ b \ 3 \ 4 \ \cdots \ k)(1 \ 2)$. This is an even permutation of order k. These elements together generate A_n, since every generator is an even permutation.
and every 3-cycle on \(\{0, \ldots, n-3, a, b\} \) is generated by them. To see this last fact, observe that the 3-cycles on \(\{0, \ldots, n-3\} \) are generated by the modified elements and also that any 3-cycle involving \(a \) or \(b \) is a conjugation of one of these 3-cycles by a power of \(t \). Therefore we have a generating set for \(A_n \) comprised of at most four elements of even order \(k \).

\[\square \]

We would be glad to see the following conjecture resolved.

Conjecture. Let \(k \geq 3 \) and \(n \geq k \). Then two elements of order \(k \) suffice to generate \(\Sigma_n \) when \(k \) is even and to generate \(A_n \) when \(k \) is odd.

We give here a candidate construction for resolving this conjecture. Consider the following two permutations on \(N \) of order \(k \).

\[
\begin{align*}
a &= s_{k,n}(0, \lfloor n/k \rfloor), \\
b &= \begin{cases}
(k - 1 \, k + 1)s_{k,n}(k - 1, \lfloor n/k \rfloor), & \text{if } k \text{ is odd, or } k \text{ is even and } \lfloor n/k \rfloor \text{ is odd} \\
\frac{k}{4}, & \text{if } k \text{ is even, } \lceil n/k \rceil \text{ is even, and } n \neq k - 1 \mod k \\
d, & \text{if } k \text{ is even, } \lfloor n/k \rfloor \text{ is even, and } n = k - 1 \mod k
\end{cases}
\end{align*}
\]

where \(d = s_{2,n}(k(|n/k| - 1) - 1, 2)s_{k,n}(1, |n/k| - 2)h_{k,n}(k|n/k| - 1) \). Our computer calculations have verified that \(a \) and \(b \) generate \(\Sigma_n \) when \(k \) is even and \(A_n \) when \(k \) is odd for all pairs \((k, n)\) where \(n \geq k \geq 3 \), \(n \leq 200 \) and \(k \leq 30 \), except for the three cases \((3, 6)\), \((3, 7)\), and \((3, 8)\). These exceptional cases can be handled by a different construction. We have also checked the construction for 1000 additional random pairs of values where \(k \leq n \leq 1000 \). We have not, however, found a proof that \(a \) and \(b \) generate \(\Sigma_n \) when \(k \) is even and \(A_n \) when \(k \) is odd.

References

