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SUMMARY

The field of fairness in algorithmic decision-making can be traced back at least 25 years

[1] and has flourished over the past decade [2]. However, the overwhelming majority of

this research concerns offline decision-making for a set of individuals (e.g., deciding whom

to grant loans to, or how to rank a set of job applicants), where the decision-maker observes

a multiset of contexts capturing the socio-economic backgrounds of a diverse set of people

and makes decisions on these contexts en masse. In practice, however, decisions are often

made in real time with only partial information (e.g., resume filtering decisions are often

made upon submission [3]). In this dissertation, I use the application domains of hiring and

pricing to explore the themes of uncertainty and comparative fairness in online-decision-

making. What does it mean to make fair decisions in real time? Can stringent fairness

constraints prevent convergence to a good decision in online learning settings, thus hinder-

ing learning? How can one design online algorithms satisfying a given notion of fairness? I

partially answer these questions in hiring and pricing by considering (1) capacitated online

selection (specifically, the k-secretary problem) given partial ordinal rankings, motivated

by applicant-screening, and (2) stochastic convex optimization with bandit feedback, mo-

tivated by multi-segment demand learning. The contents of this dissertation include joint

work with Swati Gupta, Vijay Kamble, and Deven Desai.

The first line of inquiry I will discuss revolves around the question of how to address

uncertainty in online decision-making. Specifically, I focus on the task of online applicant-

screening where uncertainty (e.g., noise in evaluations, or knowledge that certain pairwise

rankings may be corrupted due to bias) is captured by a partial order (i.e., a partial ranking)

on the set of applicants. Modeling the screening process as a secretary problem with a ca-

pacity constraint [4], I prove lower bounds and upper bounds on the competitive ratio (i.e.,

the worst-case expected performance ratio). To prove the upper bound, I develop a novel

way of thresholding in partial orders, which may have wider applications beyond compet-

xv



itive analysis for secretary problems. Under stricter modeling assumptions (in particular,

when applicants come from disjoint demographic groups and bias is group-specific), I pro-

vide simpler algorithms and analysis. Finally, I test these methods on a real-world dataset

on employability outcomes for a pool of candidates based in India [5]. Using the algo-

rithms I have developed in this part of the thesis, I show that the poset-based algorithms

are less sensitive to distributional changes in data than bias-agnostic algorithms but more

sensitive than quota-based algorithms; thus, poset-based methods provide a way to move

toward “equal opportunity” without employing stringent and potentially illegal methods

such as quotas.

The second line of inquiry revolves around the question of how to achieve some notion

of comparative fairness (i.e., ensuring that similar individuals receive similar decisions) in

an online learning setting. The challenge here is that stringent fairness constraints can pre-

vent learning [6], thus resulting in poor performance. Specifically, I consider the problem of

stochastic convex optimization with bandit feedback, where the utility function is smooth,

strongly convex, and separable, and at each time period t, the decision maker chooses a

point xt in RN . This setting is motivated by multi-segment dynamic pricing, where prices

are assigned to N segments (e.g., “youth” and “adult” for movie ticket pricing) at each time

period, and noisy revenue is observed. I introduce a novel relaxation of individual fairness

[7] which allows decisions to monotonically vary over time while maintaining one-sided

comparative fairness across dimensions, thus balancing fairness with learnability. Under

this constraint, I provide algorithms which attain big-Oh optimal regret for N = 1, 2 and

sublinear regret for N > 2.

Finally, I turn to the law: what is allowed in addressing fairness and bias in algorithmic

decision-making? To begin, I focus on the legality of fairness interventions in hiring in

the U.S. In the U.S., protected information, such as race, can be used in hiring in limited

contexts. One such context, affirmative action, is a temporary measure designed to coun-

teract the effects of historic discrimination. Drawing on legislation and relevant affirmative

xvi



action caselaw, I (1) discuss what may or may not be allowed in addressing discrimination

in hiring, and (2) show that precedent supports the use of partial orders to account for un-

certainty in hiring. Turning to dynamic pricing, I discuss open questions regarding (a) how

privacy laws in the U.S. [8] and Europe [9] affect contextual pricing, and (b) how price

gouging laws can be translated into temporal fairness constraints.

The results in this thesis (1) have been published in WINE 2020, WINE 2022, and

FAccT 2022, (2) have been accepted for publication in Management Science, and (3) have

received a Major Revision in Operations Research.
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CHAPTER 1

INTRODUCTION

This chapter contains excerpts from a soon-to-be-published book chapter [10].

It is well-known that automated decision-making (e.g., decision-making using machine

learning algorithms) is susceptible to errors and biases (e.g., [11]). With the increased

adoption of automated decision-making practices in domains ranging from recommenda-

tion systems [12] and retail pricing [13] to banking [14], criminal justice [15], and health-

care [16], there has been a corresponding surge of interest in the academic community and

among policymakers alike on the topic of algorithmic fairness, i.e., ensuring that humans

are treated fairly and equitably by these systems [17, 18].

Strategies for reducing the impact of errors and biases naturally differ between auto-

mated and non-automated decision-making. While non-automated decision-making has

relied primarily on trainings and process engineering [19], automation provides new and

powerful tools that can be exploited to detect and mitigate errors. Data on decisions made

and on the accuracy of those decisions can easily be tabulated, and errors can be compared

across groups. With automated methods, one can encode notions of fairness as constraints

or objectives and compute good or even optimal scorers or classifiers (e.g., [20]). Such a

task would be intractable to a human decision-maker.

Automated decision-making, however, commonly takes place over a period of time

[21]. A large company will receive job applications consistently over time and must make

screening decisions as they arrive. Loan granting decisions are similarly made over time

as applications arrive. Goods are priced periodically [22]. Not only are decisions made

over time in each of these cases, but data changes over time as well. For example, as

loan grantees pay back or default on their loans, this information can be used to inform

future loan granting decisions. This raises important, complex questions about how exist-

1



ing (static) notions of fairness should be adapted to settings where data and decisions are

dynamic.

To begin with, the introduction of time leads to normative questions about the meaning

of fairness. Suppose that in the context of applicant screening, we have convinced ourselves

that equalizing selection rates across groups (i.e., demographic parity [23]) is “fair” in the

static setting. What, then, should fairness mean in a dynamic setting, where decisions

are made over time, and feedback is received over time? Is it fair to equalize selection

rates across groups across all time periods? This might involve constraining decisions

made today by decisions made 10 years ago. For example, in a profession dominated by

men, striving for demographic parity across all time would require selecting no men until

cumulative selections (or selection rates) are equal. If we instead wanted demographic

parity within a sliding window, we could require that selections (or selection rates) over the

past, say, year, be equal. Which of these approaches, if any, is a fair way to make applicant

screening decisions over time?

To complicate matters further, the introduction of time results in fairness-learnability

trade-offs [6]. In many sequential decision-making problems, the “rewards” of different de-

cisions are often not known in advance and must be learned over time through exploration.

For example, in dynamic pricing with demand learning, the maximum-revenue price point

is not known in advance, but is estimated over time by experimenting at different prices. If a

fairness constraint is very stringent, our ability to learn and converge to an optimal decision

can be hindered, and performance can suffer. Further, in contextual problems, decisions are

made without full contextual information of the population [24]. For instance, in a rolling

admissions scenario, a decision is made on the current applicant without knowledge of the

quality of future applicants. These considerations should inform how we define fairness in

sequential decision-making settings.

As this discourse develops, various task-specific notions of fairness have been intro-

duced [25, 26, 27, 28, 29]. This is natural since the social backdrop of, say, loan-administration

2



is very different from that of job applicant screening. Hence, the notions of fairness ap-

propriate in different decision-making settings such as pricing, applicant-screening, loan-

administration, etc., may be different. For instance, one may wish to equalize false negative

rates of a cancer diagnosis algorithm across racial groups to ensure that no racial group is

underdiagnosed. For a criminal risk prediction algorithm, on the other hand, it may be

desirable to equalize false positive rates across groups to ensure that no group is under

disproportionate scrutiny. In this dissertation, I discuss technical and practical aspects of

fairness in online decision-making through the lenses of hiring and pricing.

In Chapter 2, I give relevant background information which will be used throughout the

dissertation. This will include two frameworks for online decision-making, an introduction

to partial orders and convex analysis, and two classical algorithms for the decision-making

frameworks discussed in Chapters 3 and 4, respectively. In Chapter 3, I discuss the sec-

retary framework, in which adversarially chosen inputs are presented to an algorithm in

random order. This framework can be used to model the applicant screening. In this chap-

ter, I propose a novel notion of fairness which accounts for uncertainty in evaluations, and I

design and analyze algorithms subject to that constraint. In Chapter 4, I consider fairness in

online learning (specifically in bandit convex optimization), motivated by a multi-segment

pricing problem. I discuss trade-offs between fairness and learning in such settings, and

I design and analyze algorithms satisfying a time-relaxed notion of comparative fairness.

In Chapter 5, I discuss legal constraints on algorithm design; specifically, I discuss how

law and caselaw in the U.S. support the use of protected information in hiring in limited

circumstances, and how the law restricts hiring decisions in the presence of uncertainty.

These findings directly support the algorithms presented in Chapter 3.

3



CHAPTER 2

BACKGROUND AND NOTATION

In this chapter, I present background knowledge which will be useful throughout the dis-

sertation. I begin by discussing classical notions of fairness in Section 2.1. Next, in Sec-

tion 2.2, I present two frameworks for online-decision-making: the secretary framework,

which is discussed in Chapter 3, and the online learning framework, which is discussed in

Chapter 4. In Section 2.3, I discuss three algorithms for the classical secretary problem. In

Section 2.4, I discuss convex optimization, including analysis of the classical gradient de-

scent algorithm, which will be useful in Chapter 4. Finally, in Section 2.5, I discuss partial

orders, which will be important in Chapters 3 and 5.

2.1 Fairness in offline decision-making

Consider a generic offline decision-making setting where each input has a context c ∈ C,

for some context set C. This set C may encode demographic information (e.g., C = {<

40 years old,≥ 40 years old}) and other quality information of the input. The decision-

maker observes a sequence of contexts (c1, . . . , cn) ∈ Cn and chooses decisions

(x1, . . . , xn) ∈ X n,

for some decision set X . Here, xi is the decision given to the ith context ci.

This decision set X could be categorical or numerical. For example, when screening

applicants, we could have X = {yes, no}, where “yes” means that we admit the applicant

to the next round of the hiring process. When deciding the risk of recidivism, the decision

set might be X = [0, 1], where higher decisions correspond to a higher likelihood of recidi-

vism. When X is categorical, the decision process is called classification, and when X is
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numerical, it is called regression. I discuss fairness in both cases next.

2.1.1 Classification

There are many notions of “equal treatment” or “equal opportunity” in classification across

demographic groups [17]. In this section, I will introduce some well-known notions which

will be relevant to this dissertation. For the sake of exposition, I will assume that there are

two disjoint demographic groups G1, G2, with C = G1 ∪G2, and that decisions are binary:

X = {0, 1}.1

The simplest notion of equality across groups is demographic parity, which requires

that both groups have the same positive decision rate.

Definition 2.1 (demographic parity (deterministic)). Using the notation from above, the de-

cisions (x1, . . . , xn) on contexts (c1, . . . , cn) satisfy demographic parity if
∑

i:ci∈G1
1[xi=1]∑

i:ci∈G1
1

=∑
i:ci∈G2

1[xi=1]∑
i:ci∈G2

1
.

It is often useful for the analysis of algorithms to assume that contexts are randomly

generated. Demographic parity can be rephrased to allow for such randomness.2

Definition 2.2 (demographic parity (stochastic) [17]). Suppose each context C ∈ C ob-

served by the decision-maker is generated independently from the same distribution, and

the decision X = X(C) ∈ X is a random variable. Then the decision process satisfies

demographic parity if P(X = 1 | C ∈ G1) = P(X = 1 | C ∈ G2).

Demographic parity enforces equality of outcomes across groups without regard to

other feature information. In cases where prevalence varies across groups, decision rules

satisfying demographic parity can be sub-optimal in terms of accuracy.3 To ensure some

1The notions of fairness discussed in this section easily extend to multiple classes and multiple groups.
2Indeed, the deterministic version of demographic parity is often written in terms of probabilities, although

this is an abuse of notation.
3“Sub-optimal,” here, is with respect to the optimal classifier. In many cases, only noisy estimates of the

inputs’ true classes can be observed; in such cases, enforcing demographic parity could potentially improve
the quality of selections [30].
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regularity in decisions across groups while allowing better treatment for better contexts,

one could instead enforce conditional demographic parity [31].

To motivate conditional demographic parity, suppose each input C has some feature

R(C) ∈ R which the decision-maker would like to respect. For example, R(C) might be

an interview score given to a job candidate, and the decision-maker might believe that those

with higher interview scores are stronger candidates. Thus if G1 has higher R values than

G2 on average, then the decision-maker would like to allow for more selections from G1.

Under conditional demographic parity, for any r, demographic parity is satisfied among the

inputs with R(C) = r.

Definition 2.3 (conditional demographic parity (stochastic) [31]). Suppose each context

C ∈ C observed by the decision-maker is generated independently from the same distribu-

tion, and the decision X = X(C) ∈ X is a random variable. Then the decision process

satisfies conditional demographic parity if for every r ∈ supp(R),

P(X = 1 | C ∈ G1, R(C) = r) = P(X = 1 | C ∈ G2, R(C) = r).

If R is discrete, then a deterministic version of CDP (similar to Definition 2.1) can

be stated as well. Note that one can obtain other group notions of fairness by enforcing

equality of any statistical quantity (e.g., those involving false positives and false negatives)

across groups. Different scenarios may warrant specific notions of fairness over others,

and a plethora of papers have explored methods for attaining these notions of fairness.

Importantly, statistical notions of fairness are sometimes mutually incompatible (e.g., see

[32, 33, 34]), which means that one must choose which notions to enforce.

