
Math 1554 Extra Problems

Jad Salem

README: These problems are designed to go along with Math 1554. While
much of the content presented here supplements the curriculum, these prob-
lems do not constitute official course material, and should not be used to
study for tests.

Extra Problems are intended to be interesting, thought-provoking,
and contextualizing, and will highlight the ubiquity of linear algebra across
seemingly unrelated fields of math. The problems are often challenging and
sometimes open-ended, so students are encouraged to discuss the problems
with each other and their instructors. It may be difficult for a student to
benefit from these problems without discussing them with an instructor.
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Extra Problems #0 Jad Salem

Extra Problem Set #0

Definition. Let A and B be sets. The Cartesian product of A and B, denoted1 A×B, is the set of ordered
pairs of elements from A and B. Formally,

A×B = {(a, b) : a ∈ A, b ∈ B} .

For example, if A = {0} and B = {1, 2}, then A×B = {(0, 1), (0, 2)}.

E1. Let |X| denote the number of elements in the set X. For finite sets A,B, what is the relationship
between |A×B|, |A|, and |B|?

Vague Definition. Let A,B be sets. A function f : A→ B is an assignment of elements of B to elements
of A. In other words, each a ∈ A gets assigned an element f(a) ∈ B.

E2. Give a more formal definition of function using the Cartesian product.

E3. Suppose |A| = m and |B| = n. How many functions f : A→ B are there?

Definition A function f : A→ B is injective, or one-to-one, if f(a1) = f(a2) =⇒ a1 = a2. The function f
is surjective, or onto, if for all b ∈ B, there is some a ∈ A with f(a) = b.

E4. Give examples of functions which are injective and surjective, injective and not surjective, not injective
and surjective, and not injective and not surjective.

1We typically denote A×A by A2.
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E5. Let A,B be finite sets of the same size. Can you find a function f : A→ B which is injective but not
surjective? Prove your assertion.

E6. Answer the previous question for infinite sets. What are some settings under which injectivity implies
surjectivity?

E7. Is it true that a function f : A→ B has a left-inverse if and only if it is injective?

E8. If a function has a left-inverse, does it have a right-inverse?
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Extra Problems #1 Jad Salem

Extra Problem Set #1

Definition. Let A,B ⊂ R. Then the set-sum of A and B is A⊕B = {a+ b : a ∈ A, b ∈ B}.

For example, {1, 2} ⊕ {3} = {4, 5}.

E1. Since + is a binary operation, |A⊕B| 6 |A×B| = |A| · |B|. Can you find nonempty finite sets A,B for
which equality is met? Note that this would imply that elements of A⊕B are uniquely representable
as a+ b, with a ∈ A and b ∈ B.

E2. Given finite sets A and B, find the best possible lower bound for |A⊕B|. Prove your assertion.

E3. Can you find an infinite set A for which elements of A⊕A are uniquely expressible as a1 +a2, for some
a1, a2 ∈ A? How about a dense set A?
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Extra Problems #2 Jad Salem

Extra Problem Set #2

These questions concern the problem of fitting a polynomial to a set of points in R2. In particular, given
b1, . . . , bn ∈ R, can we find a polynomial p(x) satisfying p(i) = bi for i = 1, . . . , n?

E1. (a) Suppose we had polynomials E1, . . . , En such that

Ei(j) =

{
1 if j = i

0 if j ∈ {1, . . . , n} and j 6= i

Using these polynomials, can you find a feasible p?

(b) Can you find such E1, . . . , En?

E2. Assume p has degree n − 1. Write out the coefficient matrix resulting from the system of equations
p(i) = bi, for n = 2 and n = 3. Find the RREF of these matrices. How does this relate to E1?

E3. Show that the columns of this matrix are linearly independent, for any n > 2.
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Extra Problem Set #3

Given two linearly independent vectors ~u =

(
u1

u2

)
, ~v =

(
v1

v2

)
∈ R2, we define the fundamental parallelogram

of ~u,~v, denoted P(~u,~v), by
P(~u,~v) = {c1~u+ c2~v : 0 6 c1, c2 < 1} .

For example, if ~u =
(

2
1

)
and ~v =

(−1
1

)
, then P(~u,~v) is

x1

x2

~u~v

which has area 3.

E1. Let A = (~w1 ~w2) ∈ R2×2 be the matrix associated with rotation by π radians. Find P(~w1, ~w2).

E2. Let ~u =

(
1
0

)
and ~v =

(
1
2

)
. Find the area of P(~u,~v).

