
CHAPTER 1

MATHEMATICAL PRELIMINARIES

Swati Gupta and Jad Salem

Georgia Institute of Technology, Atlanta, Georgia
Last updated: September 30, 2022

This chapter is a work in progress and has not been subjected to the usual scrutiny
reserved for formal publications. If you find errors in this draft, please let the
authors know. We would be happy to acknowledge you in the final version.

1.1 Set theory

Sets are often considered the most fundamental of mathematical objects — the building
blocks of mathematics, if you will. While a precise definition of a set can be found in
most set theory textbooks, the following loose definition will suffice for the purposes of
this course.

Definition 1: set

A set is an unordered collection of distinct objects.

The word set is used colloquially in the English language, which may give the reader an
intuitive idea of what a set is. For instance, your local home goods store may sell a set of
cookware, consisting of a skillet, a sauce pan, and a stock pot. There is no inherent order
on the objects (i.e., this is the same as a set containing a skillet, a stock pot, and a sauce
pan), and the three objects are distinct.

1

2 MATHEMATICAL PRELIMINARIES

A set containing the objects a, b, c is typically denoted as {a, b, c}, and the objects are
referred to as elements. The notation a ∈ S means that the element a is in the set S.

EXAMPLE 1.1

Consider the set S = {0, 2, 4, 6}. Since sets are composed of unordered and distinct
elements, the sets

{0, 2, 4, 6}, {0, 4, 2, 6}, {6, 2, 4, 0, 2}

are all equal, and they all have four elements! We can express that 2 is an element of
S by writing “2 ∈ S,” and we can express that 5 is not an element of S by writing
“5 6∈ S.”

Certain sets that are commonly discussed have special notation. For instance, the set of
integers {. . . ,−2,−1, 0, 1, 2, . . .} is denoted by Z, which is short for the German word for
number. See Table 1.1 for a list of commonly used sets.

Table 1.1 Common sets

N the set of natural numbers {0, 1, 2, . . .}
Z the set of integers

Q the set of rational numbers (fractions)

R the set of real numbers (like 2,−3.1,
√

2, π)

Z+ the set of positive integers {1, 2, 3, . . .}
R+ the set of positive real numbers

Rn the set of n-tuples of real numbers

[n] the set of positive integers up to n: {1, 2, . . . , n}

You may have noticed that certain sets in Table 1.1 are “bigger” than other sets, in the
sense of containment. For example, any element of Z is also an element of R (any integer
is a real number). We denote this relationship by saying that Z is a subset of R.

Definition 2: subset

Let A, B be sets. We say that A is a subset of B, and write A ⊆ B, if every element
of A is also an element of B.

EXAMPLE 1.2

Since every natural number is rational, we can say that N ⊆ Q. On the other hand,
since (0, 0) 6∈ R3, it follows that R2 is not a subset of R3.

There are several operations that can be used to create new sets out of old sets. For example,
suppose we have two sets A and B. The union of A and B, denoted A ∪ B, is the set of
all element in at least one of the two sets. Similarly, the intersection of A and B, denoted
A ∩B, is the set of common elements. We can rephrase these definitions as follows:

SET THEORY 3

e ∈ A ∪B ⇐⇒ e ∈ A or e ∈ B;

e ∈ A ∩B ⇐⇒ e ∈ A and e ∈ B.

Let’s take a concrete example. Let A = {1, 2, 3} and B = {3, 4}. Then A ∪ B =
{1, 2, 3, 4}, and A ∩B = {3}. Notice that in this example, A ∩B ⊆ A ⊆ A ∪B. In fact,
this phenomenon is always true — can you see why?

Sets are often described by qualities of their elements. For instance, one can talk about
the set of even natural numbers, or the set of prime integers. When a set is defined in such a
way, the set is often denoted using set-builder notation. This is done by specifying the un-
derlying set from which elements are being considered, and listing the defining qualities of
the elements. For instance, the set of prime integers can be written as {n ∈ Z : n is prime}.

Maxima and suprema of sets. We will often want to know the largest value of a set
(e.g., the largest regret among all problem instances). We call the largest number in set the
maximum. More precisely:

Definition 3: maximum

Let S ⊆ R be a subset of the real numbers. We say that a real number M is the
maximum of S, and write M = maxS, if

1. M ∈ S, and

2. for every x ∈ S, x ≤M .

EXAMPLE 1.3 maxima of finite sets

Convince yourself of the following: max{3, 2, 1} = 3 and max{n ∈ N : n ≤ 7} = 7.

Sometimes qualities defining the set in question are placed underneath the “max” symbol.
For instance, if we wanted to notate the largest prime integer less than 10, the following
are two equivalent ways to do so:

max{n ∈ Z : n is prime and n ≤ 10} = max
n≤10
n prime

n = 7.

Some sets, however, do not have a maximum. For instance, any set which is unbounded
from above (such as Z,R,N) does not have a maximum. Even bounded sets may not have
a maximum, such as the open interval I = (0, 1), i.e., all numbers between 0 and 1 (not
including 0 and 1). One might be tempted to say that 1 is the maximum of I , but this is
incorrect: since 1 6∈ I , condition 1 of Definition 3 is not satisfied. However, it is accurate
to say that 1 is an upper bound for I , since 1 is bigger than any element of I . In fact, since
there are no smaller upper bounds for I , we can say that 1 is the least upper bound, or
supremum, of I .

4 MATHEMATICAL PRELIMINARIES

Definition 4: supremum

Let S ⊆ R be a subset of real numbers. We say that s is the supremum of S, and write
s = supS, if

1. s is an upper bound for S (i.e., for every x ∈ S, x ≤ s), and

2. for every upper bound s′ of S, s ≤ s′, i.e., s is the smallest possible upper bound
for S.

The main difference between maxima and suprema is that a maximum is an element of
the set, whereas a supremum need not be. Importantly, this means that any nonempty set
which is bounded above has a supremum. As discussed above, sup(0, 1) = 1, but (0, 1)
has no maximum. However, the closed interval [0, 1] contains its supremum:

sup[0, 1] = max[0, 1] = 1.

In fact, this phenomenon is always true:

Proposition 1: maxima are suprema

Let S ⊆ R be a set with a maximum M = maxS. Then M = supS as well.

As with maxima, the conditions of the set in question are often listed under the “sup”
symbol.

EXAMPLE 1.4 suprema conventions

The set
{

1− 1
n : n ∈ Z+

}
has no maximum, but it has an supremum:

sup
{

1− 1

n
: n ∈ Z+

}
= sup
n∈Z+

(
1− 1

n

)
= 1.

Check that there is no number less than 1 that upper bounds every element of the
example set.

Finally, we would like to note that all of these ideas can be applied for minima as well. We
can extend the concept of a minimum to a greatest lower bound, or infimum, which exists
for any set which is nonempty and bounded from below. The infimum of a set S is denoted
by inf S, and if a set S has a minimum, then minS = inf S.

EXAMPLE 1.5 infima conventions

The set
{

1
n : n ∈ Z+

}
has no minimum, but it has an infimum:

inf
{ 1

n
: n ∈ Z+

}
= inf
n∈Z+

1

n
= 0.

EXERCISES 5

EXERCISES

1.1.1 Order the sets R, Z, Q, and {1, 3, 5} by subset containment.

1.1.2 Give an example of a set with a minimum but no maximum. Give an example of a
set with a maximum but no minimum.

1.1.3 Give an example of a nonempty set without a maximum. Does your set have a
supremum?

1.1.4 SupposeA andB are sets with maxima. Show that max(A∪B) = max{maxA,maxB}.

1.1.5 Let A,B be finite sets. Prove that |A ∪ B| ≤ |A| + |B|. This inequality is an
example of a union bound.

1.2 Big-Oh analysis

This course focuses on the implementation and analysis of algorithms, and so we must
ask: how does one measure the performance of an algorithm? There are many aspects of
algorithms that are of interest, such as running time, space requirements, number of queries
to a helper algorithm, how far an algorithm is from some benchmark, and more.

EXAMPLE 1.6 linear search

You are tasked with designing an algorithm which takes as input a list of length n,
and outputs whether or not “3” is in the list. Your algorithm iterates through the list,
and returns “no” if “3” is not found. If “3” is found, then the algorithm terminates,
returning “yes.” In this case, the worst-case number of comparisons that the algorithm
makes is n, even though the actual number of comparisons could be as few as 1.

As seen in Example 1.6, these performance quantities are functions of the input. In ma-
chine learning, the input often includes some time horizon T , which is the number of
decisions the algorithm will make over time. The performance measure that is typically of
concern in such settings is called regret, which measures deviation from some “optimal”
benchmark (see Section 2.3 for more details). Let us introduce the big-Oh notation with
the example of running time of an algorithm.

Suppose we have two algorithms, Alg1 and Alg2, for the same problem with input size
T . Alg1 has a running time of T 1/2, and Alg2 has a running time of 100T 1/3. If the goal
is to minimize running time (or runtime), which algorithm should be chosen?

Due to the large coefficient in the runtime of Alg2, the runtime of Alg1 is lower than
the runtime of Alg2 for small values of T . For large values of T , this trend reverses, and
the runtime of Alg1 becomes higher than the runtime of Alg2. The question now becomes:
should we care more about small values of T , or large values of T ? Typically, one cares
more about the runtime for large inputs, because (a) applications often involve big data,
and (b) small instances can often be solved quickly even by inefficient algorithms. For
these reasons, one would typically choose Alg2 over Alg1.

Let us now be more precise about how to compare functions such as T 1/2 and 100T 1/3.
The typical way to do so is with big-oh analysis.

6 MATHEMATICAL PRELIMINARIES

Definition 5: big-oh

Let f, g : N → R be two functions on the natural numbers. We say that f is big-oh
of g, and write f ∈ O(g), if there exist c > 0 and n0 ∈ N such that |f(n)| ≤ c|g(n)|
for all n ≥ n0.