Strictly enforcing statistical notions of fairness may be impractical, since (1) perfor-

mance can suffer, and (2) often only the discrete decisions are available, and equality across

groups can not be obtained due to rounding issues. In response to these issues, relaxed no-

tions of group fairness have emerged (e.g., see [35]). For example, if one wishes to ensure
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that Q(G1) = Q(G2), where Q(·) is some statistical measure of performance, then one

relaxation is to ensure that |Q(G1)−Q(G2)| ≤ ε. Multiplicative measures of fairness can

be considered as well.

2.1.2 Regression

Here, we assume that decisions are numerical, not categorical. For example, ci could en-

code medical information of patient i, and xi could represent the dosage of a medicine

given to patient i. As opposed to the case of classification, the concept of “positive labels”

or ”false positives” do not necessarily make sense in regression. In this case, one common

interpretation of fairness is to ensure that similar inputs receive similar decisions. If c1 and

c2 are “close” in some sense, then x1 and x2 should be close in some sense as well.

To formalize this “closeness,” we will assume that there are distance functions dC :

C × C → [0,∞] and dX : X × X → [0,∞] on the context space C and the decision set

X , respectively. Thus we can formulate a notion of fairness, which we call comparative

fairness, as follows.

Definition 2.4 (L-comparative fairness). Let L > 0, (c1, . . . , cn) a sequence of contexts,

and (x1, . . . , xn) the corresponding sequence of decisions. This decision process satisfies

L-comparative fairness if for all i, j ∈ [n],

dX (xi, xj) ≤ LdC(ci, cj).

When dC and dX are metrics, comparative fairness reduces to the well-known notion of

individual fairness of Dwork et al. [7].

2.1.3 Gaps in the literature: uncertainty, online decision-making

While the literature on algorithmic fairness is growing rapidly, there are some areas that

have received little attention. In this section, I briefly outline two such areas which will be
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addressed in this dissertation.

Uncertainty

First is that of fairness in the presence of uncertainty. When predictions are prone to larger

errors on group G1 than on group G2, those in group G2 may be harmed, as shown in the

example below.

Example 2.1. Suppose there are two disjoint groups, G1 and G2, and |G1| = |G2| = n,

and suppose that everyone, regardless of group, has a true (latent) score of 0. The decision-

maker is tasked with selecting c people from G1∪G2. However, the scores observed by the

decision-maker are corrupted by independent additive noise. If the noise were identically

distributed, independent of group membership, then the probability that all selections are

from G1 would be 2−c.

Now suppose that the noise from G1 is uniformly distributed over [−2, 2], and the noise

for G2 is uniformly distributed over [−1, 1]. Then

lim
n→∞

P(all selections are from G1) ≥ lim
n→∞

P(at least c members of G1 have noise > 1) = 1.

Thus, despite the fact that the noise is mean-zero for both groups, we see that the disparity

in variance is resulting in a stark disparity in treatment.

The use of quotas have been proposed to account for disparities in variance [30], but

this approach is blunt and, depending on the application, may come under legal scrutiny.

Another approach involves forcing equal treatment whenever two inputs cannot be sepa-

rated with high enough confidence [24]. In Chapter 3, I will argue that this notion is overly

stringent and propose a new method to account for these disparities.
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Online decision-making

Despite the fact that online decision-making is commonplace in industry, the literature

on algorithm fairness focuses mostly on offline decision-making. While work on online

fairness has begun to emerge (e.g., [36, 37]), this field remains underdeveloped. Chap-

ters 3-4 discuss fairness in two online decision-making settings, which are introduced in

Section 2.2.

2.2 Frameworks for online decision-making

In order to obtain theoretical results for online algorithms, one must clarify the framework

in which the decisions are made. In particular, I consider two frameworks: an online

optimization framework in which a fixed set of inputs arrive in random order, and an online

learning framework, in which feedback on decisions can be used to inform future decisions.

2.2.1 The Secretary framework

Chapter 3 of this dissertation concerns the secretary problem [38], which can be described

as an online optimization problem. I use the term “online optimization” to signal that

feedback on decisions is not observed, and so learning (in the traditional sense of supervised

learning) does not take place. In secretary problems, the goal is to select a subset of the

weighted elements {a1, . . . , aN} subject to some constraint, where information about the

elements is revealed online and decisions are made online. In generality, this framework

can be described as follows:

1. N distinct positive numbers w(a1), . . . , w(aN) are generated by an adversary.

2. A uniform random permutation σ : [N ]→ [N ] is generated.

3. For t = 1, . . . , N :

(a) Information about w(aσ(1)), . . . , w(aσ(t)) is revealed.
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(b) An irrevocable select/reject decision on aσ(t) is made.

As is done for many online optimization problems, to assess the performance of a sec-

retary algorithm, we use the competitive ratio [39], which is the worst-case expected per-

formance ratio. For the classical secretary problem, this can be stated as follows:

Definition 2.5 (α-competitive [40]). A secretary algorithm A is α-competitive4 if the ex-

pected performance ratio is at least 1
α

. In other words, it is α-competitive if for any scoring

w,

ρ(w) := E
[
w(Alg(w))

OPT(w)

]
≥ 1

α
,

where OPT(I) is the weight of the optimal feasible subset (i.e., the largest total score which

is achievable with knowledge of the scores of all elements), and Alg(w) is the output of A.

The expectation is taken over the possible orderings of elements and any internal random-

ness in the algorithm.

In the classical secretary problem [38], at most one element can be selected, and line

3(a) in the secretary framework is replaced with “w(aσ(t)) is revealed.”

As a side note, although the secretary problem is not a supervised learning problem, the

random ordering assumption makes it feel like a learning problem. Throughout the time

horizon, more information on the score distribution is revealed, and better decisions can be

made. In many secretary algorithms, the first segment of elements are simply observed and

not selected, resembling the training phase of a ML algorithm.

2.2.2 Online learning

The main difference between online optimization (described above) and online learning is

the presence of feedback. In the online learning framework, decisions are made iteratively

over time, and numerical feedback is observed after each decision. In Chapter 4, I discuss

4This is referred to as strictly α-competitive in [39].
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an online learning problem called bandit convex optimization [41], in which the goal is to

minimize a convex function f : RN → R. In particular, the BCO framework is as follows:

1. For t = 1, . . . , T :

(a) A decision xt ∈ X ⊆ RN is made.

(b) f(xt) + εt is observed, where εt is mean-zero sub-Gaussian noise.

In online learning problems, performance is typically measured in terms of regret,

which we define as follows.

Definition 2.6 (regret [41]). Let F be the class of possible functions disclosed to the algo-

rithm. Let X1, . . . , XT be the (random) decisions made by a BCO algorithm. The regret5

of this algorithm is

sup
f∈F

E

[
T∑
t=1

f(Xt)− T min
x∈X

f(x)

]
.

Since the time horizon T can be quite large, online learning algorithms are often com-

pared by the big-Oh class of their regret. For example, suppose we are given that F is

the set of one-dimensional convex functions which are 2-Lipschitz over X = [−1, 1], and

the decisions made by an algorithm are deterministically x1 = x2 = · · · = xT = 1. By

considering the function f(x) = x2 ∈ F , we see that the regret of this algorithm is at least

T . Since f(x)−f(y) is bounded due to Lipschitzness, the regret of any algorithm isO(T ),

which means that the algorithm in question can be classified as an Θ(T )-regret algorithm.

Typically, the set of possible objective functions F and the decision set X are chosen

so that the instantaneous regret at any time t (that is, f(Xt)−minx∈X f(x)) is bounded by

a constant. In this case, any algorithm would attain O(T ) regret; so, an algorithm having

linear regret (i.e., one with a regret of Ω(T )) has the worst-possible regret, in terms of

big-Oh analysis.

5In [41], this is referred to as expected regret.
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2.2.3 Relationship between competitive ratio and regret

I introduced two performance measures for online decision-making in this section: the

competitive ratio, in Section 2.2.1, and regret, in Section 2.2.2. To better understand the

difference between these two measures, I express both using the same notation.

To that end, let c = (c1, . . . , cT ) ∈ CT be the contexts seen at times t = 1, . . . , T .

In a non-contextual problem like the Secretary problem, we would have |C| = 1. Let

x = (x1, . . . , xT ) ∈ X T be the decisions made at times t = 1, . . . , T . In the case of

the secretary problem, we have X = {0, 1}, where a decision of 1 corresponds to an

acceptance. To account for the fact that not every sequence of decisions is feasible, we let

X ′ ⊆ X T denote the feasible sequences. For example, in the classical secretary problem,

we would have X ′ = {x ∈ {0, 1}T :
∑

t xt ≤ 1}.

Now let F (c, x) denote the cost of the decision sequence x given the context sequence

c, and letF denote the possible cost functions. For example, in the (non-contextual) convex

optimization settings, we can have F (x) =
∑

t f(xt), where f is a convex function; in the

secretary setting, we can have F (c, x) =
∑

t 1[xt = 1](−ct), where ct is the score of the tth

element to arrive. We can therefore express the regret and competitive ratio in this setting

as follows:6

Regret: sup
F∈F

sup
c

[
E[F (c, x)]− inf

x∗∈X ′
F (c, x∗)

]
Competitive ratio: sup

F∈F
sup
c

E[F (c, x)]

infx∗∈X ′ F (c, x∗)

where the expectation is taken over randomness in the problem (e.g., the ordering of the

elements in the secretary problem) and randomness in the algorithm. Thus, we see that the

main difference between regret and the competitive ratio is that one is additive and one is

multiplicative.

Of course, both of these definitions are minimized at the same point x∗. The difference

between them is how they differentiate between suboptimal decisions. For example, sup-

6There are other variants of both regret and competitive ratio. For example, the cost function could be
random, or the contexts could be random.
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pose x is the decision sequence produced by a 2-competitive algorithm. Then for any F and

any c, we have that E[F (c, x)] ≤ 2 infx∗∈X ′ F (c, x∗); further, suppose that for some F ′, c′,

this inequality is tight. The regret of this algorithm can therefore be bounded as follows:

Regret ≥ E[F ′(c′, x)]− inf
x∗∈X ′

F ′(c′, x∗) = inf
x∗∈X ′

F ′(c′, x∗).

For many reasonable cost functions F ′, this would show that Regret = Ω(T ). For example,

if F were composed of functions F (c, x) =
∑T

t=1(xt − at)
2 + bt, where bt > ε > 0 for

all t, then this would imply linear regret. Hence, we have shown that an algorithm with

a constant competitive ratio (typically considered the low end of competitive ratios) can

incur linear regret (typically consider the high end of regret). Thus, depending on how

good of an approximation is achievable, one of these measures may be more informative

than the other. That said, some have analyzed their algorithms in terms of both regret and

competitive ratio [42].

Historically speaking, the competitive ratio has been popular in online optimization as

an online variant of the performance ratio used to describe approximation algorithms [43].

Many of the problems studied in this field are NP-hard optimization problems for which

the best-possible algorithm is a constant factor approximation.

Regret, on the other hand, emerged in online learning settings [44], where the decisions

are independent over time and might converge. When decisions are independent over time,

the quality of a single decision xt can be measured in terms of its instantaneous regret

ht = f(xt) − f(x∗), where F (x) =
∑

t

(
f(xt) − f(x∗)

)
, and it is often of interest to

decide whether (or how quickly) ht → 0. Conveniently, regret is simply the sum of these

instantaneous regret terms, whereas the connection between h and the competitive ratio is

more complicated.

As outlined above, either performance measure can be used in online decision-making

problems, but some problems can be more appropriately or more easily analyzed in terms
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of one rather than the other.

2.3 Secretary algorithms and analysis

In Chapter 3, I discuss algorithm design for a variant of the secretary problem with partial

ordinal information. That is, instead of observing an element’s score w(ai) upon its arrival,

the algorithm observes ordinal comparisons between ai and the previously seen elements

according to a partial order. As a warm-up, in this section, I discuss algorithms for the

classical secretary problem (defined in Section 2.2.1), where each element reveals its score

upon arrival, and at most one element can be selected.

In the 1960s, Dynkin gave an e-competitive algorithm which operates by observing the

first 1/e fraction of the elements, then selecting the next element with score higher than all

previous elements [38].

Proposition 2.1 ([38]). Assume that all scores are distinct.Dynkin’s algorithm for the clas-

sical secretary problem is
(
e + o(1)

)
-competitive as the number of element N →∞.

Proof. Let a∗ be the highest-score element. Then the competitive ratio is simply

1/P(a∗ is selected).

Now note that if a∗ arrives at time i > N/e, then a∗ is selected if and only if no previous

elements were selected, which in turn happens if and only if the highest-weight element

arriving before a∗ was among the first ⌊N/e⌋. Since elements arrive in uniform random

order, the probability that the highest-weight element arriving before a∗ is among the first
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⌊N/e⌋ is ⌊N/e⌋/(i− 1). Thus we have that

P(a∗ is selected) =
1

N

∑
i>N/e

P(a∗ is selected | a∗ arrives at time i)

=
1

N

∑
i>N/e

⌊N/e⌋
i− 1

≥ 1

e

∑
i>N/e

1

i− 1

=
1

e

(
H(N − 1)−H(⌊N/e⌋)

)
.

Now, to prove the claim, we must show that H(N − 1) −H(⌊N/e⌋) ≥ 1 + o(1). To that

end, note that asymptotically in n, we have H(n) = ln(n) + γ + o(1), for some constant

γ. Now let ε1 = H(N − 1) − ln(N − 1) − γ, ε2 = H(⌊N/e⌋) − ln(⌊N/e⌋) − γ, and

ε3 = ln
(
1− 1

N

)
, and choose N large enough that

|ε1|, |ε2|, |ε3| < δ/3 .

For such an N , we can bound H(N − 1)−H(⌊N/e⌋) as follows:

H(N − 1)−H(⌊N/e⌋) = ln(N − 1) + γ + ε1 − ln(⌊N/e⌋)− γ − ε2

= ln

(
N − 1

⌊N/e⌋

)
+ ε1 − ε2

≥ ln

(
N − 1

N/e

)
+ ε1 − ε2

= 1 + ε1 − ε2 + ε3.

Thus, we have shown that P(a∗ is selected) ≥ 1
e
− o(1), which proves the claim.