E3. Let ~x =

(
2
1

)
and ~y =

(
1
2

)
. Find the area of P(~x, ~y).

E4. Let A = (~u ~v) and B = (~x ~y) ∈ R2×2 (using ~u,~v, ~x, ~y from the previous problems). Find the product
AB = (~z1 ~z2). What is the area of P(~z1, ~z2)? How does this relate to the areas in E2 and E3?
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E5. Make a conjecture and try to prove it.
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Extra Problem Set #4

We have seen that if A ∈ Rn×n is a square matrix which can be reduced to a (upper-,lower-)diagonal form

with nonzero entries along the diagonal, then we can find some ~x ∈ Rn satisfying A~x = ~b. Here we will
explore how well this theory extends to systems of equations over other number systems. In particular, we
will look at systems of equations over Q (the set of rationals) and Z (the set of integers).

E1. Let A =

2 0 1
2

1 1 1
0 1 1

4

 and ~b =

1
2
1
2

. Suppose we want to solve the system A~x = ~b, but require that

~x ∈ Q3. Solve this system using row reduction, if a solution exists.
[Note: to ensure your solution is rational, you can only scale rows by rational numbers!]

E2. Now suppose we want our solution to be integral (i.e., we want to find a solution ~x whose entries are
integers). Solve the system {

2x1 + 2x2 = 2

6x1 + 2x2 = 12

[Note that we can only scale rows by integers.]

E3. You should have had different experiences with these two examples. What about the structure of Q
and Z accounts for these differences?
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Extra Problem Set #5

E1. Consider the functions L,R : R2 → R2 defined by

L

([
x
y

])
=

[
x− y
y

]
and R

([
x
y

])
=

[
x

y − x

]
.

(a) Are these linear transformations? If so, find the standard matrices for Lk and Rk, for any natural
number k.

(b) Notice that R2L2R

([
10
14

])
=

[
2
0

]
. Suppose a and b are positive integers. Can we always arrive

at

[
d
0

]
, for some positive integer d, by applying a sequence of Rs and Ls to

[
a
b

]
?

(c) Going off part (b), suppose we do arrive at some

[
d
0

]
. Is d uniquely determined by a and b? Is

the sequence of Ls and Rs uniquely determined?
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Extra Problem Set #6

Consider Pascal’s triangle
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

. .
. . . .

where each entry is the sum of its two “parents” in the previous row.

E1. On the back of this page, write out as many rows of Pascal’s triangle as you can, with the following
modification: if an entry is even, replace it with 0; if an entry is odd, replace it with 1.

E2. Ask some good questions. Answer them?

E3. For each row in your modified Pascal’s triangle, add up the entries. Any conjectures?
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Extra Problem Set #7

E1. Find a polynomial p(x) with nonnegative integer coefficients satisfying p(1) = 9 and p(10) = 1233.
How many such p are there?

E2. Let p0, p1, p2, . . . be a sequence of primes. You have shown (if you did Extra Problem Set #2) that for
any nonnegative integer N , we can find a polynomial fN (x) satisfying

fN (i) = pi for i = 0, 1, . . . , N .

Can you find a polynomial f(x) satisfying f(i) = pi for all nonnegative integers i?
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Extra Problem Set #8

Consider the set Z2 := {0, 1} with the following operations:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

and let GL2(Z2) denote the set of invertible 2× 2 matrices with entries in Z2.

E1. How many elements are in GL2(Z2)?

E2. Let A ∈ GL2(Z2). Is it true that A−1 = Ak for some natural number k? Justify your answer.

E3. Do matrices in GL2(Z2) commute? If A,B ∈ GL2(Z2), is it true that A+B ∈ GL2(Z2)?

E4. Let A,B,C ∈ GL2(Z2), and suppose AB = AC. Is it true that B = C?

E5. Let S be a subset of GL2(Z2) which is closed under multiplication, and let A ∈ GL2(Z2). How many
matrices are in the set AS = {AB : B ∈ S}?
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Extra Problem Set #9

Definition. A function f : {1, . . . , n} → {1, . . . , n} is a permutation if it is one-to-one and onto. We define
Sn to be the set of permutations of {1, . . . , n}.

For any permutation σ ∈ Sn, we can write σ as a composition of transpositions (swaps). Define the sign of
σ, denoted sgn(σ), to be (−1)M , where M is the number of transpositions in the decomposition of σ.
(Is this well-defined?)