Stated differently, f ∈ O(g) means that for large enough input, f is smaller than some
constant multiple of g. To put this in the context of runtime, suppose Alg3 has a runtime
of f(T) and Alg4 has a runtime of g(T). If we know that f ∈ O(g) and g 6∈ O(f), then
Alg3 would be preferable (in the big-oh sense). Let’s take an example to make sense of
Definition 5.

EXAMPLE 1.7

Suppose we have algorithms Alg3 and Alg4 with runtimes of 2n2 + n + 1 and n2,
respectively. Notice that n2 ∈ O(2n2 + n+ 1), which can be seen by setting n0 = 0
and c = 1 in Definition 5. Conversely, observe that for n ≥ 1,

2n2 + n+ 1 ≤ 2n2 + 2n+ 2 ≤ 2n2 + 2n2 + 2n2 ≤ 6n2 .

It follows that 2n2 + n + 1 ∈ O(n2) by setting n0 = 1 and c = 6 in Definition 5.
Notice that big-oh essentially “hides” constant factors.

Now that we have a technical way to compare two algorithms, we should discuss how to
check if f ∈ O(g). Of course, one could use Definition 5 and try to find appropriate
constants c and n0. This, however, can be quite tedious. Instead, the following proposition
can be used, in most cases,1 to determine if f ∈ O(g) more easily.

Proposition 2: criteria for big-oh comparison

Let f, g : N→ R.

If limn→∞
|f(n)|
|g(n)| = 0, then f ∈ O(g) and g 6∈ O(f).

If limn→∞
|f(n)|
|g(n)| =∞, then f 6∈ O(g) and g ∈ O(f).

If limn→∞
|f(n)|
|g(n)| = c, for some constant c > 0, then f ∈ O(g) and g ∈ O(f).

These criteria simplify our calculations greatly. For example, let us return to Alg1 and
Alg2.

EXAMPLE 1.8

1For some functions f, g, the limit described in Proposition 2 diverges, and the proposition cannot be applied.
That said, functions describing the performance of an algorithm are typically well-behaved, and the limit will
typically exist.

EXERCISES 7

Recall that Alg1 has a runtime of T 1/2, and Alg2 has a runtime of 100T 1/3. Taking
the limit of the quotient, we get

lim
T→∞

|T 1/2|
|100T 1/3|

= lim
T→∞

T 1/6

100
=∞ .

By Proposition 2, it follows that 100T 1/3 ∈ O(T 1/2), and T 1/2 6∈ O(100T 1/3). This
verifies our previous assertion that Alg2 is better, according to big-oh analysis.

EXAMPLE 1.9

Suppose one algorithm has runtime n!, and another algorithm has runtime nn. Which
algorithm is faster, according to big-oh analysis? To answer this question, we will
determine the value of limn→∞

n!
nn . To do so, observe that

lim
n→∞

n!

nn
· (n− 1)n−1

(n− 1)!
= lim
n→∞

(
1− 1

n

)n−1

=
1

e
,

and so by the ratio test, limn→∞
n!
nn = 0. By Proposition 2, it follows that n! ∈ O(nn)

and nn 6∈ O(n!). This tells us that the algorithm with runtime n! is better, according
to big-oh analysis.

EXERCISES

1.2.1 Suppose you have the option of running three algorithms, Alg1, Alg2, Alg3, with
running times O(n lnn), O(n3), 300n2, respectively. Which algorithm would you select
(i.e., which one is the fastest according to big-oh analysis) to run on input instances with
arbitrary sizes n?

1.2.2 Show that logb1(n) ∈ O
(

logb2(n)
)

for any b1, b2 > 1.

1.2.3 Show that if f(n) ∈ O(g(n)), then λf(n) ∈ O(g(n)) as well, for any λ ∈ R.

1.2.4 Let f, g, h : N→ R. Show that if f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h).

1.3 Probability

Suppose we roll a fair, 6-sided die (i.e., a die for which each outcome 1, . . . , 6 is equally
likely). Then the probability of rolling a “3” is 1

6 . To put this statement into standard
mathematical notation, we could let X represent the outcome of rolling the die, and say:

P({X = 3}) =
1

6
.

In this example, we call Ω = {1, . . . , 6} the outcome space and X a random variable.
The event “a three is rolled” is denoted by {X = 3}, and can formally be thought of as
the set of outcomes for which a three is rolled (i.e., just {3}). Now consider the event
E = {X ≤ 3} of rolling no higher than a 3. Then E corresponds to the set of outcomes

8 MATHEMATICAL PRELIMINARIES

{1, 2, 3} ⊆ Ω. Suppose we would like to know P(E). Since we assumed the die was fair,
each outcome has probability 1

6 , which allows us to use additivity of probabilities:

Proposition 3: additivity of probabilities

Let E1 and E2 be disjoint events (i.e., E1 ∩ E2 = ∅). Then P(E1 ∪ E2) = P(E1) +
P(E2).

Using Proposition 3, we can calculate the probability of event E = {X ≤ 3}:

P({X ≤ 3}) = P({X = 1} ∪ {X = 2} ∪ {X = 3})
= P({X = 1}) + P({X = 2}) + P({X = 3}) by Prop. 3

=
1

6
+

1

6
+

1

6
=

1

2

EXAMPLE 1.10

As above, let X denote the outcome of rolling a fair 6-sided die. Then the event
{X is even} is the same as the set of outcomes {2, 4, 6} ⊆ Ω. We can calculate the
probability of this event using additivity again:

P({X is even}) = P({X = 2} ∪ {X = 4} ∪ {X = 6})
= P({X = 2}) + P({X = 4}) + P({X = 6}) by Prop. 3

=
1

6
+

1

6
+

1

6
=

1

2

When events intersect, then Proposition 3 cannot be applied as is. For example, consider
the events E1 = {X ≤ 3} and E2 = {X is odd}. Then

2

3
= P(E1 ∪ E2) 6= P(E1) + P(E2) = 1.

However, we could still apply Proposition 3 if we decompose E1 ∪ E2 into disjoint sets.
For instance, we can write

E1 ∪ E2 = (E1 \ E2) ∪ (E2 \ E1) ∪ (E1 ∩ E2). (1.1)

It follows that for any (possibly intersecting) events E1 and E2:

P(E1 ∪ E2) = P
(
(E1 \ E2) ∪ (E2 \ E1) ∪ (E1 ∩ E2)

)
= P(E1 \ E2) + P(E2 \ E1) + P(E1 ∩ E2) by (1.1)
= P(E1) + P(E2)− P(E1 ∩ E2).

In summary, we have just shown the following “inclusion-exclusion” property of prob-
abilities:

PROBABILITY 9

Proposition 4: inclusion-exclusion for probabilities

LetE1 andE2 be any two events. Then P(E1∪E2) = P(E1)+P(E2)−P(E1∩E2).

EXAMPLE 1.11 inclusion-exclusion for probabilities

Consider the events E1 = {X ≤ 3} and E2 = {X is odd} from above. In this case,
E1 ∩ E2 = {1, 3}, and so Proposition 4,

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2) =
1

2
+

1

2
− 1

3
=

2

3
.

Conditional probabilities and independence. LetE1 andE2 be two events. Suppose we
would like to know: what is the probability of event E1 given that event E2 occurs? We
refer this as a conditional probability.

Definition 6: conditional probability

Let E1 and E2 be two events, with P(E2) 6= 0. The probability of E1 given E2,
denoted P(E1 | E2), is P(E1 | E2) = P(E1∩E2)

P(E2) .

Notice that the conditional probability P(E1 | E2) is obtained by intersecting E1 with
E2, and normalizing by P(E2). The reason that we intersect with E2 is that we are assum-
ing E2 occurs, which means that we should ignore all outcomes outside of E2. The reason
that we normalize by P(E2) is to ensure that P(E2 | E2) = 1, which is intuitively what we
want.

Condition probabilities provide one way to measure how “related” two events are. If
two eventsE1 andE2 are fairly unrelated, then one would expect P(E1) to be quite similar
to P(E1 | E2) (in other words, the occurrence of E2 doesn’t have a big impact on the
probability of E1). When two events are completely unrelated, they are call independent,
which we define precisely below.

Definition 7: independence

Events E1 and E2 are independent if P(E1 ∩ E2) = P(E1) · P(E2).

Notice that if E1 and E2 are independent, then

P(E1 | E2) =
P(E1 ∩ E2)

P(E2)
=

P(E1)P(E2)

P(E2)
= P(E1) ,

which matches our intuitive notion of independence.
Caution: independence is not the same thing as disjointness. For instance, letX1 be the

roll of a fair 6-sided die, and X2 the roll of a different fair 6-sided die. Consider the events
E1 = {X1 ≤ 2}, E2 = {X1 ≥ 3}, and E3 = {X2 = 5}. Then E1 and E2 are disjoint,
but not independent; on the other hand, E1 and E3 are independent, but not disjoint.

10 MATHEMATICAL PRELIMINARIES

Expected value. Again, let X denote the roll of a fair die. We would like to know the
average of X , i.e., the average number rolled by a fair die. This average is referred to as
the expected value of X .

Definition 8: expected value

Let X be a random variable with finite outcome space Ω = {ω1, . . . , ωn} ⊆ R. Then
the expected value of X , denoted E[X], is

E[X] =
∑
ω∈Ω

P(X = ω) · ω = P(X = ω1) · ω1 + · · ·+ P(X = ωn) · ωn.

EXAMPLE 1.12 expected die roll

Let X be the outcome of a die roll. In this case, the outcome space is {1, . . . , 6}, and
the expected value is

E[X] =

6∑
i=1

P({X = i}) · i =

6∑
i=1

i

6
=

7

2
.