The analysis of Dynkin’s algorithm is slightly messing due to the rounding of the sam-

ple size, ⌊N/e⌋. If N were divisible by e, then the competitive ratio would be precisely e

for all N . Generalizations of Dynkin’s approach to the k-secretary problem (where at most
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k elements can be selected) have an added complication. It is often useful in the analysis

to consider the event where multiple specific elements are in the sample (e.g., among the

first ⌊N/e⌋ elements for Dynkin’s algorithm). However, when the sample size is fixed, the

sampling of different elements is dependent: if a1 is in the sample, then it is less likely that

a different element a2 is in the sample.

Both of these issues are resolved using independent sampling of elements. In partic-

ular, if one wishes to sample every element independently with probability p, this can be

accomplished by simply drawing M ∼ Bin(N, p) and sampling the first M elements (for

a proof of this, I direct the reader to [45]). Using this approach, Soto adapted Dynkin’s

algorithm so that each element is sampled independently with probability 1/e; the analysis

of Soto’s algorithm is much less clunky and shows a competitive ratio of 1/e [46].

One final algorithm which I would like to highlight is that of Buchbinder et al. [47],

which was calculated using linear programming. In particular, suppose that an algorithm

A for the classical secretary problem never selects an element if a previous element was

better.

For such an algorithm, let pi (for i ∈ [N ]) be the probability of selecting the ith element

to arrive. From the vector p, the authors show that the competitive ratio of the algorithm

is 1
N

∑N
i=1 ipi and the for all i ∈ [N ], the following is satisfied: i · pi ≤ 1 −

∑i−1
j=1 pj .

Moreover, they show that any p satisfying these inequalities induces an algorithm with the

same competitive ratio. Thus, an optimal classical secretary algorithm can be found by

solving the following linear program:

LP(P):

maximize 1
N

∑N
i=1 i · pi

subject to i · pi ≤ 1−
∑i−1

j=1 pj for all i = 1, . . . , N

p ≥ 0

I will explore this approach in the case of partial ordinal feedback in Section 3.4.
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Algorithm 1: GRADIENT DESCENT [48]
input: initial point x1, time horizon T , step size η ∈ RT

1 for t = 1, . . . , T do
2 xt+1 ← xt − ηt∇f(xt)

2.4 Convex optimization

In this section, I will discuss the problem of minimizing a differentiable function f over

RN . When f is convex, the standard approach is to use gradient descent [48], or some

variant thereof. Gradient descent, presented below, is an iterative method which chooses

the next point xt+1 by moving in the direction of the negative gradient at the current point

xt.

Note that if this algorithm were applied to a non-convex function, the iterates may

converge to a local minimum which is not the global minimum, so convergence to the

minimizer is not guaranteed. In general, the analysis of this algorithm (and its variants)

depends on the assumptions made on f . In Chapter 4, I will discuss the setting where f is

strongly convex and smooth, which I define next.

Definition 2.7 (α-strong convexity [48]). A function f : RN → R is called α-strongly

convex if for all x, y ∈ RN ,

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥2.

Definition 2.8 (β-smoothness [48]). A function f : RN → R is called β-smooth if for all

x, y ∈ RN ,

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥y − x∥2.

Essentially, strong convexity linearly lower bounds the rate of change of the gradient of

f , and smoothness linearly upper bounds it. We can therefore think of functions which are

smooth and strongly convex as “almost” quadratic function. For completeness, I prove this
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below.

Lemma 2.1. Let f : RN → R be a differentiable α-strongly convex and β-smooth function.

Then for all x, y ∈ RN ,

α∥y − x∥2 ≤ ∥∇f(y)−∇f(x)∥2 ≤ β∥y − x∥2.

Proof. The second inequality is a well-known fact about convex smooth functions. Now

I show that the first inequality holds. Let x, y ∈ RN . If x = y, then the inequality hold.

Otherwise, by strong convexity, we have the following inequalities:

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥2

f(x) ≥ f(y) +∇f(y)⊤(x− y) +
α

2
∥x− y∥2.

Adding them together, we get

α∥y − x∥2 ≤ (∇f(y)−∇f(x))⊤(y − x) ≤ ∥∇f(y)−∇f(x)∥∥y − x∥

using the Cauchy-Schwarz inequality.

Turning back to gradient descent, I provide a proof of convergence rate under smooth

and strong convexity assumptions, courtesy of Elad Hazan.

Proposition 2.2 ([48]). Let f : RN → R be an α-strongly convex and β-smooth function.

Then Algorithm 1, with step size ηt =
1
β

, attains a convergence rate of

ht+1 ≤ h1e
−(α/β)t ,

where ht = f(xt)−minx f(x).
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Proof [48]. First, observe that

ht+1 − ht = f(xt+1)− f(xt)

≤ ∇f(xt)⊤(xt+1 − xt) +
β

2
∥xt+1 − xt∥2 by smoothness

= − 1

β
∥∇f(xt)∥2 +

1

2β
∥∇f(xt)∥2

= − 1

2β
∥∇f(xt)∥2.

Thus we have a decrease in h dependent on the current gradient. By strong convexity,

however, we can show that the current gradient can be bounded from below by h. In

particular, we know that by strong convexity, we have that

f(y) ≥ min
z

{
f(x) +∇f(x)⊤(z − x) +

α

2
∥z − x∥2

}
.

The expression being minimized on the right-hand side has gradient∇f(x)−αx+αz and

thus is minimized at z = x− 1
α
∇f(x). This gives us that

f(y) ≥ f(x) +∇f(x)
(
− 1

α
∇f(x)

)
+

α

2

∥∥∥∥− 1

α
∇f(x)

∥∥∥∥2 = f(x)− 1

2α
∥∇f(x)∥2.

If we set y to by x∗ := argminx f(x) and x = xt, this reduces to

2αht ≤ ∥∇f(xt)∥2.

Plugging this into our bound on ht+1 − ht from above, we get that

ht+1 − ht ≤ −
1

2β
∥∇f(xt)∥2 ≤ −

α

β
ht.

In other words, we have proven a contraction: ht+1 ≤ (1−α/β)ht. The result follows.

The above algorithm and analysis assume perfect first-order information. In other
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words, they assume that for each decision xt, the algorithm observes∇f(xt). In Chapter 4,

I will consider a bandit feedback setting, where the algorithm only receives noisy function

value observations; in particular, for a decision xt, the algorithm observes f(xt)+εt, where

(ε1, . . . , εT ) is a sequence of mean-zero, sub-Gaussian, independent noise.

In this bandit setting, it will be useful to characterize the sample complexity for obtain-

ing function value estimates and gradient estimates. Hoeffding’s inequality will be useful

for both.

Lemma 2.2 (general Hoeffding’s inequality [49]). Let ε1, . . . , εn be independent mean-zero

sub-Gaussian random variables. Then, there is a constant C such that for every s ≥ 0, we

have

P
(∣∣∣ n∑

t=1

εi

∣∣∣ ≥ s
)
≤ 2 exp

(
− Cs2∑n

t=1 ∥εi∥2ψ2

)
.

Using Hoeffding’s inequality, we can bound the accuracy of a derivative estimate ob-

tained from samples at two points, x, y ∈ R.

Lemma 2.3 (sandwich lemma). Let f : R → R be an α-strongly convex and β-smooth

function, and let x < y. Suppose that querying f at any point z yields a noisy observation

f(z) + εt for the tth sample, and suppose that the noise variables ε1, ε2, . . . are indepen-

dent, mean-0, and have sub-Gaussian norm at most Emax. Now fix p ∈ (0, 1), and let f(x),

f(y) be the averages of
64E2

max log 2
p

Cα2(y−x)4 samples at x and y, respectively, where C is the abso-

lute constant from Lemma 2.2. Then the estimated secant g =
f(y)−f(x)+α(y−x)2

4

y−x satisfies

∇f(x) ≤ f(y)−f(x)
y−x ≤ g ≤ ∇f(y), with probability at least (1− p)2.

Proof. Let ε = α(y − x)2/4. Then by Hoeffding’s inequality (Lemma 2.2) with n =

64E2
max log 2

p

Cα2(y−x)4 ,

P
(
|f(x)− f(x)| ≥ ε/2

)
≤ 2 exp

(
− C(ε/2)2n

E2
max

)
= p,

and similarly for y. So, we have that

∣∣f(x)− f(x)
∣∣ ≤ ε

2
and

∣∣f(y)− f(y)
∣∣ ≤ ε

2
(2.1)
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with probability at least (1 − p)2. For the remainder of the proof, we assume that (2.1)

holds. Next, we bound g − f(y)−f(x)
y−x from above and below:

g − f(y)− f(x)

y − x
=

f(y)− f(x) + ε

y − x
− f(y)− f(x)

y − x
(by def’n of g)

=
1

y − x

[(
f(y)− f(y)

]
+
(
f(x)− f(x)

)
+ ε
]

∈
[
0,

2ε

y − x

]
.

By definition of ε, this gives us:

0 ≤ g − f(y)− f(x)

y − x
≤ α

2
(y − x) with probability at least (1− p)2. (2.2)

Since we have just shown that g is close to the secant f(y)−f(x)
y−x , the only thing remaining

is to show that ∇f(y) is sufficiently far away from the secant. We can do this by using

strong convexity:

f(y)− f(x)

y − x
≤
∇f(y)(y − x)− α

2
(y − x)2

y − x
= ∇f(y)− α

2
(y − x).

We’ve thus shown that 0 ≤ g − f(y)−f(x)
y−x ≤ α

2
(y − x) ≤ ∇f(y)− f(y)−f(x)

y−x . It follows

that the estimated gradient g satisfies ∇f(x) ≤ f(y)−f(x)
y−x ≤ g ≤ ∇f(y), where the first

inequality follows from convexity, thus proving the lemma.

2.5 Partial orders

As discussed in Section 2.1.3, differences in error variance across groups can result in

differing outcomes across groups. Accounting for error variance can thus be motivated as a

group fairness intervention. Additionally, accounting for error variance forces the decision-

maker to reckon with the accuracy of their selection criteria.

Suppose, now, that an evaluator outputs a numerical score and a confidence interval
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for each input. If we have two inputs with intervals [1, 3] and [4, 6], and we are tasked

with selecting one of the inputs, we would likely choose the latter. On the other hand,

if the intervals were [1, 3] and [2, 4], the correct action is less clear. In this case, there is

a substantial amount of uncertainty in the relative ranking of the two inputs. How, then,

should the decision-maker act?

One option for handling this uncertainty in relative rankings, which I propose in Chap-

ter 3, is to make decisions based only on relative rankings which are known with sufficient

certainty. This can be done by representing the uncertainty in a partial order [50] (defined

next) and making decisions based on this partial order.

Definition 2.9 (partially ordered set). Let S be a set and ⪯ a binary relation on S. The pair

P = (S,⪯) is a partially ordered set, or poset, if the following conditions hold:

1. Reflexivity: for all a ∈ S, a ⪯ a;

2. Antisymmetry: for all a, b ∈ S, if a ⪯ b and b ⪯ a, then a = b; and

3. Transitivity: for all a, b, c ∈ S, if a ⪯ b and b ⪯ c, then a ⪯ c.

In this case, ⪯ is called a partial order on S.

For example, the subset relation⊆ is a partial order on any collection of sets. Similarly,

the divisibility relation | is a partial order on any subset of positive integers.7 A poset

P = (S,⪯) is often pictorially represented with a “Hasse diagram,” which is a drawing

of a directed D = (S,A), where ab ∈ A if and only if a ̸= b, a ⪯ b, and there is no

c ∈ S \ {a, b} for which a ⪯ c and c ⪯ b [51]. In other words, the arcs of D represent

all relative rankings which are not implied by reflexivity or transitivity. Typically, Hasse

diagrams are drawn so that all arcs are oriented upward in the plane. For example, below

is a Hasse diagram for the subset relation on the power set of {a, b, c}:
7For any integers a, b with a ̸= 0, we say that “a divides b,” and write a | b, if b/a ∈ Z.
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∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Note that x ⪯ y in a poset if and only if there is a directed path from x to y in the Hasse

diagram. If x ̸⪯ y and y ̸⪯ x, then x and y are called incomparable. For example, in

the Hasse diagram above, the elements {a, b} and {c} are incomparable, since neither is a

subset of the other.

Now suppose that a given partial order accurately compares inputs; that is, if a ̸= b and

a ⪯ b, then b is better than a. In this case, the more information carried in the poset, the

better decisions one can make. One way to quantify the informativeness of a partial order

is with its width.

Definition 2.10 (width [51]). The width of a partial order P , denoted ω(P), is the maxi-

mum number of mutually incomparable elements.

For example, the width of the power set of {a, b, c} is 3.

If all elements of a poset were mutually comparable, then decisions can be made using

traditional techniques (e.g., thresholding in the case of a classification task). A subset with

this property is called a chain.

Definition 2.11 (chain [51]). Let P = (S,⪯) be a poset. A subset C ⊆ S is called a chain

if for all a, b ∈ C, we have that a ⪯ b or b ⪯ a.

While not every poset is a chain, every poset can be partitioned into chains. Trivially,

given a poset P = (S,⪯), one can partition S into singletons, and each singleton is a chain.

This, however, is not useful, since all ordinal information is lost when considering each

singleton separately. Partitioning a poset into the minimum number of chains, however,
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can be useful in some settings. It is well-known that for any poset of width ω, there exists

a partition into ω chains.

Proposition 2.3 (Dilworth [52]). Let P = (S,⪯) be a poset. There exists a partition

(C1, . . . , Cω(P)) of S such that each Ci is a chain.

This result will be useful in the analysis in Chapter 3.
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CHAPTER 3

PARTIAL ORDERS AND UNCERTAINTY

This chapter contains excerpts from [53] and includes joint work with Swati Gupta.