Define a function δ : Rn×n → R by

δ(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i)

E1. Give an algorithm for computing δ(A). Brute force is okay. What is the asymptotic running time?

E2. Find δ(A) for an arbitrary matrix A ∈ R2×2. Any conjectures?

E3. How does δ interact with row operations? Can you prove your conjecture from E2?
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E4. Can you use E3 to give a faster algorithm for computing δ(A)?
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Extra Problems #10 Jad Salem

Extra Problem Set #10

Recall that a permutation is a one-to-one, onto function, and Sn is the set of permutations of {1, . . . , n}.
Also recall the formula for determinants from the last extra worksheet: detA =

∑
σ∈Sn

sgn(σ)
∏n
i=1 aiσ(i).

Suppose we have a network of 2n nodes, where the nodes are split into two groups of size n. Suppose no two
vertices in a group are connected by an edge. Here is an example for n = 4:

u1 u2 u3 u4

v1 v2 v3 v4

U

W

A perfect matching is a collection of n disjoint edges. For example, this is a perfect matching of the network
above:

u1 u2 u3 u4

v1 v2 v3 v4

U

W

A perfect matching can be encoded via a permutation. For example, the matching above can be represented
by σ(1) = 3, σ(2) = 1, σ(3) = 2, σ(4) = 4. If our network has edge weights we, then the weight of a perfect
matching M is

∏
e∈M we.

E1. Find a formula (involving permutations) for the sum of weights of all perfect matchings in a network.

E2. If you did Extra Problem Set #9, you found a polynomial-time algorithm for calculating
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i).

Can you give a polynomial-time algorithm for calculating your expression from E1?
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Extra Problem Set #11

Definition. Let Z2 denote the set {0, 1}, along with the operations “addition and multiplication (mod 2).”
In particular, + and · in Z2 are defined as follows:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

You have seen vector spaces over R in this course, but there are also vector spaces over Z2, such as Zn2
(vectors of length n with entries in Z2).

E1. (a) There are 4 lights in a row, all initially off. We have three switches, which control different light.
Switch 1 toggles lights 1 and 3; Switch 2 controls lights 2 and 3. Switch 3 controls lights 3 and 4.
Find all (if any) sets of switches which would turn all the lights on.

(b) There are 3 lights in a row, all initially off. We have 4 switches this time. Switch 1 toggles lights
1 and 3; Switch 2 toggles lights 2 and 3; Switch 3 toggles light 2; Switch 4 toggles lights 1 and 2.
Find all (if any) sets of switches which would turn on only light 3.

The notion of a “subspace” also extends to this finite setting. A subspace of Zn2 is called a linear code.

E2. How many vectors are in Zn2 ?

E3. List all linear codes contained in Z2
2.
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E4. How many linear codes are there of Zn2 of dimension 2?

E5. Define Z3 analagously. How many one-dimensional subspaces are there of Z3
3?
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Extra Problem Set #12

Recall that Z2 is the set {0, 1} along with the operations “addition and multiplication mod 2,” and that Zn2
is a vector space over Z2. A subspace of Zn2 is called a linear code. One central issue in coding theory is
how to deal with the presence of noise along a communication channel. Here we will consider the problem
of 1-bit alterations. i.e., upon reception of a word (vector), a single bit may have been flipped from 0 to 1,
or vice versa.

E1. Consider the linear code Z2
2 (bit-strings of length 2). Consider the following process for detection of

bit flips. First we “encode” each word

[
x1

x2

]
∈ Z2

2 as

 x1

x2

x1 + x2

 ∈ Z3
2.

(a) Find the matrix of this linear transformation.

(b) Explain how to recover the original word from this encoding. What property of our linear tran-
formation (encoding) allows for this recovery?

(c) Explain how to detect if the encoded word was altered in transmission.

E2. The previous problem dealt with detecting if there was a bit-flip. Find an encoding of Z4
2 which allows

you to detect and correct bit-flips. What is the smallest n for which one could correct bit-flips using
an encoding of Z4

2 into Zn2 ?
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Extra Problem Set #13

Definition. A matrix is called row stochastic if each row is a probability vector. Similarly, it is called
column stochastic if each column is a probability vector. A matrix which is both row stochastic and column
stochastic is called doubly stochastic.

Let A ∈ Rn×n, and let 1 be the column vector


1
1
...
1

 of all 1’s.

E1. Show that A is row stochastic if and only if A1 = 1.

E2. A is doubly stochastic if and only if A1 = AT1 = 1.

E3. If A and B are row stochastic, must AB be as well?