EXAMPLE 1.13 Bernoulli random variables

Let X have outcome space Ω = {0, 1}, with P({X = 1}) = p and P({X = 0}) =
1 − p. In other words, X is a Bernoulli random variable with parameter p. The
expected value of X is

E[X] =

1∑
i=0

P({X = i}) · i = (1− p) · 0 + p · 1 = p.

Suppose we know that E[X1] = m1 and E[X2] = m2. Can we calculate E[X1 +X2]? One
useful quality of expected values is that they respect linear combinations. In particular, we
can use linearity of expectation to simplify the expected value of a linear combination of
random variables.

Proposition 5: linearity of expectation

LetX1, . . . , Xn be random variables with finite outcome spaces, and let α1, . . . , αn ∈
R. Then

E[α1X1 + · · ·+ αnXn] =

n∑
i=1

αiE[Xi].

PROBABILITY 11

EXAMPLE 1.14 binomial random variables

Let X1, . . . , Xn be independent Bernoulli random variables with parameter p, and let
X =

∑n
i=1Xi. Then X is called a binomial random variable with parameters n and

p. By linearity of expectation, we have

E[X] = E
[n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

p = np.

Continuous random variables. All the examples and propositions above were for ran-
dom variables with finite outcome spaces, but the theory extends easily to continuous ran-
dom variables. Continuous random variables typically have R (or some subset of R) as an
outcome space, and so the outcome space cannot be “summed over” as we did above in
defining expected value. Instead, we must use the continuous analog of a sum, which is to
say, an integral.

Before we can discuss the expected value of a continuous random variable. For many
continuous random variables, singleton outcomes have probability 0. For example, if X is
normally distributed, then P({X = x}) = 0 for any x ∈ R. In order to get around this
issue and measure probabilities in small intervals, we use probability density functions.

Definition 9: density function

Let X be a continuous random variable with outcome space R. A density function for
X , denoted fX(x), is a function satisfying

P({X ∈ [a, b]}) =

∫ b

a

fX(x) dx

for all a ≤ b ∈ R.

EXAMPLE 1.15 uniform random variables

Let X be a uniform random variable on [0, 1], i.e., X ∼ Unif[0, 1]. Convince yourself
that

fX(x) =


0 x < 0

1 0 ≤ x ≤ 1

0 1 < x

.

We are now ready to define the expected value of a continuous random variable.

Definition 10: expected value of a continuous random variable

Let X be a random variable with outcome space R and density function fX(x). Then,
provided that xfX(x) is integrable over R, the expected value of X is

E[X] =

∫ ∞
−∞

xfX(x) dx.

12 MATHEMATICAL PRELIMINARIES

EXAMPLE 1.16 expected value of a uniform random variable

Let X ∼ Unif[a, b] be uniformly distributed over the interval [a, b]. Then

E[X] =

∫ b

a

x

b− a
dx =

a+ b

2
.

Work out the details to convince yourself that this is true!

Concentration inequalities. One core idea in machine learning is that by observing many
data points, one can estimate the “average” value of the underlying distribution. The prob-
abilistic idea that bolsters this is that sample means converge to true means. Here we
discuss several useful inequalities that relate a random variable to its mean. We begin
with Chebyshev’s inequality, which gives quadratic decay of random variables from their
means.

Proposition 6: Chebyshev’s inequality

Let X be a continuous random variable with finite mean µ and finite variance σ2.
Then for any t > 0,

P[{|X − µ| ≥ tσ}] ≤ 1

t2
.

Hoeffding’s inequality is useful in bounding the convergence rate of a sample mean. In
particular, Hoeffding’s inequality shows exponential convergence to the true mean as the
sample size increases.

Proposition 7: Hoeffding’s inequality

Let X1, . . . , Xn be independent random variables with outcome space Ω ⊆ [0, 1],
and let X = 1

n

∑n
i=1Xi be the sample mean. Then

P({|X − E[X]| ≥ t}) ≤ 2 exp(−2nt2).

EXERCISES

1.3.1 Consider k independent Bernoulli variables X1, X2, . . . , Xk with parameters 0 <
pi < 1 for i = 1, . . . , k, i.e., Prob(Xi = 1) = pi. What is the expectation of the sum∑k
i=1Xi? What if these variables are not independent?

1.4 Linear algebra

In this course, we will often work over the vector space Rd (d-dimensional Euclidean
space). In addition to being a vector space, Rd is equipped with an inner product, which
provides the geometric backbone of Rd. The inner product we will use is the standard dot
product.

LINEAR ALGEBRA 13

Definition 11: dot product

Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd. Then x · y =
∑d
i=1 xiyi.

The dot product satisfies the following properties.

Proposition 8: dot product properties

For any x,y, z ∈ Rd and c ∈ R, the following hold:

1. (symmetry) x · y = y · x;

2. (linearity) (cx + y) · z = c(x · z) + y · z;

3. (positive definiteness) x · x ≥ 0, and

x · x = 0 ⇐⇒ x = 0.

Inner products, such as dot product, provide us with rich structure, and induce a notion
of angle, size, and distance. We will first discuss measuring size in Rd, which we do via a
norm.

Definition 12: 2-norm

Let x = (x1, . . . , xd) ∈ Rd. The 2-norm of x, denoted ‖x‖2 or ‖x‖, is

‖x‖2 =
√
x · x =

(d∑
i=1

x2
i

)1/2

.

The 2-norm is the usual Euclidean measure of size, or distance from the origin. It
satisfies the following properties.

Proposition 9: 2-norm properties

For any x ∈ Rn and c ∈ R, the following hold:

1. (homogeneity) ‖cx‖2 = |c|‖x‖2.

2. (non-negativity) ‖x‖2 ≥ 0;

3. (non-degeneracy) ‖x‖2 = 0 ⇐⇒ x = 0;

4. (triangle inequality) ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.

Having a notion of size (like the 2-norm) also allows for a notion of distance. In partic-
ular, the 2-norm induces the following metric:

14 MATHEMATICAL PRELIMINARIES

Definition 13: Euclidean (`2) distance

For any x,y ∈ Rd, the distance between x and y induced by the 2-norm is ‖x− y‖2.

The reader should check that the following properties hold (hint: use Proposition 9).

Proposition 10: Euclidean distance properties

Let x,y, z ∈ Rd, and let d(x,y) = ‖x− y‖2. Then the following hold:

1. (identity of indiscernibles) d(x,y) ≥ 0, and d(x,y) = 0 ⇐⇒ x = y;

2. (symmetry) d(x,y) = d(y,x); and

3. (triangle inequality) d(x, z) ≤ d(x,y) + d(y, z).

Other norms. The 2-norm is probably the most intuitive notion of size in Rd, since it
matches our geometric notion of length. There are, however, many other ways to measure
sizes of vectors. For example, the 1-norm of a vector x ∈d is defined as ‖x‖1 =

∑d
i=1 |xi|,

and its supremum norm (or∞-norm) is ‖x‖∞ = maxi=1,...,d |xi|. One can check that the
properties in Proposition 9 also apply to these norms.

Linear programming. Linear programming is the problem of maximizing a linear func-
tion subject to linear constraints. This problem is quite general, has been well-studied, and
has widespread applications in operations research, computer science, and combinatorial
optimization. We formally define linear programming below.

Definition 14: linear programming

The linear programming problem with input c ∈ Rn, b ∈ Rm, and A =
[a1 · · ·am]> ∈ Rm×n, is the following optimization problem:

max{c>x : Ax ≤ b,x ≥ 0}.

Here vector inequality is entry-wise (for example, (x1, x2) ≤ (y1, y2) means x1 ≤ y1

and x2 ≤ y2). The linear function c>x is called the objective function, and each
inequality a>i x ≤ bi is called a constraint.

EXAMPLE 1.17 formulating an LP

Suppose you are manufacturing generators, and would like to maximize the total num-
ber of generators produced in a given month. Generators are produced at two different
plants, P1 and P2, and the generator produced by P1 differ from those produced by P2.
Those produced at P1 weigh 50kg and take up 2m3, while those produced at P2 weigh
100kg and take up 1m3. Due to shipping constraints, only 600kg can be shipped, and
there is only enough space for 12m3.

LINEAR ALGEBRA 15

We can formulate the problem of determining how to produce the generators as a
linear program. Let x1 denote the number of generators produced in P1, and x2 the
number of generators produced in P2. Then we are trying to maximize x1 + x2. We
thus arrive at the following LP:

maximize x1 + x2

subject to 50x1 + 100x2 ≤ 600

2x1 + x2 ≤ 12

x1, x2 ≥ 0.

The feasible region of a linear program is the set of points which satisfy the con-
straints. For the LP above, we obtain the following feasible region:

x1

x2

(4, 4)

(6, 0)

(0, 6)

(0, 0)

feasible
region

The optimal point must be somewhere on this polytope — and in fact, one of the
vertices must be optimal. Since our example is so small, we can manually check
the objective value at each vertex to determine that (4, 4) is the optimal point, with
objective value 8.

In Example 1.17, we formulated an LP and manually checked each vertex to determine
the optimum. In general, this may not be feasible, as the number of vertices can be pro-
hibitively large (exponential in the number of constraints). There are, however, more ef-
ficient ways of solving LPs, such as the simplex method, and solving LPs is known to be
polynomial-time solvable.

EXAMPLE 1.18 linear programming duality

Consider the following linear program.

maximize 3x1 + 2x2

subject to x1 + x2 ≤ 4

2x1 − x2 ≤ 3

x1 + 2x2 ≤ 5

x1, x2 ≥ 0.

Suppose we want to upper bound the value of this LP. To do this, suppose we have
some point (x1, x2) that satisfies the constraints. If we add up two times the first

16 MATHEMATICAL PRELIMINARIES

constraint plus one times the third constraint, we get

13 = 2(4) + 1(5) ≥ 2(x1 + x2) + 1(x1 + 2x2) = 3x1 + 4x2.

Since x1, x2 ≥ 0, this implies the following bound on the objective:

3x1 + 2x2 ≤ 3x1 + 4x2 ≤ 13.