With the rise of big data and the proliferation of machine learning in important decision-

making processes, automated résumé-screening and selection algorithms have become com-

monplace [54, 25]. Hiring decisions are often made based on numerical evaluations of

applicants, such as grades, standardized test scores, number of publications, ratings by se-

lection committees, etc., and companies have emerged to assist with automating these deci-

sions (e.g., Indeed, [5]). Although scoring applicants provides a numeric scale on which to

compare them, it is often unclear what the impact of their training or their socio-economic

background is on test scores. Studies have shown that experiences with racial and gender

stereotyping can have adverse effects on test performance (see, e.g., [55, 56]). Further,

economic status differences and the differences in perceived rewards and costs of the tests

can also produce differences in ability test scores between high-income and low-income

individuals [57]. Even if performance is equal, applicants may be penalized due to implicit

bias of evaluators [58], and simply scrubbing protected information can be ineffective in

mitigating such biases [59, 7]. This further becomes a problem in practice as automated

screening methods that use real-world data pick up on biased trends in the underlying data.

For example, Amazon experimented with such a résumé-filtering algorithm, but scrapped

the project when evidence of algorithmic sexism1 emerged [60].

There is growing literature to model and address such bias-related issues behaviorally

[61], mathematically [31, 7, 62], and by studying societal systems [63, 64]. However, little

is known about the impact of bias and the effectiveness of these measures when dealing

1This might have been due to many reasons; e.g., the data that was fed into Amazon’s algorithm might
have already incorporated existing biases of the human hiring committees.

25



with implicit bias in data. Kleinberg and Raghavan were the first to show that in offline

selection, the Rooney Rule can in fact increase the scores of selected applicants (under

certain parameters of their model). Our attempt is to provide a data-driven model of bias

and to answer similar questions for online selection.

We model bias in evaluations using partially ordered sets as follows: applicants whose

relative ranking is uncertain due to biases or inaccuracies are considered incomparable.

Given a batch of applicants and a partial order (encoding uncertainties or biases) over them,

it is easy to make offline selection decisions by (randomly) selecting the highly ranked

applicants in the poset. However, given the competitive nature of the market and the high

volume of applicants, there is an online aspect to selection processes in hiring.

In this chapter, apart from proposing partially ordered sets to counteract bias in eval-

uations data, we develop secretary algorithms that are competitive given partial ordinal

information. Our work is the first to consider this adaptation of the secretary problem for

multiple selections. After discussing algorithm design and analysis, I will provide experi-

ments results and discuss real-world impact in applicant-screening.

3.1 Background and Main Results

In this section, I first discuss related work in secretary problems and bias mitigation, draw-

ing connections between the fairness notion proposed in this chapter and existing fairness

notions. Next, I outline the contributions of this chapter.

3.1.1 Related work

Secretary Problems: Our work adds to the expansive literature on secretary problems by

relaxing the assumption that the algorithm has access to true scores of applicants. The clas-

sical secretary problem is to select in online fashion at most one element from a randomly

ordered scored set of known size. The classical algorithm for the problem sets a threshold

based on a sample of the elements and selects the first non-sampled element exceeding the
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threshold [38].

We consider the k-secretary problem, where up to k elements can be selected. There are

two techniques which commonly appear in the secretary literature to handle multiple selec-

tions: adaptive thresholding, in which the threshold is periodically updated, and random

partitioning, in which elements are randomly partitioned into multiple sets, and selection

capacity is distributed across the sets. Our two main algorithms, ADATHRESHOLD and

POSETLABEL, use these techniques, respectively. Adaptive thresholding was used by [65]

to generalize the classical secretary algorithm while maintaining its e-competitiveness and

was notably used by [4] to obtain a tight (as k →∞) competitive ratio of
(
1− 5√

k

)−1. The

random partitioning technique has been used in matroid secretary problems [66, 46], which

we discuss below.

Many other interesting constraints have been studied in the secretary literature, such

as knapsack constraints, under which each element has both a score and a weight, and the

total weight of selected elements cannot exceed some number [65]. In another line of work,

the elements are assumed to form the ground set of some matroid, and selected elements

are required to form an independent set. While an O(log log rank)-competitive algorithm

was given in [45], it remains open whether this problem admits a constant-competitive

algorithm. When scores are randomly assigned to the elements, however, one can exploit

the principal partition of the matroid to achieve a constant competitive ratio [46]. These

problems all assume access to the true rankings of elements, as opposed to our problem,

which assumes only a partial ranking.

Several limited-information variants of the secretary problem have emerged. Ordinal

secretary problems assume access to total rankings of elements, but not numerical scores

[67]. Some variants limit information even further, allowing for comparisons between

only select pairs of applicants. Among such problems is the Q-queue, J-Choice, K-best

secretary problem, which assumes applicants are randomly split into Q groups of equal

size, and comparisons cannot be made between applicants of different groups. This differs
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from our setting, in which the partial order is deterministic and not restricted to be a union

of disjoint chains.

More generally, some work has been done on secretary problems with partial ordinal

information on rankings, with the objective of picking any maximal element [68]. There

are three differences between the work of Kumar et al. and ours: (1) we allow for multiple

selections, whereas their work allows for only one selection. Their techniques do not easily

extend to our multiple-choice setting, nor does their lower bound; (2) they assume prior

knowledge of the number of elements and the number of maximal elements, whereas we

only assume access to the number of elements; and (3) their objective is to select any

maximal element, whereas ours is to maximize the total score of selections according to

some unknown scoring that is consistent with the ranking. Our objective is harder in the

sense that routinely selecting the worst (by score) of the maximal elements will yield good

performance by their objective and bad performance by ours. We consider the first two

differences to be significant, and the third to be minor.

Fairness in Hiring and Selection Problems: Our work adds to the literature on selection

under biased information. The works of [69] and [70] consider the scenario where candi-

dates come from various demographic groups, and their observed scores are scaled by a

constant dependent on their group membership. In contrast, the work of [71] assumes ob-

served scores are unbiased estimates of true scores with group-dependent noise variance.

In both cases, the assumed bias corrupts certain comparisons between candidates, and thus

a partial order can be constructed to represent the bias. In this way, our methods provide an

alternative approach to the quota-based methods discussed in the above papers. The other

main differences between our work and theirs are that (1) our problem is online, and (2) we

make no assumption on the underlying bias except that it can be encoded in a partial order.

In terms of fairness constraints, ordinal fairness (OF) shares some characteristics with

individual fairness [7] and conditional demographic parity. Individual fairness (IF) requires

that people who are similar (according to some metric) receive similar decisions; in this
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case, treatment depends heavily on the underlying metric. Analogously, under OF, indi-

viduals who are similar (according to some partial ranking) must receive similar decisions;

thus, treatment depends on the underlying partial order. In contrast, however, the purpose

of IF is to avoid large disparities in treatment of similar individuals, whereas the purpose

of OF is to account for uncertainty in evaluations. One advantage of OF over individual

fairness is its basis in the law: as discussed in Chapter 5, U.S. caselaw supports the use

of partial rankings in the hiring process; it is unclear, however, how the sensitivity of de-

cisions to a similarity metric for individual fairness is perceived from a legal perspective

(e.g., what happens if two seemingly valid metrics produce different outcomes?).

Conditional demographic parity (CDP),2 on the other hand, equalizes treatment condi-

tional on some (presumably predictive) feature. As we will discuss in Section 3.2.2, OF

implies CDP, where the feature on which we condition is isomorphism class (CDP, how-

ever, does not imply OF). It is worth noting that OF does not imply demographic parity nor

any outcomes-based measure, even when the partial order is derived from group bias (cf.

Example 3.1).

In terms of accounting for uncertainty, the closest notion of fairness to ours is the “mer-

itocratic fairness” (MF) notion proposed by [24] in the multi-armed bandits context. Under

MF, a confidence interval is maintained for each arm, and arms with overlapping confi-

dence intervals must be treated equally. For example, given confidence intervals of [1, 4],

[3, 6], and [5, 8], their constraint would force equal treatment of the three applicants, despite

the third being confidently better than the first. In contrast, ordinal fairness with respect to

the induced interval order would allow for better treatment of the third arm in this case.

The other significant difference between MF and ordinal fairness is that the partial order in

ordinal fairness need not be derived from intervals, thus allowing for a broader notion of

uncertainty (cf. Section 3.2.1).

Work has been done on long-term effects of bias-aware algorithms as well. While our

2CDP was defined in Section 2.1.
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work focuses on single-round hiring and mitigating effects of biased evaluations, one may

hope that such interventions will lead to long-term reduction of bias in evaluations. Other

work has studied long-term effects of affirmative action and conditions under which certain

policies can effectively stabilize the system, resulting in an equilibrium which selects a

proportional number of candidates from each demographic group [72]. In a similar vein

of research, Coate and Loury have studied the interplay of affirmative action and employer

biases, and the conditions under which a temporary application of affirmative action can

lead to long-term benefits for disenfranchised groups [73]. Our work complements these by

providing a mathematical basis for selecting candidates fairly in spite of bias in evaluations.

3.1.2 Results

1. Poset Model and Fairness. We propose the poset model of bias, which allows the

algorithm access to a partial order (encoding uncertainties and biases) on the set of

applicants consistent with the total order induced by true scores (Sec. 3.2.1). This

is the first paper to use partial orders as part of a bias mitigation strategy. We show

how this model generalizes several natural notions of bias such as the group model

of bias [69]. Next, we propose ordinal fairness (OF) which expands on the notion of

conditional demographic parity, incorporating the partial ranking of applicants and

enforcing monotonicity in selection rates with increasing rank. We propose the poset

secretary problem, where the goal is to select k applicants with the highest true total

score from a pool of N , while the algorithm has access only to an a priori unknown

partial order on the applications. Our proposed algorithms for the poset secretary

problem all satisfy ordinal fairness.

2. A Lower Bound. In Section 3.3, I show that any algorithm for the poset secretary

problem incurs a competitive ratio of at least ω, where ω is the width3 of the poset.

3. Poset Secretary Algorithms via Linear Programming. In Section 3.4, I discuss
3The width of a poset is the maximum number of mutually incomparable elements.
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how algorithms for selecting one element from a fixed (known) poset can be gener-

ated using linear programming. This is done by formulating a poset-specific linear

program and showing that the feasible points of this LP are in one-to-one correspon-

dence with 1-secretary algorithms. This does not, however, answer solve the poset

secretary problem, as it assumes advance knowledge of the poset and only handles

k = 1 selection.

4. Poset Secretary Algorithms for Small k. We discuss challenges to developing poset

secretary algorithms in Section 3.5.1, and we provide an algorithm based on the

random partitioning technique from the matroid secretary literature [66] in Section

3.5.2 which requires an estimate of the width as input. In Section 3.5.3, we show

how this assumption on a width estimate can be dropped while maintaining order

optimality. The main challenge to this approach is learning how “informative” the

partial ranking is, which is important for deciding how extensively to sample. We

address this by estimating the width of the poset from an initial sample.

5. An Asymptotically Tight Poset Secretary Algorithm. Though the above algo-

rithms are order-optimal and implementable in practice due to their explainability,

their competitive ratios do not diminish as the number of selections increases, con-

trary to results for the vanilla secretary problem [4]. To address this, in Section 3.6,

we provide a novel notion of thresholding in partially ordered sets with the property

that applicants with relatively high potential (according to the partial order) meet the

threshold. Our algorithm periodically updates the threshold, thus extending Klein-

berg’s adaptive thresholding technique to the partial ordinal setting [4]. The resulting

algorithm achieves a tight competitive ratio of ω · (1 + o(1)) as k → ∞ under the

regime where (logN)/
√
k → 0.

6. Algorithms for the Special Case of Group Bias. A special case of the poset bias

model is the group bias model, which assumes that applicants belong to g disjoint
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groups, and bias is consistent within groups. This lends a total order on applicants

within the same group, and no comparisons on applicants across different groups.

In Sec. 3.7, we simplify our poset algorithms to this setting, resulting in an O(g)

competitive ratio, and we obtain an improved competitive ratio of O(1) when the

group membership and scores are assigned randomly (see Table 3.1). Moreover, we

show that typical vanilla secretary algorithms can be parallelized across the groups

in a way that increases their competitive ratio by only a factor of O(g). This gives

a recipe to convert any algorithm in the vanilla secretary setting to the group-bias

setting.

7. Computational Experiments. In Section 3.8, we test our algorithms on the AMEO

2015 dataset,4 which includes gender, GPA, college tier, and computer programming

test scores for college graduates, among other features. We train a linear regression

model to predict computer programming scores for three different shifted distribu-

tions of scores, and use gender-specific error distributions in the resulting predictions

to construct partial orders over applicants. We compare selection rates of four al-

gorithms across gender in the secretary setting and observe that enforcing uniform

quotas is insensitive to distributional changes in the data, whereas the poset-based al-

gorithms follow the distribution of scores in the data better. Conversely, poset-based

methods are less sensitive to distributional changes in data than vanilla algorithms,

since the former give applicants more benefit of the doubt by design.

3.2 Problem Formulation: Bias, Fairness, and the Secretary Problem

In Section 3.2.1, we introduce the poset model of bias as a way to represent uncertainties

in evaluations and provide examples showing how the model can be used to account for

multiple kinds of bias or uncertainty. In Section 3.2.2, we introduce ordinal fairness as

4The dataset is available at http://research.aspiringminds.com/resources/#datasets.
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Competitive ratio Algorithm
Poset model

ω known (ω + 1) e2

e−1

(Corollary 3.1)
PROXYLABEL
(Algorithm 2)

ω unknown
e3

e−1

(
4ω + 2

)(
1 + o(1)

)
(Proposition 3.6)

POSETLABEL
(Algorithm 3)

ω unknown
ω ≤ log k

ω
(
1− 38 logN√

k

)−1

(Corollary 3.2)

ADATHRESHOLD
(Algorithm 4)

Group model

Adversarial (g + 1) e2

e−1

(Corollary 3.1)
PROXYLABEL
(Algorithm 2)

Adversarial
gf(k/g)

(Proposition 3.9)
GAP

(Algorithm 5)

Stochastic
2e
(
1 + o(1)

)
(Proposition 3.10)

GAPCAP
(Algorithm 6)

Table 3.1: Summary of poset secretary algorithms for selecting k out of N applicants. In
the poset model of bias, the algorithm has access to partial ordinal rankings of applicants,
and the competitive ratio is given in terms of the width ω of the poset. In the group model
of bias, the number of groups g is known to the algorithm; in the stochastic setting, both
group membership and scores are random. For GAP, the algorithm being parallelized has
competitive ratio f(k) for k selections. All of these algorithms satisfy ordinal fairness.

a desirable quality of selection under poset bias. Finally, in Section 3.2.3, we formally

introduce the poset secretary problem.