E4. If A is doubly stochastic, must A−1 be as well?
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E5. Is the set of doubly stochastic matrices convex?

Definition. σ(A) := {λ : det(A − λI) = 0} is called the spectrum of A. The spectral radius of A is
ρ(A) := maxλ∈σ(A) |λ|.

E6. Let A be row stochastic, suppose the eigenvalues of A are real. Show that ρ(A) = 1.
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Extra Problem Set #14

Definition. Let G = (V,E) be a graph on vertex set V with edge set E. Then the adjacency matrix of G,
denoted A(G), is the matrix

Aij =

{
1 vivj ∈ E
0 else

E1. Find an expression (involving A(G)) for the number of walks of length k from vi to vj .

E2. Let λ1 > · · · > λn be the eigenvalues of A(G). Show that the number of closed walks (i.e., the starting
and ending vertices are the same) of length k is

∑n
i=1 λ

k
i .

[Hint: diagonalize A]

E3. Show that if the spectrum of a graph G is symmetric (i.e., λi = −λn−i), then G has no odd cycles.
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Extra Problem Set #15

In this class, you have seen that Rn is a vector space with scalars in R. In this case, a basis of Rn contains
n vectors. In particular, a basis for R as a vector space over R contains exactly one vector.

What if we choose a different set of scalars? Here we will consider R as a vector space over Q, the set of
rational numbers.

E1. Describe Span{1}.
Remember that your linear combination must use rational scalars!

E2. Is {1,
√

2} a linearly independent set? What about {
√

2,
√

3}? What about {
√

2,
√

3,
√

6}?

E3. Can you find a basis for R as a vector space over Q? How big is it?
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Extra Problem Set #16

We can think of the real numbers R as a vector space over the rational numbers, Q. In other words, R is
a vector space with rational scalars. For this worksheet, let’s assume that this vector space has a basis H
(must such a basis exist?). Using this basis, we will prove something bizarre.

E1. Try to partition the positive real numbers R+ into two nonempty sets, each of which is closed under
addition.
[In other words, find two disjoint sets A1, A2, whose union is R+, which satisfies the following property;
for i = 1, 2 and all a, b ∈ Ai, we have a+ b ∈ Ai.]

E2. Follow the steps below to prove the existence of such a decomposition.

(a) Recall that we can define a linear transformation by its action on a basis. So, let h ∈ H be an
element in our basis, and define the fuction g : H → Q by

g(a) =

{
1 if a = h

0 else
,

and extend g to a linear function f : R→ Q. Show that f(R+) = Q.

(b) Is {x ∈ R+ : f(x) > 0} closed under addition? Finish the proof. Did you use (a)?
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April Fools Problem Set #17

E1. A function f : R→ R is linear if f(αx+ βy) = αf(x) + βf(y), for any α, β, x, y ∈ R. Find a function
f : R→ R satisfying f(x+ y) = f(x) + f(y) that is not linear.

E2. Let n be a positive integer. Consider the sequence (ak) defined as follows: we let a1 = n. Then for
any k > 1, we set

ak =

{
ak−1

2 if ak−1 is even

3ak−1 + 1 if ak−1 is odd

Show that eventually, this sequence will reach 1.
(This one should be quick).

E3. Show that any map of countries can be colored with 4 colors, such that no two countries sharing a
boundary receive the same color.
(This one is slightly computational, you may need to use the back of this worksheet).
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Extra Problem Set #18

Definition. Define
(
n
k

)
, pronounced “n choose k,” to be the number of subsets of {1, . . . , n} of size k.

E1. How many subsets are there of {1, . . . , n}?
[If you are stuck, answer the question for n = 1, 2, 3 and make a guess!]

E2. Use E1 to evaluate
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
n

)
.

[This may be relevant in the next question.]

E3. Ehrenfest Gas Diffusion. Suppose we have N gas particles in two chambers. There is a small
opening through which particles can move from one chamber to the other. At time t, a particle is
chosen uniformly at random, and that particle moves to the other chamber. For example, if there
are 2 particles in Chamber 1 and N − 2 particles in Chamber 2, then with probability 2

N , a particle

moves from Chamber 1 to Chamber 2; and with probability N−2
N , a particle moves from Chamber 2 to

Chamber 1.

Let state i be the state in which i particles are in Chamber 1. Find a (the?) steady-state vector of
this Markov chain.
[You may want to consider small values of N first, and then make a conjecture.]