Since (x1, x2) was an arbitrary feasible point, we can conclude that the value of this
LP is at most 13.

Can we find a better bound? To do so, let’s generalize the approach we took
above. Instead of multiplying the constraints by 2, 0, and 1, we will multiply them
by y1, y2, y3, respectively:

maximize 3x1 + 2x2

subject to x1 + x2 ≤ 4 y1

2x1 − x2 ≤ 3 y2

x1 + 2x2 ≤ 5 y3

x1, x2 ≥ 0.

In order to carry out the same analysis as above, we need to ensure that

3x1 + 2x2 ≤ y1(x1 + x2) + y2(2x1 − x2) + y3(x1 + 2x2).

In other words, we need to ensure that

y1 + 2y2 + y3 ≥ 3

y1 − y2 + 2y3 ≥ 2.

If this is the case, and if y1, y2, y3 ≥ 0, then we have that

3x1 + 2x2 ≤ 4y1 + 3y2 + 5y3,

which gives us a bound on our LP. Stated in other terms, we have just shown that

maximize 3x1 + 2x2

subject to x1 + x2 ≤ 4

2x1 − x2 ≤ 3

x1 + 2x2 ≤ 5

x1, x2 ≥ 0.

≤

min 4y1 + 3y2 + 5y3

subject to y1 + 2y2 + y3 ≥ 3

y1 − y2 + 2y3 ≥ 2

y1, y2, y3 ≥ 0.

Thus, the value of our original maximization LP is bounded above by the value of
a specific minimization LP. This minimization LP is called the dual of our original LP,
and the bound that we showed is called weak duality. In fact, one can show that the
two LPs have the same value—a result which is called strong duality.

EXERCISES

1.4.1 Let x = (x1, . . . , xd) ∈ Rd. Show that ‖x‖∞ ≤ ‖x‖2. In other words, show that
max{|xi| : 1 ≤ i ≤ d} ≤ ‖x‖2.

HINTS 17

1.4.2 Decide which of the following statements are true for all x = (x1, . . . , xd) ∈ Rd.

(a) ‖x‖1 ≥ ‖x‖2.

(b) ‖x‖2 ≥ ‖x‖1.

(c) ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.

1.4.3 SupposeA,B ∈ R3×3, and rank(A) = 1, and rank(B) = 2. Give an upper bound
and a lower bound on rank(AB), and provide an example to demonstrate that your bounds
are tight. (In other words, if the bounds you give are ` ≤ rank(AB) ≤ u, then provide
matrices A1, B1, A2, B2 with rank(A1) = rank(A2) = 1, rank(B1) = rank(B2) = 2,
rank(A1B1) = ` and rank(A2B2) = u).

1.4.4 Give an example of a linear program with an unbounded objective (i.e., the optimal
objective value is∞).

1.4.5 Give an example of a linear program with an empty feasible region (i.e., an LP for
which no points satisfy all the constraints).

1.4.6 Suppose you are the operations manager for a peanut butter company, and you need
to supply peanut butter to two stores: S1 and S2. S1 requires 100 jars, and S2 requires 200
jars. There are two plants producing peanut butter, P1 and P2, and the shipping costs vary:
it costs cij to send one jar from Pi to Sj . Additionally, P2 can only produce up to 150 jars.
Formulate an LP to determine the most cost-efficient way to supply the two stores with
peanut butter. Then, find the dual of this LP.

1.4.7 Consider the linear program

maximize 2x1 − 9x2 + x3

subject to a>1 x ≤ b1
a>2 x ≤ b2
a>3 x ≤ b3
x1, x2, x3 ≥ 0 ,

where x = (x1, x2, x3) are the decision variables, and let v1 denote the optimal objective
value of this LP. Let v2 denote the optimal objective value of the following LP:

maximize 2x1 − 9x2 + x3

subject to a>1 x ≤ b1
a>2 x ≤ b2
x1, x2, x3 ≥ 0.

Is it true that v1 ≤ v2? Is it true that v2 ≤ v1?

HINTS

1.4.1 Square both sides of the inequality.

1.4.2 Plugging in the vector x = (1, 1, . . . , 1) can help rule some options out.

1.4.4 Make sure the feasible region is unbounded (otherwise the objective will surely
be bounded).

18 MATHEMATICAL PRELIMINARIES

1.4.5 To rephrase the exercise, come up with a linear program whose constraints are
contradictory (i.e., cannot all be satisfied by the same point).

1.5 Convex analysis (optional)

Suppose you are trying to find the global minimum of a function over R. In general, this
task can be difficult—even impossible—since functions can have many local minima, and
functions can oscillate wildly. So, in order to minimize a function with provable guaran-
tees, restrictions must be made on the function.

The most common restriction is to consider only convex functions, which have many
nice properties such as having at most one local minimum. A function is convex if the
region above its graph is a convex set. Equivalently:

Definition 15: convex function

A function f : Rd → R is convex if for any x,y ∈ Rd and λ ∈ [0, 1],

f
(
λx + (1− λ)y

)
≤ λf(x) + (1− λ)f(y).

To check if a continuous function is convex, it suffices to check that Definition 15 holds
for λ = 1

2 .

Proposition 11: continuity-based convexity condition

Let f : Rd → R be a continuous function. Then f is convex if and only if for any
x,y ∈ Rd,

f

(
x + y

2

)
≤ f(x) + f(y)

2
.

For differentiable functions, we can characterize convexity in terms of derivatives.

Proposition 12: first-order convexity condition

Let f : Rd → R be a differentiable function. Then f is convex if and only if for all
x,y ∈ Rd,

f(y) ≥ f(x) +∇f(x)>(y − x).

EXERCISES

1.5.1 Let f : Rd → R be a non-differentiable convex function. Show that cf(x) is a
convex function, for any c ≥ 0.

1.5.2 Let f : Rd → R be a non-differentiable convex function. Show that g(x) =
f(x) + c is a convex function, for any c ∈ R.

HINTS 19

1.5.3 Let f : Rd → R be a twice continuously differentiable function. Then f is convex
if and only if its Hessian is positive semidefinite (i.e., ∇2f(x) � 0 for all x ∈ Rd). Using
this fact, determine if f(x, y) = 1

2 (x2 + y2) + xy is convex.

HINTS

1.5.1 Use Definition 15.

1.5.2 Use Definition 15.

1.6 Graph Theory (optional)

A graph is a collection of vertices and edges. Graphs are often depicted pictorially, for
example:

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

We can formally represent a graph G as an ordered pair (V,E) of a vertex set V and an
edge set E. An edge from vertex v1 to vertex v2 is typically denoted as an unordered pair
(v1, v2). For example, the graph G = (V = {v1, v2, v3}, E = {(v1, v2), (v2, v3)}) is as
depicted below:

v1 v2 v3

Definition 16: path

Let G = (V,E) be a graph. A path in G is a sequence of distinct vertices
(v1, v2, . . . , vk) such that (vi, vi+1) ∈ E for all i = 1, . . . , k − 1.

EXAMPLE 1.19 path

Below is a graph with a path marked in dashes.

20 MATHEMATICAL PRELIMINARIES

We say that a graph is connected if it is in one piece. More precisely:

Definition 17: connected graph

A graph G = (V,E) is connected if for any vertices v1, v2 ∈ V , there is a path from
v1 to v2.

Definition 18: cycle

LetG = (V,E) be a graph. A cycle inG is a sequence of vertices (v1, v2, . . . , vk, v1),
with k ≥ 3, such that

(vi, vi+1) ∈ E for all i = 1, . . . , k − 1;

(vk, v1) ∈ E; and

the vertices v1, . . . , vk are distinct.

EXAMPLE 1.20 cycle

Below is a graph with a cycle marked in dashes.

Notice that if a graph has a cycle, then there are multiple paths between certain pairs of
vertices. In that sense, graphs with cycles are not minimally connected. For this reason,
we will sometimes be concerned with graphs without cycles.

Definition 19: acyclic graph

A graph G = (V,E) is acyclic if it contains no cycles.

Definition 20: tree

A graph G = (V,E) is a tree if G is acyclic and connected.

A subgraph of a graph G is any graph obtained by deleting edges and vertices (along
with incident edges) from G. More precisely:

EXERCISES 21

Definition 21: subgraph

Let G = (V,E) be a graph. A graph H = (V ′, E′) is a subgraph of G if:

1. V ′ ⊆ V and

2. E′ ⊆ E.

EXAMPLE 1.21 subgraph

Below is a graph (a) with one of its subgraphs (b).

(a) (b)

A minimially connected subgraph (i.e., one for which deleting any edge disconnects the
graph) covering all vertices of a connected graph is called a spanning tree.

Definition 22: spanning tree

Let G = (V,E) be a graph. A spanning tree of G is a connected, acyclic subgraph
T = (V,E′) of G.

EXAMPLE 1.22 spanning tree

Below is a graph with a spanning tree marked in dashes.

EXERCISES

1.6.1 Let G = (V,E) be a connected graph on n = |V | vertices, with n ≥ 1, and let
T = (V,E′) be a spanning tree of G. Show that |E′| = n− 1.

1.6.2 K3, sometimes referred to as a triangle, is the complete graph on 3 vertices. That
is, K3 is the graph on 3 vertices where each pair of vertices is connected by an edge. Find
the maximum number of triangles in a graph on n vertices.

22 MATHEMATICAL PRELIMINARIES

1.6.3 Design an algorithm for determining whether a graph is connected. Express the
running time of your algorithm using big-oh notation.

1.6.4 Design an algorithm for determining the shortest path between two vertices in a
graph. Express the running time of your algorithm using big-oh notation.

REFERENCES

[1] Lay, David C. Linear Algebra and its applications, 5th edition. Pearson (2016).

[2] Goodaire, Edgar G., and Michael M. Parmenter. Discrete mathematics with graph theory. Pren-
tice Hall PTR, 1997.