3.2.1 Modeling Bias

We model uncertainty in evaluations using a partial order on the set C of elements,5 in

which pairs of elements that cannot be ranked against each other with high enough certainty

are deemed incomparable. Each element a ∈ C has a true (inaccessible) score w(a) ≥ 0

signifying their ability or utility to the selection algorithm. We assume that these true scores

are distinct, so that they induce a total order (C,⪯t) on the elements, which is not known

to the algorithm; rather, the set of such scores will be used to compute the worst-case

performance benchmark. The partial order P = (C,⪯p) which constitutes the feedback

5For the sake of congruency with the secretary literature, we henceforth refer to applicants as elements.
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must be consistent with the total order; i.e.,

a ≺p b =⇒ a ≺t b ⇐⇒ w(a) < w(b).

We next provide examples illustrating how uncertainties can be translated to partial

orders.

Example 3.1 (Group bias). A special case of our model is the group bias model of [69],

which assumes that elements belong to disjoint6 demographic groups G1, . . . , Gg, and each

group Gi has an associated bias factor βi ≥ 1. The observed (biased) score of an element

a ∈ Gi is w̃(a) = w(a)/βi. This induces a natural partial order where for any pair of

elements a1, a2 ∈ Gi, a1 ≺ a2 if w̃(a1) < w̃(a2). Pairs of elements in different groups are

considered incomparable.

Example 3.2 (Discrete evaluations). Suppose each element a has an attribute xa ∈ {1, . . . , 10},

and that this attribute is unbiased and predictive of utility. Then we can define a partial or-

der where a ≺ b if and only if xa < xb. Note that elements with the same attribute value

are incomparable.

Example 3.3 (Multiple evaluations). Suppose five elements, a1, . . . , a5, are evaluated by

three metrics or by three committee members. The scores assigned to the elements, respec-

tively, are 
7

8

8.5

 ,


4.5

5.5

6

 ,


2.7

4

6.5

 ,


1

3

3

 ,


2

3

4

 .

Since the scores of a1 are between 7 and 8.5, it may seem likely that the “true” score of a1

is in the interval [7, 8.5]. In this way, these scores naturally induce the following intervals

and rankings:7

6If, for example, the groups G1 and G2 intersect nontrivially, then we can simply consider the disjoint
groups G1 \ G2, G2 \ G1, and G1 ∩ G2. This approach non-ideal if there are many demographics being
considered, as the number of intersectional groups is exponential in the number of demographics.

7Suppose one wished to select three elements from this poset. Certainly a1 should be selected, since it is
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0 1 2 3 4 5 6 7 8 9 10

a1a2a4
a5

a3
a1

a2 a3

a4 a5

Note that the poset derived in Example 3.3 was constructed from a set of intervals,

where comparable elements corresponded to disjoint intervals. Partial orders constructed

in this manner constitute an important class called interval orders:

Definition 3.1 (interval order). An interval order is a set {a1, . . . , aN} along with a binary

relation ≺ that satisfies the following condition: there exists a correspondence between

each element ai and an interval [ℓai , uai ] ⊂ R, such that ai ≺ aj if and only if uai < ℓaj .

Another way that interval orders can arise is through estimations of bias factors:

Example 3.4 (Bias factor-derived intervals). Suppose the observed score of element a is

w̃(a) = w(a)/βa and that a1, a2 ∈ G1 and a3, a4 ∈ G2. Suppose we know that for any

a ∈ G1, βa ∈ [1, 1.25], and for any a ∈ G2, βa ∈ [1.25, 1.5]. If the algorithm observes

scores w̃(a1) = 8, w̃(a2) = 6, w̃(a3) = 4.33, and w̃(a4) = 3.67, then it can be inferred that

w(a1) ∈ [8, 10], w(a2) ∈ [6, 7.5], w(a3) ∈ [5.41, 6.5], w(a4) ∈ [4.59, 5.51], resulting in

the following intervals and rankings:

4 5 6 7 8 9 10

a1a2
a3

a4

a1

a2 a3

a4

Notice that adopting the group model of bias here would result in a possibly erroneous

ranking of a3 and a4, as the group model does not allow for variation in bias factors within

groups.

the maximum element. Selection of the other two elements should involve some amount of hedging, since it
is unclear which elements are the top three. That said, one might deterministically select a2 as well, since a2
is among the top three elements in every linear extension of the poset, in which case only the third selection
would involve hedging.
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Figure 3.1: Example of a partial ranking derived from an instance of network bias.

Example 3.5 (network bias). To account for bias stemming from proximity to the employer,

we propose the network bias model, in which the hiring manager (HM) and elements (appli-

cants) are vertices in a graph (see Figure 3.1). The bias that element a experiences depends

on the distance8 d(a,HM) between the element and the hiring manager in the graph: the

greater the distance, the greater the bias experienced. For example, the observed score of

an element a can be w̃(a) = w(a)/β(d(a,HM)), where β(·) is an increasing function of

the distance d(a,HM). In this case, elements at the same distance from HM are comparable

(i.e., they form a chain).

Note that the class of posets derived from such networks is different from the class

of posets derived from group bias (cf. Example 3.1). The latter consists of posets that

are disjoint unions of chains; the former, however, admits some additional comparisons

between these chains. Network bias posets and group bias posets are further not subsumed

by the class of interval orders.9

We next discuss fairness in the context of selection from a poset.

8i.e., the length of the shortest path.
9For example, the poset {a, b, c, d} with relations a ≺ b and c ≺ d (only) cannot be induced by intervals,

but can be induced by an instance of network bias or an instance of group bias.
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3.2.2 Fairness under Uncertainty

Equal opportunity for equally qualified applicants is a natural goal to strive for and is often

formalized as conditional demographic parity (CDP): given a predictive attribute A, group

membership G, and binary decision X , P(X = 1 | A = a,G = g) = P(X = 1 | A = a)

[31].

If one had access to an unbiased and predictive attribute of applicants (e.g., their true

scores), then it might make sense to impose CDP: two applicants with the same attribute

value must have the same probability of selection. This fairness constraint ensures that

irrelevant attributes are not informing or biasing decisions. One drawback of conditional

demographic parity is its reliance on an unbiased attribute, which may or may not be avail-

able to the decision-maker.

Under the poset model of bias, one can analogously try to treat equally ranked or posi-

tioned applicants in the poset equally, in which case conditional demographic parity would

be satisfied with respect to their positions in the poset. For example, consider a partial

order over applicants {a, b, c} in which the only comparisons are b ≺ a and c ≺ a (so,

b and c are incomparable). Then, the probability of selection of b should be the same as

that of c. In this way, given a partial ranking of applicants, we can apply this poset-variant

of conditional demographic parity as an approximation of equal opportunity. To formalize

this, we must first define what it means for two elements to be “equally ranked” in a poset.

We do so using the notion of an order isomorphism.

Definition 3.2 (order isomorphism). Let P1 = (X,≺1) and P2 = (Y,≺2) be posets. A

bijection φ : X → Y is an order isomorphism if for all x1, x2 ∈ X , we have x1 ⪯1

x2 ⇐⇒ φ(x1) ⪯2 φ(x2).

Any two order-isomorphic posets are structurally the same—that is, they have the same

number of elements, the same number of minimal and maximal elements, the same set of

totally ordered subsets, the same width, etc. An order isomorphism captures this equiva-
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lence by mapping minimal elements to minimal elements, totally ordered subsets to totally

ordered subsets, and so on. So, if element a can be mapped to element b under an order

isomorphism, then the two elements can be considered equally ranked. We can now de-

fine ordinal fairness, which is our interpretation of equal opportunity under partial ordinal

information.

Definition 3.3 (ordinal fairness). We say that a selection algorithm satisfies ordinal fairness

(OF) with respect to a partial order if the following conditions hold:

1. (order parity) for any order isomorphism φ and any element a, P(a is selected) =

P(φ(a) is selected); and

2. (monotonicity) whenever a ≺ b, P(a is selected) ≤ P(b is selected).

The first condition is an analog of conditional demographic parity in the partial ordinal

setting; in fact, when it is applied to the poset in Example 3.2, we recover the classical no-

tion of conditional demographic parity, as explained below in Example 3.6; more generally,

order parity enforces CDP with respect to the isomorphism classes of the poset.10

Example 3.6. In this example, I formalize the relationship between ordinal fairness and

conditional demographic parity. Suppose there is a predictive attribute A which takes val-

ues in {1, 2, 3, 4, 5}, and you would like to make fair decisions with respect to A across

demographic groups. Conditional demographic parity would require that P(X = 1 | A =

a,G = g) = P(X = 1 | A = a) for any g, where X is the binary decision and G is the

group membership.

One can construct a partial order on the elements by defining ai ≺ aj if and only

their A values satisfy A(ai) < A(aj). See Figure 3.2 for an example of this construction

on eight elements. Note that under this construction, any two elements with the same

A value are order isomorphic. Thus under ordinal fairness, any two elements in the same
10Note that the act of banding of U.S. caselaw discussed in Chapter 5 allows for (but does not require)

incomparable elements to be treated equally. Ordinal fairness similarly does not require all incomparable
elements to be treated equally, only those which are order isomorphic.
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Figure 3.2: Partial ranking of eight elements according to the discrete attribute A. Elements
in the same horizontal band have the same attribute value and are order isomorphic.

horizontal band in Figure 3.2 must be treated equally. Ordinal fairness thus directly implies

conditional demographic parity for this construction, as elements with the same A value

must be treated equally.

The second condition, monotonicity, requires that decisions be more favorable to higher

ranking elements. As with CDP, OF does not impose group-specific quotas. Indeed, if all

members of group G1 are ranked higher than all members of G2 in the poset, an algorithm

which exclusively selects from G1 may satisfy OF despite violating demographic parity.

The fairness of OF comes from the construction of the partial ranking, just as the fair-

ness of individual fairness comes from the construction of the metric. OF (resp. individual

fairness) simply ensures adherence to the partial order (resp. metric) which is designed to

capture some notion of similarity between applicants. Constraining a selection algorithm

to satisfy OF will ensure that the algorithm makes decisions based on the partial ranking,

thereby benefiting from any fairness properties the partial ranking might confer.
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3.2.3 The Poset Secretary Problem

The poset secretary problem is defined as follows: given a set C of N elements, there is an

underlying posetP = (C,⪯) such that w(a) < w(b) whenever a ≺ b. In the poset secretary

problem, one makes irrevocable online selection decisions as elements arrive (in a uniform

random order), given access to N and a selection capacity k. Our arrival and decision

structure is typical of secretary problems11 except for differences in the information that is

observed. At any point in time, the algorithm can observe rankings according to P on the

elements that have arrived so far. The objective is to minimize the competitive ratio subject

to ordinal fairness (Definition 3.3), where competitive ratio is defined as follows:

Definition 3.4. An online algorithm12 A is α-competitive13 if the expected performance

ratio is at least 1
α

. In other words, it is α-competitive if for any instance I = (w,P),

ρ(I) := E
[
w(Alg(I))

OPT(I)

]
≥ 1

α
,

where OPT(I) is the offline optimum (i.e., the largest total score which is achievable with

knowledge of the true scores of all elements), and Alg(I) is the output of A. The expec-

tation is taken over the possible orderings of elements and any internal randomness in the

algorithm. If there is randomness in the instance generation, then the expectation is taken

over that randomness as well; note that in this case, OPT(I) would be a random variable.

Given the uniform random arrival order of applicants, we claim that satisfying ordinal

fairness is quite easy as shown in the next proposition; the more challenging aspect of our

problem will be minimizing the competitive ratio.

Proposition 3.1. Let P be a poset of size N , and suppose a poset secretary algorithm has

11In fact, a constant competitive ratio cannot be achieved if N is unknown [74].
12In this paper, we use A to denote a generic algorithm. When convenient, we include the set of elements

and k as parameters to A. For example, A(G, k) refers to some k-secretary algorithm run on the set G of
elements.

13This is referred to as strictly α-competitive in [39].

40



the property that a ≺ b implies P(a is selected) ≤ P(b is selected). If the algorithm makes

decisions based solely on arrival order and P , then it will satisfy ordinal fairness.

Proof. Let φ be any order isomorphism of P . Let Alg denote the set of selected elements,

SN the set of permutations of N elements, and τa the transposition of a and φ(a). Then

P(a ∈ Alg) =
∑
σ∈SN

1

N !
P(a ∈ Alg | σ)

(∗)
=
∑
σ∈SN

1

N !
P
(
φ(a) ∈ Alg | σ ◦ τa

)
= P

(
φ(a) ∈ Alg

)
,

where (∗) follows since a and φ(a) are order-isomorphic.

Having defined sufficient conditions for satisfying ordinal fairness, we point an in-

terested reader to Proposition 3.4 for an example of an algorithm which does not satisfy

ordinal fairness.

3.3 A lower bound

We begin by providing a lower bound on competitive ratio. Intuitively, the less information

contained in the poset, the less capacity we have to make good selections. We quantify this

intuition using the width of the poset, which can be thought of as a measure of sparsity.

Proposition 3.2. Let k and ω be fixed. There is an instance I = (P , w) of the poset secre-

tary problem with k selections and width ω such that OPT(I)
E[w(Alg(I))] ≥ ω for any algorithm.

To justify this, we construct an instance of group bias with ω groups, where most of

the score is concentrated in one group. We show that as the amount of total score assigned

to the other ω − 1 groups goes to zero, the competitive ratio tends to ω. The full proof is

below.
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Proof of Proposition 3.2. Choose the number of elements n = min{n : n ≥ ωk and ω |

n}. Then choose the ordinal structure shown in Figure 3.3. Let aij be the jth best element

in the ith chain.