25



Extra Problems #19 Jad Salem

Extra Problem Set #19

Your classmate wants to send you an encrypted message. The encryption is as follows: first, you agree upon
a 3× 3 matrix A. We impose several conditions on A, so that if A is corrupted, we might be able to recover
the original matrix. In particular, we require:

• A can be obtained from the identity by applying row-swaps and adding multiples of a row to a different
row, and scaling rows by ±1

• detA > 0

Now we start with a message, say I’m here. Next, we represent the ith letter of the alphabet by the number
i. So, our message is 9,13,8,5,18,5. Next, we put these numbers into vectors of length 3. Our message is
then x1, x2, where

x1 =

 9
13
8

 , x2 =

 5
18
5

 .

If the number of letters is not divisible by 3, you can pad your message with 0s. Finally, your friend sends
you the encoded message Ax1, Ax2. You can then recover the original message using your knowledge of A.

E1. You and your classmate agree upon the matrix A =

0 −1 −1
1 1 0
0 0 ∗

. Unfortunately, the information

was corrupted and you no longer know what the last entry ∗ is. The message you receive is−5
11
4

 ,
−39

28
20

 ,
−7

13
2

 ,
−39

24
20

 ,
−6

21
5

 ,
−23

27
18

 .
Determine the original message.
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Extra Problem Set #20

This worksheet concerns knots. Informally, a knot is a closed path in R3. Typically, knots are drawn as
a projection onto R2, with crossings indicated by overlay. For example, here is a popular knot called the
trefoil.

Such a drawing of a knot breaks the knot into strands. There are 3 strands in the knot above. A 3-coloring
of a knot is an assignment of colors to the strands of the knot, using at most 3 colors. A 3-coloring is called
valid if for each crossing, the three incident strands have all different colors, or have the same color.

E1. Given colors Red, Blue, Green, how many valid 3-colorings does the trefoil have?

Let Z3 = {0, 1, 2}, with operations addition and multiplication modulo 3. I.e., the elements a+ b and ab are
defined to be their remainders upone division by 3. So, 1 + 2 = 0, and 2 · 2 = 1. Now let’s color the strands
of a knot using the colors 0,1,2.

E2. Show that the condition “at each crossing, all colors and the same or they are all different” is equivalent
to the condition “at each crossing, the sum of the colors in Z3 is 0.”

E3. A 3-coloring of a knot can be thought of as a vector in Zr3, where r is the number of strands in the
drawing of the knot. Show that the set of valid 3-colorings of a knot is a subspace of Zr3.
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E4. What does E3 imply about the number of valid 3-colorings of a knot?
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Extra Problem Set #21

In this class, you have dealt entirely with the finite-dimensional vector spaces Rn, for n ∈ N. A question
you should be asking yourselves is: which properties of finite-dimensional vector spaces extend to infinite-
dimensional vector spaces?

E1. Let A,B be n× n matrices satisfying AB = I. Show that BA = I.
[In other words, right-inverses are left-inverses]

E2. Let P be the set of polynomials with real coefficients. Show that P is a real vector space (i.e., a vector
space with R as scalars). Find a basis.

E3. Define functions D, I : P → P as follows:

D(a0 + a1x+ · · · akxk) = a1 + 2a2x+ · · ·+ kakx
k−1

and
I(a0 + a1x+ · · · akxk) = a0x+

a1

2
x2 + · · ·+ ak

k + 1
xk+1 .

Show that D and I are linear transofmations.

E4. Is D ◦ I is the identity map? Is I ◦ D? Compare with E1.
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Extra Problem Set #22

Definition. A partially ordered set, or a poset, is a set A along with a relation �, which satisfies the following
conditions:

• For all a ∈ A, we have a � a (“reflexivity”)

• If a � b and b � a, then a = b (“antisymmetry”)

• If a � b and b � c, then a � c (“transitivity”)

A partially ordered set is called totally ordered if for every a, b ∈ A, either a � b or b � a (i.e., any two
elements are comparable).

E1. Let U be any set, and let P(U) be the set of all subsets of U . Show that P(U) is a poset under the
relation ⊆. Is it totally ordered?

The following statement is unprovable using standard Zermelo-Fraenkel set theory axioms. However, it is
provable if we also assume the axiom of choice.

Zorn’s Lemma. Let P be a poset with relation �, and suppose every totally ordered subset is bounded
above. Then P has a maximal element.

E2. Prove that every vector space has a basis.
[Hint: use Zorn’s Lemma to show the existence of a maximal linearly independent set. What can you say about such a set?]
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