[3] Grimmett, Geoffrey, and Dominic Welsh. Probability: an introduction. Oxford University Press,
2014.

HINTS 23

HINTS

1.1.1 Consider Z and Q for example. Note that every integer n can be written as a
fraction n

1 , and so every integer is a rational number. This tells us that Z ⊆ Q. Conversely,
since there are rational numbers which are not integers (e.g., 1

2), so it is not the case that
Q ⊆ Z. Try to make similar statements about the other pairs of sets.

1.1.2 Consider, for example, a bounded interval which is open on one end and closed
on the other.

1.1.4 Make the argument simpler by assuming maxA ≤ maxB. Under this assump-
tion, there are two things to show: maxB is an upper bound onA∪B, and maxB ∈ A∪B.

1.2.2 Use the change-of-base formula for logarithms.

1.2.3 By definition, we know that there exist c1, n1 satisfying |f(n)| ≤ c1|g(n)| for all
n ≥ n1. Use c1 and n1 to find appropriate c and n0.

1.2.4 Use the triangle inequality.

1.4.1 Square both sides of the inequality.

1.4.4 Make sure the feasible region is unbounded (otherwise the objective will surely
be bounded).

1.4.5 To rephrase the exercise, come up with a linear program whose constraints are
contradictory (i.e., cannot all be satisfied by the same point).

1.5.1 Use Definition 15.

1.5.2 Use Definition 15.

1.6.1 Use induction on n.

1.6.2 Note that any three vertices form a triangle if each pair of vertices is connected by
an edge. So, you can upper bound the number of triangles in a graph by the number of sets
of three vertices.

1.6.3 Pick a vertex and start walking to other vertices. If you can reach every other
vertex in the graph, then you know that the graph is connected. There are various ways
you can do this.

1.6.4 Start at one of the two vertices (say, v1) and begin walking the graph. At each new
vertex, you will have a choice as to which vertex to visit next. Try to make these choices
in a way that ensures that each path taken is a shortest path from v1.

24 MATHEMATICAL PRELIMINARIES

SOLUTIONS

1.1.1 {1, 3, 5} ⊆ Z ⊆ Q ⊆ R.

1.1.2 The set [0, 1) has a minimum but no maximum. The set (0, 1] has a maximum but
no minimum.

1.1.4 There are two cases to consider: maxA ≤ maxB and maxB ≤ maxA. Without
loss of generality, we will simply assume that maxA ≤ maxB.

We first show that maxB is an upper bound on A ∪ B. To show this, let x ∈ A ∪ B.
If x ∈ A, then x ≤ maxA ≤ maxB, and if x ∈ B, then x ≤ maxB. So, maxB is an
upper bound on A ∪B.

It remains to show that maxB ∈ A ∪ B. However, this is true because maxB ∈ B ⊆
A ∪B.

1.2.2 For all n ≥ 1, we have that logb1(n) =
logb2

(n)

logb2
(b1) . So, Definition 5 is satisfied for

c = 1
logb2

(b1) and n0 = 1.

1.2.3 Since f(n) ∈ O(g(n)), there exist c1, n1 such that |f(n)| ≤ c1|g(n)| for n ≥ n1.
Then for c = c1|λ| and n0 = n1,

|λf(n)| ≤ |λ|c1|g(n)| = c|g(n)| for all n ≥ n0.

1.2.4 By assumption, there exist c1, n1, c2, n2 such that

|f(n)| ≤ c1|h(n)| for n ≥ n1, and
|g(n)| ≤ c2|h(n)| for n ≥ n2.

Then for n ≥ max{n1, n2},

|f(n) + g(n)| ≤ |f(n)|+ |g(n)| by the triangle inequality
≤ c1|h(n)|+ c2|h(n)| since n ≥ max{n1, n2}
= (c1 + c2)|h(n)|.

So, setting c = c1 + c2 and n0 = max{n1, n2}, we see that Definition 5 is satisfied.

1.4.1 Without loss of generality, let |x1| = max{|xi| : 1 ≤ i ≤ d}. Then

max{|xi| : 1 ≤ i ≤ d}2 = x2
1 ≤

d∑
i=1

x2
i = ‖x‖22.

Taking the square root of both sides gives the desired inequality.

1.4.4 One example is max{x : x ≥ 0}. Here the feasible region is [0,∞), and the
objective is unbounded.

1.4.5 One example is

maximize x1 + 2x2

subject to x1 + x2 ≤ −1

x1, x2 ≥ 0.

SOLUTIONS 25

1.5.1 Let x, y ∈ Rd and λ ∈ [0, 1]. Then

cf
(
λx + (1− λ)y

)
≤ c
[
λf(x) + (1− λ)f(y)

]
by convexity of f

= λcf(x) + (1− λ)cf(y).

1.5.2 Let x, y ∈ Rd and λ ∈ [0, 1]. Then

g
(
λx + (1− λ)y

)
= f

(
λx + (1− λ)y

)
+ c

≤ λf(x) + (1− λ)f(y) + c

= λ
(
g(x)− c

)
+ (1− λ)

(
g(y)− c

)
+ c

= λg(x) + (1− λ)g(y).

1.6.1 If n = 1, then any tree has 0 edges, and if n = 2, then the only spanning tree is
K2, which has 1 edge. Now let G = (V,E) be a connected graph on n > 2 vertices, and
suppose that for all 2 ≤ k < n, any tree on k vertices has k − 1 edges.

Let T = (V,E′) denote any spanning of G, and let e be any edge of T . Then by
acyclicity of T , T − e is disconnected. It follows that T − e is composed of two disjoint
trees, T1 = (V1, E1) and T2 = (V2, E2) with |V1|+ |V2| = n. By the inductive hypothesis,
|E1| = |V1| − 1 and |E2| = |V2| − 1. So,

|E′| = |E1|+ |E2|+ |{e}| = (|V1| − 1) + (|V2| − 1) + 1 = |V | − 1 = n− 1.

1.6.2 Since any three vertices can form a triangle, we have that #triangles ≤
(
n
3

)
.

1.6.3 Run a depth-first search on G. If G is connected and some vertices are never
reached, let v be a “nearest” missed vertex (i.e., v is never visited by the DFS, but some
neighbor u of v is reached. When the algorithm reaches u, v must be added to the queue
of vertices to visit. This contradicts that the DFS never reaches v.

1.6.4 Let s and t be the vertices in question (i.e., you are trying to find the shortest path
from s to t). Now run a breadth-first search starting from s. We claim, more generally, that
every path produced by the BFS is a shortest path from s. We proceed by induction on the
distance from s. If d(s, v) = 1, then s and v are connected by an edge, and the BFS will
traverse the edge (s, v).

Now let v be a vertex of minimal distance from s for which the s-v path produced by
BFS is not a shortest path. Let P = sx1 . . . xkv be the path from s to v produced by the
BFS, and let P ′ = sy1 . . . yrv be a shortest path. Then by the inductive hypothesis, BFS
produces a shortest path P ′′ = sz1 . . . z`yr from s to yr. But then, since v is a neighbor of
yr, the path produced by BFS from s to v must have distance at most

d(s, yr) + 1 ≤ len(P ′) < len(P),

a contradiction.

CHAPTER 2

INTRODUCTION TO ONLINE LEARNING

Swati Gupta and Jad Salem

Georgia Institute of Technology, Atlanta, Georgia
Last updated: September 30, 2022

This chapter is a work in progress and has not been subjected to the usual scrutiny
reserved for formal publications. If you find errors in this draft, please let the
authors know. We would be happy to acknowledge you in the final version.

We all engage with optimization on a daily basis. The roads we travel on are governed
by traffic rules that try to minimize congestion. We receive targeted advertisements that try
to maximize sales. We use social media platforms that personalize our feeds to maximize
screen time. These optimization problems, and many others, are not static in time. If a
popular restaurant opens, then traffic patterns may shift, and an adjustment of traffic lights
might be appropriate. Our interests shift over time, so an advertiser might want to change
how they target advertisements over time. Similarly, social and political dynamics might
affect how we engage with social media, so a social media company may want to change
the way they organize users’ feeds over time. These are all complex and highly relevant
problems, which explains the burgeoning literature on the topic. In this chapter, we will
introduce the online learning framework, examples, and related concepts.

27

28 INTRODUCTION TO ONLINE LEARNING

2.1 Introduction to Online Learning

Suppose you are trying to design an algorithm which classifies emails as “spam” or “not
spam.” In this setting, emails arrive one by one over time, and the algorithm should classify
the emails as they arrive. Problems, such as this one, where the input arrives as a stream
over time, are referred to as online problems; problems in which the entire input is accessi-
ble to the algorithm at once are called offline problems (often called the batch setting). An
ideal goal to strive for is to minimize the number of misclassified emails.

Food for Thought 1: algorithm goals

What other goals could one have when designing an algorithm? Suppose the typical
distribution of spam emails is 90% emails with coupons and advertisements to buy
products, 5% emails with fake medicines, 3% emails with fake university degrees, and
2% emails asking for bank account details. Given this breakdown, can you think of
an algorithmic goal in designing a spam-filtering algorithm? Does your goal prioritize
the proper identification of certain types of spam emails?

One strategy to design an algorithm that reduces the total number of mistakes of an
algorithm would be to design a decision rule—that is, an algorithm which takes in an
email and outputs whether or not it is spam—and apply this same decision rule to each
subsequent email. This strategy, however, can be improved upon greatly. When an email
is misclassified, users are able to report the misclassification, and the algorithm will have
access to this information. This feedback can allow for more informed decisions in the
future—it makes sense to base a decision at time t on all available information, which
means taking into account all previous emails and their true classifications. Algorithms
for online problems which use feedback to inform their future decisions are called online
learning algorithms. Using this feedback can result in much more accurate decisions over
time, since the algorithm’s data set to learn from increases.