Let the algorithm A be fixed, and let pij be the probability of selection of the jth best

element in the ith chain. Without loss of generality, let ω = argmini
∑

j p
i
j . Then

∑
j p

ω
j ≤

k/ω.

We now define a scoring of the elements. First, fix some M > 0, which will represent

the optimal total score. Let w′(eωj ) = M
k

for all j, and let w′(aij) = 0 otherwise. For the

sake of generating distinct scores, we will define a perturbation w of the scoring w′. In

particular, fix ε > 0, and let w(·) be a perturbation of w′(·) where w(aij) = w′(aij) + εij

are distinct, 0 ≤ εij < M
2k

for all i < ω and j, |εωj | < M
2k

for all j,
∑

i<ω,j ε
i
j ≤ ε·M

ω
, and∑

j ε
ω
j = 0. Then the optimum with respect to I = (P , w) is OPT(I) = M . So, letting

Alg(I) denote the output of the algorithm, we have that

E[w(Alg(I))] =
∑
i<ω,j

pijε
i
j +
∑
j

pωj

(OPT(I)
k

+ εωj

)
≤
∑
i<ω,j

εij +
∑
j

pωj
OPT(I)

k

≤ (1 + ε)OPT(I)
ω

.

Letting ε→ 0, we see that OPT(I)
E[w(Alg(I))] ≥ ω. Thus, for any algorithm A and any fixed k and

ω, we have that supI
OPT(I)

E[w(Alg(I))] ≥ ω.

3.4 LP-Based Algorithms

In the vanilla k-secretary setting, Buchbinder et al. showed that optimal algorithms can be

computed using linear programming [47]. The main advantages of this approach are that

(1) additional constraints, such as the position independence constraint studied in [47], can
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Figure 3.3: The poset constructed in the proof of Proposition 3.2.

be incorporated into the LP, and (2) analysis of the LPs can give lower bounds on achievable

competitive ratios. The main drawback to this approach is that the asymptotic analysis of

these linear programs as N → ∞ is quite difficult. The method of Buchbinder et al. was

extended to the disjoint union of chains for k = 1 selections by Kumar et al. [68], but

remained open for general posets. In this section, I extend the methods of Buchbinder et

al. to the general poset setting for k = 1 selections.

The central idea behind using linear programming to develop a secretary algorithm is to

solve for pi, the probability that the algorithm selects the ith element to arrive. Under some

minor assumptions on how the algorithm makes decisions, these probabilities uniquely

induce an algorithm. In particular, in this section, I will focus on structure-agnostic algo-

rithms, which I introduce next.

Definition 3.5 (record). Let P = ({a1, . . . , aN},⪯) be a poset to be presented to a poset

secretary algorithm. In a given run of the algorithm, let Pt be the poset induced by the first

t elements presented to the algorithm. If the element a arrives at time t and a is maximal

in Pt, then a is called a record.

Definition 3.6 (structure agnostic). A structure agnostic poset secretary algorithm (for

k = 1 selection) is one which (1) only selects elements which are records, and (2) makes

selection decisions based only on record status and time of arrival.

Now let Ri be the event that the ith element to arrive is a record, and define µij = P(Rj |
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Ri) and Πi = P(Ri). The linear program that I will use to generate secretary algorithms,

described next, uses these expressions. Note that advance knowledge of the poset is needed

to calculate µij and Πi.

LP(P):

maximize 1
N

∑N
i=1

pi
ΠP

i

subject to pi
Πi
≤ 1−

∑i−1
j=1

µij
Πj
pj for all i = 1, . . . , N

p ≥ 0

Lemma 3.1. Let A be a structure agnostic poset 1-secretary algorithm which selects the

ith element to arrive with probability pi. Then p is a feasible point of LP(P). Moreover,

the competitive ratio of A is ( 1
N

∑N
i=1

pi
Πi
)−1.

Proof. For ease of notation, let Ri be the event that the ith element is a record, let Si be the

event that the algorithm selects the ith element to arrive. Then

pi = P(Si)

= P(Si ∩Ri)

= P(Si | Ri)Πi

≤
[
1− P(S1 ∪ · · · ∪ Si−1 | Ri)

]
Πi

=

[
1−

i−1∑
j=1

P(Sj | Ri)

]
Πi

=

[
1−

i−1∑
j=1

µijP(Sj | Rj, Ri)

]
Πi

=

[
1−

i−1∑
j=1

µijP(Sj | Rj)

]
Πi

=

[
1−

i−1∑
j=1

µij
Πj

pj

]
Πi.

So, p is feasible.
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Next, I argue that the competitive ratio of A is ( 1
N

∑N
i=1

pi
Πi
)−1. To see this, let i∗ be the

arrival time of the best element, and note that

P(Si∗) =
N∑
i=1

P(Si∗ ∩ {i∗ = i})

=
1

N

N∑
i=1

P(Si∗ | {i∗ = i})

=
1

N

N∑
i=1

P(Si | Ri)

=
1

N

N∑
i=1

pi
Πi

.

Thus, the competitive ratio is the reciprocal of this value.

Lemma 3.2. Let p be a feasible point in LP(P). Consider the following structure agnostic

poset 1-secretary algorithm A(p): if the algorithm sees a record at time i and has not yet

made any selections, the current element is selected with probability pi/Πi

1−
∑i−1

j=1

µi
j

Πj
pj

. Then

A(p) selects the ith element to arrive with probability pi, and the competitive ratio ofA(p)

is ( 1
N

∑N
i=1

pi
Πi
)−1.

Proof. I prove this by induction. As above, let Ri be the event that the ith element is a

record, let Si be the event that the algorithm selects the ith element to arrive. First observe

that P(S1) =
p1/ΠP

1

1
= p1, since the first element is always a record. Now suppose that
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P(Si) = pi for some 1 ≤ i < N . Then

P(Si+1) = P(Si+1 ∩Ri+1)

= P(Si+1 | Ri+1)Πi+1

= P(Si+1 | S1 ∪ · · · ∪ Si, Ri+1)Πi+1P(S1 ∪ · · · ∪ Si | Ri+1)

=
pi+1/Πi+1

1−
∑i

j=1

µi+1
j

Πj
pj

Πi+1P(S1 ∪ · · · ∪ Si | Ri+1)

=
pi+1/Πi+1

1−
∑i

j=1

µi+1
j

Πj
pj

Πi+1

(
1− P(S1 ∪ · · · ∪ Si | Ri+1)

)

=
pi+1/Πi+1

1−
∑i

j=1

µi+1
j

Πj
pj

Πi+1

(
1−

i∑
j=1

P(Sj | Ri+1)

)

=
pi+1/Πi+1

1−
∑i

j=1

µi+1
j

Πj
pj

Πi+1

(
1−

i∑
j=1

µi+1
j

Πj

pj

)

= pi+1.

Finally, I argue that the competitive ratio of A(p) is ( 1
N

∑N
i=1

pi
Πi
)−1. To see this, let i∗

be the arrival time of the best element, and note that

P(Si∗) =
N∑
i=1

P(Si∗ ∩ {i∗ = i})

=
1

N

N∑
i=1

P(Si∗ | {i∗ = i})

=
1

N

N∑
i=1

P(Si | Ri)

=
1

N

N∑
i=1

P(Si ∩Ri)

P(Ri)

=
1

N

N∑
i=1

P(Si)
Πi

=
1

N

N∑
i=1

pi
Πi

.
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Combining the lemmas above, we see that there is a one-to-one correspondance be-

tween structure agnostic algorithms for the poset 1-secretary algorithm on P and solutions

to LP(P). This implies the following result:

Proposition 3.3. Let P be a poset. The optimal competitive ratio for any structure agnostic

poset 1-secretary algorithm, with advance knowledge of P , is 1/LP(P).

As noted above, this approach requires advance knowledge of the poset, and so does

not give us algorithms for the setting described in Section 3.2.3. Sections 3.5-3.6 provides

algorithms which require no structural knowledge of the poset except for its size N .

3.5 Random Partition Algorithms

In this section, I discuss random partitioning approaches to the poset secretary problem.

Random partitioning is a technique used in some matroid secretary problems which in-

volves (1) partitioning the elements randomly and (2) selecting at most one element from

each part. As a warm-up, in Section 3.5.1, I discuss how a partition of the poset into chains,

if available, would allow for the design of a competitive algorithm. Next, I propose and an-

alyze an algorithm requiring an estimate of the width of the poset in Section 3.5.2, and

finally, I show how this assumption of a width estimate can be dropped in Section 3.5.3.

3.5.1 Chain Decomposition

Here we discuss the structure of posets and how it might be exploited in the development

of a poset secretary algorithm. In particular, we will attempt to bridge the gap between

classical secretary methods and the partial-ordinal setting, and in the process, discuss how

these methods can and cannot be extended to account for partial-ordinal information. Since

classical secretary algorithms assume a total ordering on elements, the simplest way to

extend these algorithms is to run them over totally-ordered subsets (i.e., chains) of the
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Figure 3.4: Two chain partitions of a 5-element interval order. An arrow from ai to aj
means that ai ≺ aj .

poset. As we discuss below, this idea fails to solve our problem, but we carry out the

example for pedagogical purposes.

Consider a chain decomposition of the posetP = (C,⪯p); that is, a partition C1, . . . , Cω

of C such that each Cj is a chain and ω is the width of P (e.g., see Figure 3.4).14 Suppose,

for the sake of this example, that one had access to chain sizes |C1|, . . . , |Cω| and an oracle

which outputs membership in C1, . . . , Cω. We will now bound the competitive ratio of

the algorithm Ap which chooses j ∈ [ω] uniformly at random and runs an α-competitive

algorithm (for some constant α) on Cj . Letting Algp be the output of Ap, Alg(Cj) the

output of the α-competitive algorithm on Cj , OPT(Cj) the total score of the top k elements

in Cj , and OPT the overall optimum, we have that

E
(
w(Algp)

)
=

1

ω

ω∑
j=1

E
(
w(Alg(Cj, k))

)
≥ 1

ωα

ω∑
j=1

OPT(Cj) ≥
OPT

ωα
,

thus achieving an order-optimal competitive ratio of ωα.

There are, however, two issues with this approach. First, the structure of the poset is

not known in advance, nor are chain sizes and membership oracles. Second, depending on

14This can always be done, as discussed in Section 2.5.
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how the chain partition was constructed, the algorithm may not satisfy ordinal fairness,15,16

since ordinal information is lost in restricting to chains. The next statement proves this

claim.

Proposition 3.4 (chain parallelization does not satisfy OF). Let A be an algorithm for the

vanilla k-secretary problem. Consider the poset secretary algorithm Ap which, given a

chain decomposition C1, . . . , Cω of optimal size and a chain-membership oracle, chooses

a chain i ∈ [ω] uniformly at random and runs A to select at most k elements from Ci. The

algorithm Ap does not necessarily satisfy OF with respect to the original poset.

Proof. Consider the algorithmA which selects each arriving element with probability k/n

until k selections have been made. Now consider the poset {a1, a2, a3}, where a2 ≺ a1,

a3 ≺ a1, and a2 is incomparable with a3, and let k = 1. Suppose the algorithm is given

the chain decomposition C1 = {a2} and C2 = {a1, a3}. Then Ap will select a2 with

probability 1/2 but will select a3 with probability 3/16. Since a2 is order-isomorphic to a3,

the algorithm Ap does not satisfy OF.

I will address these issues in the next subsections by presenting algorithms that do not

assume prior knowledge of the structure of the poset.

3.5.2 ProxyLabel: Algorithm assuming access to a width proxy

As a step toward introducing the first of our two main algorithms, we consider the special

case where a width estimate ω′ of the poset is known. Having this (albeit minor) structural
15This approach allowed us to achieve a 3e2ω′-competitive algorithm for interval orders using [75] (see

Appendix F in [53]), where ω′ is a known upper bound on the width of the poset. However, (i) in general,
such an approach may not be possible, since online chain partitioning itself is challenging for general posets,
(ii) the competitive ratio incurred additional factors due to the limitations of online chain partitioning, and
(iii) this approach requires an upper bound on the width of the poset. For these reasons, I am excluded its
discussion from this dissertation.

16This example additionally highlights a tension between equality of opportunity and equality of outcomes
when these chains are demographic groups. Elements in different groups might have the same probability
of selection, but all of the selected elements will be from one group. One can think of this as a disparity
in ex-post (after sampling a group) treatment despite no disparity in ex-ante (pre-sampling) treatment. This
gives the appearance of discrimination, and certainly does not promote diversity. The algorithms presented
in Sections 3.5.3 and 3.7 do not have this issue.
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Algorithm 2: PROXYLABEL for poset bias with a width proxy.
input: no. of elements N , estimate ω′ on width (i.e., the width proxy), selection

capacity k
1 Assign a label ℓ(a) ∈ [k] uniformly at random to each a as they arrive
2 Let m ∼ Bin(N, ω′

ω′+1
) and S ← {first m elements} // sample m

elements
3 for a ̸∈ S with ℓ(a) = ℓ do
4 if a is maximal with respect to previously seen ℓ-labeled elements, and no

ℓ-labeled element has been selected then
5 Select a

knowledge will allow us to develop a competitive algorithm which we will adapt in the

next subsection to the general case. The idea behind this width-proxy-based algorithm,

which we call PROXYLABEL, is to randomly partition the elements into k sets, collect a

random sample (with sampling probability tuned using ω′), and then select the first maximal

element from each of the random sets. Randomly partitioning the elements is one way to

“break up” high-scoring elements, thus reducing the competition between them. By not

restricting to chains, we are considering all available ordinal information, thus avoiding the

fairness issues discussed in the previous subsection.

Proposition 3.5. Let ω′ be the estimated width of the partial order, and let ω be the true

width. If ω′ ≥ 1
c
ω, for some c ≥ 1, then PROXYLABEL (Algorithm 2) has competitive ratio

at most (1− (1− 1/k)k)−1ec(ω′ + 1) ≤ ec+1

e−1 (ω
′ + 1) for any k ≥ 1.