In general, the online learning framework can be described as follows: (1) decisions
(e.g., spam classification, or approving someone for a credit card, or choosing a route in a
map) are made by the algorithm iteratively; and (2) after a decision is made, the algorithm
receives feedback in the form of a numerical feedback/loss (e.g., whether the marked email
was actually spam or not, or whether the person who got the loan paid it back or not, or the
time it took to travel on the selected path). A higher loss means that the decision was bad,
and the goal of the algorithm will be to reduces the losses in each round. We will make
this more precise in the later sections. The last and most important part of the framework
is (3) updates to the algorithm’s model using the feedback in each round, so that better
decisions can be taken thereafter. This loop of making decisions, observing feedback and
updating algorithm’s model continue and thus, the algorithm is able to learn online.

Prior
knowledge Decision Observe

feedback

update model

This framework will be discussed in more detail in Section 2.3. For now, let us consider
another example.

MIND READER EXPERIMENT 29

EXAMPLE 2.1 advertisement

Suppose you are on an advertising team, and are trying to figure out which of several
advertisements is most effective. Each time a user is shown one of the advertisements,
your algorithm can observe whether or not the advertisement is effective, e.g., whether
or not the user clicks on the advertisement. In this setting, the online decisions that
are made are the choices of advertisements (which advertisement to show), and the
feedback obtained by the algorithm is whether the user clicked on the advertisement
or not (0 or 1). The loss, in this case, is 1 unit whenever the user does not click on the
shown advertisement.

2.2 Mind Reader Experiment

We begin this section with a food for thought.

Food for Thought 2: predictability

Imagine there is an algorithm trying to predict which coffee shop you will go to on
each day—Amélie’s Bakery or the Blue Donkey Coffee Shop. If you like one of these
better, perhaps the algorithm could just predict that coffee shop and be correct, say,
90% of the time. Could you change your coffee drinking places so that the algorithm
could not be correct more than 50% of the time? Or even lesser?

To see whether you would be successful in fooling a “coffee shop prediction algorithm,”
let us consider the following simple game. At each round, you must choose either “left”
or “right,” and an algorithm tries to guess your choice. If the algorithm guesses correctly,
it gets a point, and otherwise, you get a point. In other words, the algorithm is trying
to accurately predict your moves, and you are trying to trick the algorithm into guessing
wrong. This game can be found at https://web.media.mit.edu/˜guysatat/
MindReader/index.html, and the reader is encouraged to play.

Suppose you make your decisions truly at random: at each time t, you choose Xt =
“left” with probability 1

2 , and all of these choices are independent. Then after T rounds,
regardless of the strategy of the algorithm, the expected score of the algorithm would be
T/2. In this case, you would expect to win about 50% of the time. Similarly, in the coffee
example above, if one chooses coffee shops at random, then the algorithm should be fooled
50% of the time. However, after playing this game, you will likely find that the algorithm
is more difficult to beat.

Why is this? Perhaps the flaw in the above logic is assuming our choices to be random
(arguably, humans are not true random number generators). Whether consciously or un-
consciously, the decisions we make tend to follow some pattern. While this pattern may be
so subtle that a person cannot identify it, statistical tools and machine learning algorithms
may be able to exploit the pattern to make more accurate predictions.

Food for Thought 3: flipping a bad algorithm

Suppose we have an algorithm which predicts which of the two coffee shops one
will go to, and this algorithm is accurate less than 50% of the time. Can we use this

https://web.media.mit.edu/~guysatat/MindReader/index.html
https://web.media.mit.edu/~guysatat/MindReader/index.html

30 INTRODUCTION TO ONLINE LEARNING

Food for Thought 3: flipping a bad algorithm (cont.)

algorithm to make correct predictions more than 50% of the time? The answer is yes—
if we simply take the prediction of the algorithm and make the opposite prediction,
then this new algorithm would be correct more than 50% of the time.

What if there were three coffee shops, and you have an algorithm which predicts
the correct coffee shop less than 1

3 of the time. Is it possible to use this algorithm to
make correct predictions more than 1

3 of the time?

In many applications in real life, the loss functions or feedback on decisions are gen-
erated through natural socio-economic interactions. However, often we would like our
algorithms to perform well even when bad data is input or worst-case losses are presented
to the algorithm. This is modeled by thinking of losses generated by an adversary in each
round. Think of an adversary as someone who knows what the algorithm is going to do
(except randomness within the algorithm, but we will get to that later), and generates losses
to cause the algorithm to make mistakes. For example, think back about the coffee shop
prediction algorithm. If you go to coffee shops with the intention of tricking the algorithm,
then you are acting as an adversary. Our goal in this course will be to design algorithms that
can predict well, in spite of the feedback or losses being generated through an adversary or
by adversarial behavior.

2.3 General Framework

In this section, we discuss a general yet simple framework for online learning problems.
This framework will encompass all of the online learning problems presented in this course.

In the simplest online learning setting, an algorithm (sometimes referred to as the
decision-maker) makes decisions from a decision set K over time, using only feedback
from past decisions (not future decisions). For instance, an online navigation algorithm
which returns a “shortest path” between two places will do so without knowledge of the
congestion that will be faced on the path. In this case, the decision set K would be the set
of paths from the starting location to the destination. An online algorithm makes decisions
iteratively—one decision per time step—and observes feedback only after committing to a
decision.

Form of feedback. The numerical feedback on a decision observed by the algorithm is
typically a measure of how good the decision was. The goal is either to minimize this
quantity (e.g., if the feedback measures deviation from the optimum) or maximize this
quantity (e.g., if the feedback measures success). When the feedback is to be minimized,
it is often referred to as loss, and when it is to be maximized, it is referred to as reward.
These two settings are essentially the same: maximizing a reward function is the same as
minimizing the negative reward. For this reason, we will typically restrict our attention to
the loss setting and think of rewards as negative losses. Since the loss at time t depends on
the decision made by the algorithm, the loss `t : K → R is a function from the decision
space to the real numbers.

EXAMPLE 2.2 pricing

GENERAL FRAMEWORK 31

Suppose you are selling a book, and must choose whether to sell it at $5 or $10. This
choice can be changed over time, as new customers arrive. Suppose there are two
types of customers—one that would pay $5 for the book, and the other that would
be willing to pay $10 for the book. The seller (i.e., the online learning algorithm),
however, does not know which type of a customer each person is. If the only goal is
to maximize profit, then the optimal price point at time t would be $5 for low paying
customers and $10 for high paying customers. If a customer who’s willing to pay $5
only is offered the book at $10, then they will leave. Whenever this happens, the loss
experienced by the seller (i.e., algorithm) is $6, where $1 is for a “missed sale” or
unhappy customer, and it is 0 if the sale is actually made.

Example 2.2 above above concerns dynamic pricing—the practice of varying prices of
goods across time and across customer segments. As the pricing of goods affects quality
of life, the societal impact of pricing algorithms should be taken into account. This is
something we will discuss in more depth later in the course.

Food for Thought 4: price discrimination

In the real world, there are ethical concerns with pure profit or sales maximization
by dynamically changing prices. If an algorithm routinely assigns higher prices to
some demographic group, then the algorithm could be inadvertently starving some
populations of essential goods such as medicines or books. See, for instance, this
ProPublica piece highlighting how unfettered dynamic pricing can result in higher
prices for lower-income people.

At this point, you might wonder which functions can be loss functions? Minimizing
arbitrary online functions over an infinite decision space is an impossible task (why?),
and so assumptions must be made about loss functions. In this course, loss functions will
typically be linear and sometimes non-linear but convex (see Section 1.5), which gives
some hope for minimization.

EXAMPLE 2.3 infinite decision spaces with arbitrary losses

Let’s revisit the “coffee shop prediction” algorithm. Suppose you can even teleport at
any point in time, to either Amelie’s Bakery or Blue Donkey Coffee. In this case, the
decision space K = {Amelie’s,Blue Donkey} × [−∞,∞], where the second set is
the time at which you decide to go. The algorithm now has to predict the time, as well
as the coffee shop. This decision set is unbounded (due to the time dimension), and
in this case, it is highly unlikely that the algorithm would correctly predict the coffee
shop as well as the time at which you decide to visit. Since it is so difficult to learn
over infinite decision spaces, we often either assume that the decision space is finite,
or compact and bounded (e.g., polytopes).

The second crucial assumption that we need to be able to develop meaningful al-
gorithms is that of the loss functions being bounded or finite at each time step.

https://www.propublica.org/article/what-we-know-about-the-computer-formulas-making-decisions-in-your-life

32 INTRODUCTION TO ONLINE LEARNING

Food for Thought 5: unbounded loss

Suppose we are in a setting with unbounded loss functions. In this case, suppose
without any information in the first round, the algorithm takes a decision x1 ∈ K. If
the loss for this decision is essentially infinite (say a million), and the losses thereafter
for any decision at times t > 1 decrease significantly (say the loss at time t is less
than t−3 for t > 1), then there is no way that an algorithm can recover from the initial
infinite loss. For this reason, we will assume that loss functions are bounded, so that
we can develop good algorithms.

This assumption is quite natural in many settings. For example, suppose you are
selling salt and pepper shakers, and are choosing how to price them. If each salt
and pepper shaker set costs $1 to make, then the maximum amount of loss that the
algorithm can experience in one round is $1. These bounds typically result from
costs of production or finiteness of resources, and can be made without much loss of
generality.

In the online learning framework, there is a loss function `t for each time step t that is
revealed after the algorithm takes a decision, and so the loss functions can vary over time.
We will assume that the set of loss functions is L ⊆ {` : K → [a, b]}, i.e., there are
known bounds on the loss functions. We will typically assume that these loss functions are
chosen adversarially; i.e., the loss functions are chosen (with knowledge of the algorithm)
in order to maximize the amount of loss suffered by the algorithm.1 Note that not all
real-world settings are adversarial; e.g., dependent on the route you select, the cars on the
road do not try to congest that route adversarially. That said, we would like to keep the
framework as general as possible, and develop algorithms which remain competitive even
in the adversarial setting.

We will think of the online learning framework as a repeated interaction between the
algorithm Alg and the adversary: Alg makes a decision, then the adversary chooses a loss
function, then Alg makes a decision, and so on. For example, in the Mind Reader example
of Section 2.2, Alg would make a left/right decision, and then the adversary (i.e., the player
trying to beat the computer) will select a loss by selecting left/right, and then Alg would
make a left/right decision, etc. The online learning framework, stated precisely, is:

online learning framework

In each iteration t = 1, . . . , T :

1. Alg selects a decision xt ∈ K;

2. A convex loss function `t ∈ L is decided by the adversary;

3. Alg suffers (and observes) a loss of `t(xt) during this round; some additional
information about the function `t(·) may be observed by the algorithm as well,
dependent on the setting.

1To get an intuition of the adversarial setting, think of a game of tic tac toe. In each round, a player strategically
places their mark with the goal of preventing their opponent from forming a string of three marks. In this way, if
you are playing tic tac toe, your opponent can be thought of as an adversary.

GENERAL FRAMEWORK 33

online learning framework (cont.)

4. Alg incorporates this information for the next round.

Full versus partial information. Once a loss function `t is set (either by nature or an
adversary), the algorithm uses information about the loss function to adapt for future de-
cisions. In these notes, we classify online learning problems by how much information
about the loss functions are available to the algorithm. In the full information setting, the
algorithm has access to the entire function `t(·) (or in certain settings, the gradient ∇`t);
in other words, once `t : K → R is set, the algorithm gets the information about the entire
loss function, i.e., it can access `t(x) for any x ∈ K. In the partial information setting, the
algorithm can only query `t at certain points; one important class of online learning prob-
lems with partial information is bandit problems, where if the algorithm makes decision xt
at time t, then it would only observe `t(xt), and no other function values. Let’s consider
an example to differentiate between different settings.

EXAMPLE 2.4 congestion

Suppose you are designing a navigation algorithm which seeks to find the fastest path
from Georgia Tech (GT) to the airport (AP), given current traffic. Suppose the follow-
ing graph represents the possible roads that can be taken to get to AP.

GT

v1

v2

AP

In particular, this means that there are three possible paths to take:

GT

v1

v2

AP GT

v1

v2

AP GT

v1

v2

AP

P1 P2 P3

To put this in the language on online learning, the decision space isK = {P1, P2, P3}.
Depending on the current congestion of the roads, the time it takes to travel these

paths can vary, and it is natural to consider total travel time as the loss. Suppose that

34 INTRODUCTION TO ONLINE LEARNING

at time t = 1 (you can think of it as the first hour), the time required to cross edge
(GT,AP) is 20 minutes. Then, if the algorithm decides to suggest the direct path from
GT to AP, the loss would be 20 minutes (check that indeed, minimizing the loss over
time would mean that the algorithm takes the least congested paths). Perhaps the travel
times for t = 1, 2, 3 are:

GT

v1

v2

AP GT

v1

v2

AP GT

v1

v2

AP

30 min

10 min

20 min

30 min

15 min

15 min

10 min

45 min

15 min

10 min

20 min

30 min

25 min

10 min

20 min

t = 1 t = 2 t = 3

Suppose that after choosing a path P , if the algorithm is given the travel times of all
edges, this would be considered a full information setting. If the algorithm is only
given the total time taken on the path selected, then this is called the bandit setting.
If on the other hand, the algorithm is given the travel time for each edge traversed
(but not the other edges), then this setting would be considered a semi-bandit setting,
since the algorithm is not given full feedback. The last two regimes are called partial
information settings.

The full and partial information settings are quite different in spirit; both involve learning
which decisions are “better” than others, but the partial information settings have the added
complication of information gathering. In the partial information setting, some exploration
is required: in order to learn which decisions are good, a variety of decisions must be
selected over time. In such problems, there is typically a trade-off between how much time
is spent gathering this information (exploration) and how much time is spent using this
information to strategically make decisions (exploitation).

With all these variations of the online learning framework (choice of decisions, choice
of loss functions, feedback types), we find that the simple online learning model can be
tweaked for many interesting scenarios! Some important applications are spam detection
(online classification or regression), sequential investment or portfolio management, aggre-
gating weather predictions (experts problem), product recommendations (bandit setting),
and personalized product recommendations (contextual bandits setting), to name a few. We
will develop algorithms for some of these applications later in the course. We now discuss
the metric of deciding when an algorithm is good.

Regret in online learning: We measure the performance of online learning algorithms
using a notion known as regret, which is the difference between the loss incurred by the
algorithm and the best fixed decision in hindsight.

Definition 23: regret

The regret of an online learning algorithm Alg is

regretT (Alg) = sup
`1,...,`T∈L

{
T∑
t=1

`t(xt)−min
x∈K

T∑
t=1

`t(x)

}
,

GENERAL FRAMEWORK 35

Definition 23: regret (cont.)

where x1, . . . , xT are the decisions made by the algorithm, and `1, . . . , `T are the loss
functions chosen by the adversary.

Recall from Section 1.1 that “sup” refers to the supremum of a set, which is a general-
ization of the maximum.

EXAMPLE 2.5 congestion (Example 2.4, cont.)

Recall that you are designing a navigation algorithm which seeks to find the fastest
path from Georgia Tech (GT) to the airport (AP), and the travel times (in minutes)
vary as:

GT

v1

v2

AP GT

v1

v2

AP GT

v1

v2

AP

30

10

20

30

15

15

10

45

15

10

20

30

25

10

20

t = 1 t = 2 t = 3

Then, if the algorithm chooses the bolded paths above (P1, P2, and P3, in that order),
the total loss (travel time) experienced by the algorithm is 155 minutes. The “bench-
mark” (or adversary in the worst case), on the other hand, has only three choices,
since they cannot change paths between time steps. The total loss experienced by the
adversary for these choices are listed below:

Path P1 P2 P3

Loss 120 90 95

So, the adversary would choose path P2, as this is the optimal fixed path. In sum-
mary, for this choice of loss functions (congestions) and these algorithm choices, the
algorithm experiences a loss of 155, and the adversary experiences a loss of 90.

Note that in this example, we are comparing the performance of an algorithm to an
adversary given a fixed sequence of loss functions. Throughout these notes, we will
develop tools for obtaining provable regret bounds (recall that regret is the supremum
over all sequences of loss functions). From this example, we know that the regret of
the algorithm is at least 65.

Intuitively, the algorithm performs well if the regret is small. This “smallness” is formal-
ized with big-oh analysis, which is introduced in Section 1.2.

EXAMPLE 2.6 linear regret

Consider the following online learning problem: the decision space is K = [0, 1], and
the possible loss functions are L = {x, 1− x}. Suppose an algorithm Alg is as bad as
possible; i.e., whenever `t(x) = x, xt = 1, and whenever `t(x) = 1 − x, xt = 0. In

36 INTRODUCTION TO ONLINE LEARNING

this case,

regretT (Alg) = sup
`1,...,`T∈L

{
T∑
t=1

`t(xt)−min
x∈K

T∑
t=1

`t(x)

}

= sup
`1,...,`T∈L

{
T −min

x∈K

T∑
t=1

`t(x)

}

≥ sup
`1,...,`T∈L

{
T −

T∑
t=1

`t

(
1

2

)}

=
T

2
.

Whenever we have that regretT (Alg) ∈ Θ(T), we say that the regret is linear. In
this example, we saw that by making the worst possible decisions, we incurred lin-
ear regret. In fact, since loss functions are typically bounded, this phenomenon is
quite general: an algorithm which consistently makes the worst choice will typically
experience linear regret.

Based on Example 2.6, one goal in designing an online learning algorithm is to achieve
sublinear regret, i.e., regretT (Alg)/T → 0 as T → ∞. In other words, we would like
the regret to grow more slowly than the number of iterations.2 If an algorithm achieves
sublinear regret, then the average loss the algorithm suffers after a long period of time
converges to the best loss the algorithm could suffer with a single fixed decision with
the knowledge of the loss functions `1, . . . , `t. This is a good goal since after initial rounds
of learning, where the algorithm is allowed to make some mistakes, in the long run it does
converge to the best decision in hindsight.

Food for Thought 6: regret

Note that the benchmark used to define performance, the notion of regret, compares
the algorithm’s losses with the loss produced by the best possible fixed decision x∗

only; i.e., the benchmark is the minimizer of all the losses seen up to time T :

x∗ ∈ arg min
x∈K

T∑
t=1

`t(x).

However, the adversary has full control over the sequence of loss functions. The al-
gorithm, on the other hand, has no control over or knowledge of future loss functions,
but is able to change decisions over time. In this way, neither the algorithm nor the
adversary is “more powerful” than the other, and meaningful, interesting algorithms
can be designed for online learning problems . What other metrics of performance can
one use to measure the quality of online algorithms?

EXERCISES

2We will often use “big-oh” notation in this course to compare the growth of functions. Loosely, f(x) ∈ O(g(x))
if f(x) ≤Mg(x) for some constant M and large values of x. See Section 1.2 for more details.

EXERCISES 37

2.3.1 Imagine an online learning application wherein a retail company, MaySee’s, wants
to set prices for a watch and learn what the customers are willing to pay for the watch.
Each time period, a customer arrives at the shop and sees the price set by MaySee’s. If
the price is below what the customer is willing to pay, then they buy the watch. MaySee’s
observes this sale and sets the price again for a new watch for the next customer. Every
time a customer does not buy a watch, the company observes a loss of 1 unit (since it looses
a customer to Norkstorm). The watch costs $50, and the company cannot sell it for below
this price. The company also knows that the maximum price a customer is willing to pay
for the watch is $1000, but most of the customers are willing to pay a much less price.
If the company finds the right price between $50 and $1000 it can both gain customers
as well as make a profit on the watches. Which of the following is the decision set that
MaySee’s can choose from in this online learning problem?