Corollary 3.1. If the width ω is known, then Algorithm 2 has competitive ratio at most(
1− (1− 1

k
)k
)−1

e(ω + 1) ≤ e2

e−1(ω + 1) for k ≥ 1, and this is order-optimal.

We next present the proof of the above proposition. The key idea is to first bound the

probability that an element aj among the top k by score is also a maximum-score element

in its assigned label ℓj , and to then bound the probability that a maximum-score element in

a labeled group is selected by PROXYLABEL. The lower bound for the latter follows from

considering an arbitrary chain partition of the ℓj-labeled elements: depending on which of
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the top elements in each chain were sampled, one can bound the selection probability of

the maximum-score element.

Proof of Proposition 3.5. Let w(a1) > w(a2) > · · · > w(ak) be the scores of the top k

elements. Consider any element aj among these k elements, and let ℓ(aj) = ℓj . Then the

probability that aj has maximum score in its labeled group can be bounded as follows:

P
({

w(aj) = max{w(a) : ℓ(a) = ℓj}
})

= P

(
j−1⋂
i=1

{ℓ(ai) ̸= ℓj}

)
=

(
1− 1

k

)j−1
.

We can then bound the probability of selection of aj by analyzing elements with label ℓj .

Letting Alg denote the set of elements returned by the algorithm, we have:

P
(
{aj ∈ Alg}

)
≥ P

({
aj ∈ Alg

}
∩
{
w(aj) = max{w(a) : ℓ(a) = ℓj}

})
(3.1)

= P
(
{w(aj) = max{w(a) : ℓ(a) = ℓj}}

)
(3.2)

· P
(
{aj ∈ Alg} | {w(aj) = max{w(a) : ℓ(a) = ℓj}}

)
=

(
1− 1

k

)j−1
P
(
{aj ∈ Alg} | {w(aj) = max{w(a) : ℓ(a) = ℓj}}

)
︸ ︷︷ ︸

=:A

(3.3)

Note that the inequality in (3.1) may not be an equality, since aj can be selected even if it is

not a maximum-score ℓj-labeled element. To bound A, consider a partition {C1, C2, . . . , Cωℓj
}

of the ℓj-labeled elements into ωℓj ≤ ω chains, with aj ∈ C1. For each chain Cr, let f (r)
s

denote the s-th best element in Cr. Then aj will be selected if (but not only if) the following

conditions hold17:

1. aj is not sampled (i.e., aj ̸∈ S),

2. the second best element in C1 is sampled (i.e., f (1)
2 ∈ S), and

17if f
(1)
2 does not exist, then we can replace the corresponding event with the empty event. This only

increases the chances of selecting aj .
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3. the best elements in all other chains are sampled (i.e., f (i)
1 ∈ S for i = 2, . . . , ωℓj ).

It follows that

A ≥ P ({aj ̸∈ S})P
(
{f (1)

2 ∈ S}
)
P

ωℓj⋂
i=2

{f (i)
1 ∈ S}


≥
(

1

ω′ + 1

)(
1− 1

ω′ + 1

)ω
. (3.4)

Now suppose that 1
c
ω ≤ ω′, for some c ≥ 1. Then, using (3.3) and (3.4), we get:

P({aj ∈ Alg}) ≥
(
1− 1

k

)j−1
A

≥
(
1− 1

k

)j−1(
1

ω′ + 1

)(
1− 1

ω′ + 1

)ω
≥
(
1− 1

k

)j−1
1

ec(ω′ + 1)
.

Thus, E
(
w(Alg)

)
can be bounded below using the Chebyshev sum inequality:

k∑
i=1

P({ai ∈ Alg})w(ai) ≥
k∑
i=1

(
1− 1

k

)i−1
w(ai)

ec(ω′ + 1)

≥ 1

k

k∑
i=1

(
1− 1

k

)i−1
OPT

ec(ω′ + 1)

=

(
1−

(
1− 1

k

)k)
OPT

ec(ω′ + 1)
.

We have just shown that when a width estimate ω′ ≥ ω/c is known, one can design an

O(ecω′)-competitive algorithm for the secretary problem under partial ordinal information.

In the next section, we will show how to circumvent this need for a width estimate.
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Algorithm 3: POSETLABEL for partial ordinal information.
input: number of elements N , number to hire k

1 Assign a label ℓ(a) ∈ [k] uniformly at random to each a as they arrive
2 Let m1 ∼ Bin(N, 1

2
), S ′ ← {first m1 elements}, and ω′ the width of the subposet

S ′

3 Let m2 ∼ Bin(N, 2ω′

2ω′+1
) and S ← {first max{m1,m2} elements} (so, S ⊇ S ′)

4 for a ̸∈ S with ℓ(a) = ℓ do
5 if a is maximal with respect to previously seen ℓ-labeled elements, and no

ℓ-labeled element has been selected then Select a

3.5.3 PosetLabel: Algorithm not assuming access to a width proxy

In this section, we present the first poset secretary algorithm, POSETLABEL, which only

requires the knowledge of the number of elements as described in our problem formula-

tion (Section 3.2.3). This algorithm is an adaptation of PROXYLABEL which foregoes the

assumption on a width estimate.

Recall that PROXYLABEL uses a width proxy ω′ to set a sampling probability. To get

around this, POSETLABEL implements a two-stage sampling procedure. First, an initial

sample is taken for the purpose of width-estimation. A secondary sample is then taken

based on this estimate. This two-stage sampling procedure allows the sampling to begin

without knowledge of the ultimate sample size, which is crucial since the width is a priori

unknown. Before analyzing textscPosetLabel, I illustrate it by providing an example run.

Example 3.7. Consider the instance of poset bias where k = 2 selections can be made, and

the input poset is shown on the left in Figure 3.5. POSETLABEL will begin by randomly

choosing a sequence of k-nary labels: (0, 0, 1, 0, 1). Suppose the sequence of elements that

will be given to the algorithm is

a2, a4, a1, a3, a5.

This means that {a2, a3, a4} will receive label 0, and {a1, a5} will receive label 1, as shown

by the coloring on the right in Figure 3.5.
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a1

a2 a3

a4 a5

a2 a3

a4

a1

a5

Figure 3.5: The input poset is shown on the left. On the right, the same poset has been
annotated to show the sample S (circled) as well as the random labeling, where the blue
vertices (a2, a3, a4) are assigned the first label, and the red vertices (a1, a5) are assigned the
second label.

Next, the algorithm will draw a number, say 2, from Bin(5, 1/2). This will produce

an initial random sample S ′ = {a2, a4}. Since the width of S ′ is 1, we will next draw a

number, say 3, from Bin(5, 2/3). The full sample S will then be the first max{2, 3} = 3

elements, i.e., S = {a1, a2, a4}.

Finally, the algorithm enters its selection phase. It first observes a3, which is indeed

maximal in its label and thus is selected. Element a5 is then observed but not selected, since

it is ranked lower than a1. In this example, the set of elements returned by the algorithm

would be {a3}.

I next show that POSETLABEL is O(ω)-competitive.

Proposition 3.6. Under the poset bias setting, Algorithm 3 is 2e3

e−1

(
2ω + 1

)(
1 + o(1)

)
-

competitive, as the number of elements N →∞. Moreover, this algorithm satisfies ordinal

fairness, and does not need to know the width of the partial order in advance.

As was the case with PROXYLABEL, the random partition of elements reduces the

probability that the best elements are clustered in one chain. Then, by forming a chain

partition of elements using the minimum number of chains, we can bound the probability

of selecting a maximal element within its labeled group. Finally, we can show that our

estimated width ω′ is within a factor of 4 of the true width ω with large probability, giving
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us the O(ω) competitive ratio in the proposition.

Proof of Proposition 3.6. Let S ′ be the initial sample of m1 ∼ Bin(N, 1/2) elements, and

let ω′ be the width of S ′. Let Alg2(ω
′) denote the output of PROXYLABEL (Algorithm 2)

with width proxy ω′, and let Alg3 denote the output of POSETLABEL (Algorithm 3).

We begin by bounding ω′. Let A = {a1, . . . , aω} be a (maximal) set of mutually

incomparable elements, and let |A ∩ S ′| = X ∼ Bin(ω, 1
2
). In order to apply our results

from Proposition 3.5, we must bound the probability that ω′ is close to ω. To that end,

letting Xω =
{
ω′ ≥ ω

4

}
,

P(Xω) ≥ P
({

X ≥ 1

4
ω
})
≥ 1

2
. (3.5)

After sampling m1 elements, the algorithm uses its estimated width ω′ to sample m2 ∼

Bin(N, 2ω′

2ω′+1
). Now in order to reduce to the analysis of Proposition 3.5, we need to bound

the probability that m2 ≥ m1. Letting YN = {m2 ≥ m1} (where the subscript N refers to

the number of elements), we have that P(YN) ≥ P({m2 ≥ m1 ≥ 1}). When m1 ≥ 1, we

have that ω′ ≥ 1, and so the probability 2ω′

2ω′+1
of inclusion into S is at least 2

3
. It follows

that for ZN ∼ Bin(N, 2
3
),

P(YN) ≥ P({m2 ≥ m1 ≥ 1}) ≥ P({ZN ≥ m1 ≥ 1}) N→∞−−−→ 1.

This is because E(m1) =
N
2

, and E(ZN) = 2N
3

. Since these expectations differ by Θ(
√
N)

standard deviations, YN occurs with high probability, and since YN happens with high

probability,

P(Xω ∩ YN)
N→∞−−−→ P(Xω) . (3.6)

Conditioning on the event Xω∩YN , it is as if we simply ran Algorithm 2 (PROXYLABEL),
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so we can use the analysis from that algorithm.

E(w(Alg3)) ≥ P (Xω ∩ YN)E
(
w(Alg3)

∣∣∣ Xω ∩ YN

)
=
(
1− o(1)

)
P(Xω)E

(
w
(
Alg2(2ω

′)
) ∣∣∣ {ω′ ≥ ω

4

})
by (3.6)

≥
(
1− o(1)

)
2

E
(
w
(
Alg2(2ω

′)
) ∣∣∣ {ω′ ≥ ω

4

})
by (3.5)

≥
(
1− o(1)

)
2

[
pE
(
w
(
Alg2(2ω

′)
) ∣∣∣ {2ω′ ≥ ω

})
+ (1− p)E

(
w
(
Alg2(2ω

′)
) ∣∣∣ {ω

2
≤ 2ω′ < ω

})]
(∗)

≥
(
1− o(1)

)
2

[
p
(e− 1)OPT

e2(2ω′ + 1)
+ (1− p)

(e− 1)OPT

e3(2ω′ + 1)

]
≥
(
1− o(1)

)
2

[
(e− 1)OPT

e3(2ω′ + 1)

]
≥
(
1− o(1)

)
2

[
(e− 1)OPT

e3(2ω + 1)

]
,

where (∗) holds for some p ∈ [0, 1].

3.6 Adaptive Thresholding

While POSETLABEL achieves an order-optimal competitive ratio, the proved bound on

competitive ratio does not improve with increasing N and k. One might expect the achiev-

able performance to improve as k increases, since a small number of bad decisions relative

to k may not have a large effect on performance. Indeed, the (1−5k−1/2)−1-competitive al-

gorithm of [4] for the vanilla k-secretary problem supports this inclination. In this section,

we present and analyze a novel algorithm for the poset k-secretary problem which achieves

a competitive ratio of ω
(
1 + o(1)

)
as k →∞ under the regime where (logN)2 ∈ o(k).

Before presenting the new algorithm, it is worth noting that POSETLABEL is not tight

as k → ∞. To see why, it suffices to consider the vanilla case, where ω = 1. Recall that

POSETLABEL randomly partitions the elements into k sets and selects at most one element

from each set. We show below that any algorithm with this property fails to achieve a tight
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competitive ratio (Prop. 3.7).

Definition 3.7 (URP k-secretary algorithm). A uniform-random-partition (URP) k-secretary

algorithm is one that (1) assigns each element independently and uniformly at random to

one of k sets, and (2) selects at most one element from each set.

Proposition 3.7. Any URP k-secretary algorithm cannot achieve a competitive ratio smaller

than
(
1−

(
1− 1

k

)k)−1. In particular, this means that no URP algorithm can achieve a

competitive ratio better than (1− 1/e)−1 asymptotically in k.

Proof. Let Alg∗ be the offline algorithm that assigns elements to one of k sets uniformly

at random, and chooses the best element in each of the sets. Now let a1, . . . , ak be the k

highest-score elements, with w(a1) > · · · > w(ak). Let εj = w(a1)−w(aj) for each j ≤ k

and ε =
∑k

j=1 εj . Then

E[w(Alg∗)] =
k∑
j=1

w(aj)P(aj ∈ Alg∗) =
k∑
j=1

w(aj)
(
1− 1

k

)j−1

≤ w(a1)
k∑
j=1

(
1− 1

k

)j−1
= w(a1) ·

1−
(
1− 1

k

)k
1/k

≤ (OPT + ε)

(
1−

(
1− 1

k

)k)
.

Letting ε→ 0, we see that the performance ratio of Alg∗ is no better than
(
1−

(
1− 1

k

)k)−1.
Since Alg∗ performs better than any URP algorithm, all such algorithms have competi-

tive ratios no better than
(
1−

(
1− 1

k

)k)−1. Moreover, since
(
1−

(
1− 1

k

)k)−1 → (1 −

1/e)−1, we see that URP algorithms cannot achieve a competitive ratio better than (1 −

1/e)−1 as k →∞.

Since URP k-secretary algorithms cannot achieve tight competitive ratios, we turn to

the adaptive thresholding technique which is common in the secretary literature [4, 65]. In

the vanilla setting, this technique involves periodically setting a new threshold, and select-

ing elements whose scores exceed the most recent threshold. This technique is promising

57



for obtaining a tight competitive ratio since it allows for a small number of poor decisions

to be made early on and a larger number of decisions to be made later on with more care-

fully chosen thresholds. The main challenges of adapting this approach to the poset setting

are (1) adapting the notion of a threshold, and (2) bounding the expected scores of elements

that meet the most recent threshold.