(a) {0, 1, 2, 3, . . .} (the number of watches sold)

(b) (0,∞) (the price of the watch, in dollars)

(c) [50, 1000] (the price of the watch, in dollars)

(d) {Yes,No} (whether or not a customer buys the watch)

2.3.2 You have started a travel agency, and you are trying to figure out how your cus-
tomers would like to get to Lake Lanier from Atlanta. There are three options:

Option 1: take the subway and the line 408 bus (which is least expensive and most
environmentally friendly);

Option 2: take a taxi (which is convenient but costs money);

Option 3: rent a car (which is convenient and cheaper than the taxi, but involves the
responsibility of driving).

Your clientele is mostly undergraduate students at Georgia Tech, and therefore, you
strongly suspect that one of these options is the clear winner. You decide to use an online
learning algorithm to learn the best option. As each client comes in, you decide to show
them one of the options (i.e., decisions are Options 1,2 or 3), and later call and get their
feedback on whether they liked that option or would have preferred another option by
ranking the three options. If your algorithm’s suggested option was last in their ranking,
let your algorithm incur a loss of 2. If it suggested their second most liked option, then the
algorithm incurs a loss of 1. Otherwise the algorithm incurs no loss.

For example, suppose to user A, the algorithm Alg suggested Option 2, but the user’s
preference was “1 > 2 > 3.” Then, the loss of ALG in this round is 1, since Option 2 was
second best. If the user’s preference was “2 > 1 > 3,” then loss of ALG would be 0, since
Option 2 was best. If the user’s preference was “3 > 1 > 2,” then the loss of ALG would
be 2, since Option 2 was the least preferred option.

What is the total loss (over three time periods) incurred by the algorithm given the
following information?

1. At t = 1: Adnan shows up. ALG suggests Option 2 to him. After the trip, he gives
the feedback that his preference is 3 > 2 > 1.

2. At t = 2: Keisha shows up. ALG suggests Option 2 to her. After the trip, she gives
the feedback that her preference is 1 > 3 > 2.

38 INTRODUCTION TO ONLINE LEARNING

3. At t = 3: Elon shows up. ALG suggests Option 3 to him. After the trip, he gives
the feedback that he indeed loved the suggestion, but would have preferred taking the
taxi. His preference is 2 > 3 > 1.

2.4 Applications of Online Learning

Online learning is useful wherever decisions need to be taken with partial information,
where either the users come one by one in time, or data comes with time, or the data is
too big that it has to be accessed sequentially (big data setting), or whenever the impact of
decisions by the algorithm can only be partially observed.

We next discuss some examples of problems that can be modeled via the online learn-
ing framework. These examples will show you how powerful this simple framework is.
Problems from diverse domains such as online routing, ad selection for search engines and
spam filtering can all be modeled as special cases, as discussed in previous sections. In
this section, we briefly survey a few special cases and how they fit into the online learning
framework.

1. Prediction from expert advice. The experts problem is one of the most fundamen-
tal problems in online learning. To motivate it, suppose you have two financial advisers
who advise you on when to sell stocks. Sometimes, their advice conflicts, and you can
ultimately observe who was right and who was wrong. Over time, you can get a sense of
which adviser is better, and rely on the better one more heavily.

In the experts problem, we have a set of n experts {1, . . . , n}, and in each round, we
must choose a probability distribution over the experts. For example, if n = 2, we might
decide on a distribution of (.3, .7) in round 10, which means that Expert 1’s advice will be
taken with probability 0.3 in round 10. Our decision set is therefore

K =
{
p
∣∣∣ n∑
i=1

p(i) = 1, p ≥ 0
}
,

which is called the probability simplex. In the experts framework, Expert i at time t expe-
riences loss `t(i), and `t is the loss vector of all experts at time t. The loss incurred from
decision pt at time t is

pt(1)`t(1) + · · ·+ pt(n)`t(n) = p>t `t.

We will further assume that the loss functions `t are bounded; i.e., supt,i |`t(i)| ≤ L for
some L ∈ R. e.g., if L = 1, then the adversary must choose each loss function `t from the
following set:

L = {` ∈ Rn | − 1 ≤ `(i) ≤ 1, for each expert i} = [−1, 1]n.

Thus, prediction from expert advice is a special case of online learning in which the
decision set is the set of probability distributions (i.e., the simplex) and the cost functions
are linear and bounded. A good online learning algorithm will operate as good as the
best the best expert in hindsight (up to some small additive error), even without having
the knowledge of losses in the future. This example will be very important throughout the
class as we can think of the experts as being a set of paths (in a routing application), or a
set of advertisements (in a recommendations applications), or a set of stock portfolios (in

CONNECTIONS TO MACHINE LEARNING (OPTIONAL) 39

a financial investment problem). In each of these settings, the goal of the algorithm will
be to select a path, advertisement or stock portfolio at each time, so that its performance is
nearly as good as if it knew what was going to happen in the future but could pick a single
decision (i.e., minimize its regret).

2. Recommender Systems. Suppose you run a movie streaming platform, Netflicks™,
and would like to develop a system for predicting user preferences for movies. If the
platform carries nmovies, a user’s movie preferences can be stored as a row vector x ∈ Rn,
where xi corresponds to how much the user likes movie i. More generally, if there are m
users, then the preferences of all users can be represented as a matrix M ∈ Rm×n, where
Mij is how much user i likes movie j. These preferences, however, can change over time.

In this example, each decision is a predicted preference matrix M (t) ∈ Rm×n, and
so K ⊆ Rm×n. The feedback here might come from a user i rating a movie j that they
watched, and the predicted preference matrices M (t) are updated each time a new rating
is submitted. In the adversarial setting, the choice of (user, movie) pair and rating are
chosen adversarially, although in the real world, this example may not be adversarial (a
user typically does not watch a bad movie simply to trick the recommendation algorithm).

Let (it, jt) be the (user, movie) pair at time t. The loss incurred at time t should cor-
respond to whether or not the predicted preference M (t)

itjt
of it for jt was close to the true

preference yt. We can measure this deviation by the squared error between predicted and
actual preferences, namely,

`t
(
M (t)

)
=
(
M

(t)
itjt
− yt

)2
,

which is a convex function. So, in the adversarial setting, at each time step t, the adversary
chooses the loss function be selecting it, jt, and yt.

As in most online learning problems, we use regret to measure performance. We want
an algorithm which has low regret, which means that on average, it should be about as
accurate as the optimal fixed preference matrix M ∈ K.

Food for Thought 7: recommendation engines

In the real world, the mathematics of online learning is used in conjunction with all
side-information available in the application that makes it easier for the algorithms to
predict. What side information can such a recommendations platform use about users
to decide which hotels to show them in a city queried by a user? Listen to the “AI
in the Industry” podcast by Dan Faggella here, about how the Vice President of Data
Science at MakeMyTrip.com thinks about this problem.

2.5 Connections to Machine Learning (optional)

In the online learning framework, note that we did not make any assumptions on the dis-
tribution of data, nor did we make assumptions on the relationship between input data and
their true labels. Machine learning models typically consider data-value pairs (xi, yi) (for
i = 1, . . . , n, where each xi ∈ Rn, yi ∈ R) and use a big chunk of data (typically 80% of
the data) to fit a model that minimizes losses to make predictions of the value y on unseen
data points x in the test set. For example, simple least-squares linear regression minimizes

https://emerj.com/ai-podcast-interviews/recommendation-engines-actually-work-strategies-principles/
MakeMyTrip.com

40 INTRODUCTION TO ONLINE LEARNING

the total squared error
∑n
i=1(yi − wTxi − b)2 to find the best linear model fit w, b on the

training data, and then uses the model y = wx+ b to make subsequent predictions of y on
the unseen test set. Many such “offline” machine learning algorithms can be now viewed
in the online framework where the algorithm learns and gets better with respect to each
data point it sees iteratively, and this is often useful in dealing with large amounts of data
that is difficult to store in a single machine. In online learning, there is no explicit training
or testing phase. Rather, in each round, the online learning algorithm predicts a value ỹt,
learns the true value yt, and uses the same example as a training example to help improve
the prediction mechanism.

REFERENCES

[1] Hazan, Elad. “Introduction to Online Convex Optimization.” Chapter 1, Sections 1.1-1.2.

	Acknowledgments
	Mathematical Preliminaries
	Set theory
	Big-Oh analysis
	Probability
	Linear algebra
	Convex analysis (optional)
	Graph Theory (optional)

	References
	Introduction to Online Learning
	Introduction to Online Learning
	Mind Reader Experiment
	General Framework
	Applications of Online Learning
	Connections to Machine Learning (optional)

	References
	I Full Information Algorithms
	Prediction from Expert Advice
	The Experts Framework
	Case of a Perfect Expert
	Case of Imperfect Experts
	Deterministic versus Randomized Algorithms

	References
	Experts Beyond {0,1} Decisions
	Loss functions
	Multiplicative Weights Update
	Other Weight Update Methods

	References
	Solving Linear Programs
	Linear Programs and their Relaxations
	Oracles
	Constraints as Experts
	Constructing an Oracle

	II Partial Information Algorithms
	Partial Feedback: Multi-Armed Bandits
	Exploration versus Exploitation Trade-Offs
	Multi-Armed Bandit Formulation
	Bandit Strategies
	Greedy does not work
	-Greedy Algorithm
	EXP3
	Summary

	References
	Non-adversarial Stochastic Bandits
	Upper Confidence Bounds
	Bayesian Inference
	Thompson Sampling
	Thompson Sampling for Bernoulli Bandits
	Thompson Sampling for General Stochastic Bandits
	Thompson Sampling for Gaussian Bandits

	References
	Recommendation Systems
	Netflix Recommendation System

	References