Let us first define some notions which will be useful in describing the algorithm. In

what follows, X will denote the complement of a set X .

Definition 3.8. Let P be a poset. The upset U(τ) of a set τ is {b : b ≻ a for some a ∈ τ}.

The downset D(τ) of τ is {b : b ≺ a for some a ∈ τ}. The selection set σ(τ) is the set

of elements which are better than or incomparable to elements in τ , i.e., σ(τ) = {b | b ̸⪯

a for all a ∈ τ} = D(τ) \ τ .

In order to achieve a good competitive ratio, we would like as many of the highly ranked

elements to be in the selection set σ(τ) of the threshold τ as possible. Since it is unclear

from the partial order which elements have the top k scores, the threshold τ must select

elements which could possibly be among the top k, and not only select elements which are

definitely among the top k. This may, for example, involve hedging across the poset: if

multiple chains in a given a chain partition contain elements that could possibly be in the

top k, then it may be necessary for τ to select elements from those chains. To that end, we

introduce the notion of an (m, k)-threshold.

Definition 3.9 ((m, k)-threshold). LetP be a poset of width ω. An (m, k)-threshold τ ⊆ P

is an antichain with selection set |σ(τ)| ≤ k such that the upset is large enough for each

element in τ : |U({a})| ≥ m for all a ∈ τ .

In a totally ordered set, an (m, k)-threshold must be a singleton τ = {a}, and the

selection set is the set of elements exceeding a. Generally, the selection set of an (m, k)-

threshold τ is the set of elements which are not worse than any element in τ . Any (m, k)-

threshold τ hedges across chains containing potentially high-scoring elements, since each
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element in τ needs to have a large enough upset. For the remainder of the section, we let

mη,k,P = ⌊(1− η)k/ω⌋, where η ∈ [0, 1) and ω is the width of the poset P . The elements

that meet such a thresholding antichain τ end up having a high total score for any linear

extension of the poset, as shown below.

Lemma 3.3. Let τ be an (mη,k,P , k)-threshold of a scored (weighted) poset P , and let OPT

denote the sum of the k largest scores in P . Then w
(
σ(τ)

)
≥ OPT⌊(1− η)k/ω⌋/k.

Proof. Let a be among the top ⌊(1 − η)k/ω⌋ elements in P by score. If a ̸∈ σ(τ), then

a ⪯ b for some b ∈ τ , in which case
⌊
(1 − η) k

ω

⌋
> |U({a})| ≥ |U({b})| ≥

⌊
(1 − η) k

ω

⌋
.

Thus, a ∈ σ(τ), implying that w
(
σ(τ)

)
≥ OPT⌊(1− η)k/ω⌋/k.

The above lemma shows that (mη,k,P , k)-thresholds are effective in selecting high-

scoring elements. We next show that such (mη,k,P , k)-thresholds exist. Together, these two

observations indicate that (mη,k,P , k)-thresholds could be useful in designing algorithms

for poset secretary problems.

Lemma 3.4 (existence of (mη,k,P , k)-thresholds). Let P be a poset of size N and width ω,

let k ≤ N , and let η ∈ [0, 1). There exists an (mη,k,P , k)-threshold of P .

Proof. Let (C1, . . . , Cω) be a chain decomposition of P and let ai,1 ≻ · · · ≻ ai,ni
be the

elements of Ci. For 1 ≤ i ≤ ω , define Ei to be the (⌊(1 − η)k/ω⌋ + 1)th best element in

Ci, if it exists, i.e.,

Ei =


{ai,⌊(1−η)k/ω⌋+1} if ⌊(1− η)k/ω⌋+ 1 ≤ ni,

∅ else.

Now let τ =
⋃ω
i=1Ei. Note that each element a ∈ τ satisfies |U({a})| ≥ ⌊(1 − η)k/ω⌋,

and that |σ(τ)| ≤ ω⌊(1− η)k/ω⌋ ≤ ⌊(1− η)k⌋ ≤ k. However, τ may not be an antichain.

In this case, there is some b1, b2 ∈ τ such that b1 ≺ b2. Now let τ ′ = τ \ {b1}. We

still have the property that |U({a})| ≥ ⌊(1 − η)k/ω⌋ for each a ∈ τ ′. Moreover, since
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D({b1}) ⊆ D({b2}), we have that |σ(τ ′)| = |σ(τ)| ≤ k. Thus we can repeat this procedure

until we arrive at an antichain.

Now that we have a good notion of thresholding, we can describe our algorithmic ap-

proach, which generalizes the vanilla k-secretary algorithm of [4]. The algorithm randomly

splits the element stream into two sets, Y and Z, and recurses on Y to select at most k/2

elements. Then, a threshold is chosen from Y , and elements in Z who meet the threshold

are selected. See Algorithm 4 for a detailed description. We next bound the competitive

ratio of this algorithm when an upper bound on the width of the poset is known in advance.

Algorithm 4: ADATHRESHOLD(S, k)

input: slack η = η(N, k), element stream S of size N , k ≥ 1
1 if k ≥ N then select all elements
2 else if k = 1 then run POSETLABEL(S, k)
3 else
4 Sample m ∼ Bin(N, 1/2) and let Y be the first m elements
5 Run ADATHRESHOLD(Y, ⌊k/2⌋)
6 Select any

(
mη(N,k),⌊k/2⌋,Y , ⌊k/2⌋

)
-threshold τ̂ of Y

7 While fewer than k selections have been made, select elements in S \ Y that
are in σ(τ̂)

Proposition 3.8. Let P be a poset on N elements of width ω, let ω′ ≥ ω be a known upper

bound on ω, and set D = 4
√
ω′. Then ADATHRESHOLD (Algorithm 4) with η = D

√
logN
k

is ω(1− C
√

logN
k

)−1-competitive, where C = 7+4D
4−2
√
2
.

Proof. We proceed by induction on k, mimicking the structure of the algorithm. For sim-

plicity, we assume that k is a power of 2. Note that the bound holds trivially if k ≤

D2 logN , since 1−C
√
logN/k ≤ 1−C/D ≤ 1− 4/(4− 2

√
2) < 0, so we assume that

k > D2 logN . Similarly, if k ≥ N , then we select all elements and the competitive ratio is

1, so the bound trivially holds, since 1 − C
√
logN/k ≤ ω. If N ≥ 2 and k ≤ 2, then the

bound again becomes trivial:

1− C

√
logN

k
≤ 1− C

√
log 2

2
≤ 1− 7 + 16

√
1

4− 2
√
2
·
√

log 2

2
< 0.
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Now suppose that 3 ≤ k ≤ N , with k > D2 logN . We bound the performance of

the algorithm on Y (the first half, on which we recurse) and Z = S \ Y (the second half)

separately. Let Alg(S) denote the set of elements selected by the algorithm over a set S.

Letting OPT(Y, k/2) denote the total score of the top k/2 elements in Y ,

E[w(Alg(Y ))] ≥
(
1−
√
2C
√
log |Y |√
k

)
E
[

OPT
(
Y,

k

2

)]
/ω inductive hypothesis

(∗)
≥
(
1−
√
2C
√
log |Y |√
k

)(1
2
− 1

4
√
k

)OPT

ω

≥
(1
2
−

1 + 2
√
2C
√
log |Y |

4
√
k

)OPT

ω

≥
(1
2
− 1 + 2

√
2C
√
logN

4
√
k

)OPT

ω
,

where (∗) follows directly from a computation of [4] and is included as Lemma ??.

We can similarly bound the performance of the algorithm on Z. To that end, note

that η < 1, since k > D2 logN , so the algorithm is able to choose a threshold τ̂ . We

next bound the probability that the threshold τ̂ selected by the algorithm is good. Define

B = {τ ∈ A(P) : |σ(τ)| > k or |U({b})| < (1 − 2η) k
ω

for some b ∈ τ} to be the set

of “bad” thresholds (since it selects too many elements or one of its elements has a small

upset), where A = A(P) is the set of antichains of P . Then

P(τ̂ ∈ B) ≤ P
(
|σ(τ̂)| > k

)︸ ︷︷ ︸
=:A

+P
(⋃
b∈τ̂

{
|U({b})| < (1− 2η)

k

ω

})
︸ ︷︷ ︸

=:B

.

We bound A and B separately, starting with A. For simplicity, we will assume that (1 −
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η)k/ω and (1− 2η)k/ω are integers. Then

A = P
(
|σ(τ̂)| > k

)
=

∑
τ∈A
|σ(τ)|>k

P
(
τ̂ = τ

)
≤

N∑
T=k

∑
τ∈A

|σ(τ)|=T

P
(
τ̂ = τ

)

≤
N∑
T=k

∑
τ∈A

|σ(τ)|=T

P
(
|σ(τ) ∩ Y | ≤ (1− η)

k

2

)
(a)

≤
N∑
T=k

∣∣{τ ∈ A : |σ(τ)| = T
}∣∣e−η2k/2

(b)

≤
N∑
T=k

(
T + ω − 1

ω − 1

)
e−η

2k/2 ≤ (2N)ω+1e−η
2k/2 =: A′,

where (a) follows from Hoeffding’s inequality (since the selection set of τ is a fixed set in

the poset, and the number of sampled elements of σ(τ) is a binomial random variable). To

show (b), I make the following claim:

Claim 3.1. Let P be a poset of width ω and m ≥ 0 an integer. Then the number of

antichains τ ⊆ P with |σ(τ)| = m is at most
(
m+ω−1
ω−1

)
.

Proof of claim. First, we show that there is an injection from the set of antichains to the

set of selection sets. Let τ, τ ′ be two antichains, and suppose that σ(τ) = σ(τ ′). Let a be

any element in τ , and suppose for the sake of contradiction that a ̸∈ τ ′. Since a ̸∈ σ(τ),

it must be that a ̸∈ σ(τ ′) as well, and so a ≺ b for some b ∈ τ ′. Thus b ∈ σ(τ) \ σ(τ ′), a

contradiction.

Now let C1, . . . , Cω be a chain decomposition of P , where ai,1 ≺ · · · ≺ ai,ni
are the

elements of Ci. Define Ci,k = {ai,1, . . . , ai,k} to be the prefix of Ci of length k.

For any τ with |σ(τ)| = m, we must have that σ(τ) =
⋃ω
i=1Ci,xi , for some x1 + · · ·+

xω = m. The number of such sets σ(τ) is bounded by the number of nonnegative integral

solutions to x1 + · · · + xω = m, which is
(
m+ω−1
ω−1

)
. Moreover, by the above injection, the

number of antichains τ with |σ(τ)| = m is bounded by the same. Claim

Next, I bound B.
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B = P
(
|U({b})| < (1− 2η)

k

ω
for some b ∈ τ̂

)
≤

∑
b:|U({b})|≤(1−2η) k

ω

P(b ∈ τ̂)

≤
∑

b:|U({b})|≤(1−2η) k
ω

P
(
|U({b}) ∩ Y |︸ ︷︷ ︸

∼Bin(⌊(1−2η)k/ω⌋,1/2)

≥ (1− η)
k

2ω

)
≤

∑
b:|U({b})|≤(1−2η) k

ω

P
(
|U({b}) ∩ Y | − 1

2

⌊
(1− 2η)

k

ω

⌋
≥ ηk

2ω

)
(c)

≤ Ne−η
2k/2(1−2η)ω

≤ Ne−η
2k/4ω =: B′,

where (c) follows from Hoeffding’s inequality. Thus P(τ̂ ∈ B) ≤ A + B ≤ A′ + B′.

However, by our choice of η, we have that A′ ≤ B′. So,

P(τ̂ ∈ B) ≤ 2Ne−η
2k/4ω

(d)

≤ 2

N3
≤ 2/

√
k, (3.7)

where (d) follows from the bound η ≥ 4
√
ω
√

logN
k

. Now that we have bounded P(τ̂ ∈ B),

we will bound E[w(σ(τ̂) ∩ Z) | τ̂ ̸∈ B]. To that end, define H = {a1, . . . , a(1−2η)k/ω} to

be the set of elements with the largest (1 − 2η)k/ω scores in P , and let ÔPT = w(H). We

define a re-scoring of the elements of P , where all elements except those in H have score

0:

ŵ(a) =


w(a) if a ∈ H

0 otherwise.

It follows that E[ŵ(σ(τ̂)) | τ̂ ̸∈ B] ≥ ÔPT, since H is a subset of σ(τ) for any τ ̸∈ B. To

prove the claim, it suffices to upper bound the total score of elements of H that appear in

63



Y . In particular,

E[ŵ(σ(τ̂) ∩ Y ) | τ̂ ̸∈ B] ≤ E[w(H ∩ Y )] =
ÔPT

2
.

In sum, we have that

E[w(σ(τ̂) ∩ Z) | τ̂ ̸∈ B] ≥ E[ŵ(σ(τ̂) ∩ Z) | τ̂ ̸∈ B]

= E[ŵ(σ(τ̂)) | τ̂ ̸∈ B]− E[ŵ(σ(τ̂) ∩ Y ) | τ̂ ̸∈ B]

≥ ÔPT− ÔPT

2
=

ÔPT

2
≥ (1− 2η)

OPT

2ω
. (3.8)

With this in mind, we can proceed to bounding the performance of the algorithm on Z.

E[w(Alg(Z))] ≥
(
1− 2√

k

)
E[w(Alg(Z)) | τ̂ ̸∈ B] by (3.7)

≥
(
1− 2√

k

)
E[w(σ(τ̂) ∩ Z) | τ̂ ̸∈ B]

≥
(
1− 2√

k

)(
1− 2D

√
logN

k

)OPT

2ω
by (3.8)

≥
(
1− 2 + 2D

√
logN√

k

)OPT

2ω
=
(1
2
− 1 +D

√
logN√
k

)OPT

ω
.

In sum,

E[w(Alg)] ≥
[
1− 1 + 2

√
2C
√
log n

4
√
k

− 1 +D
√
logN√
k

]OPT

ω

=
[
1− 5 + (4D + 2

√
2C)
√
logN

4
√
k

]OPT

ω
.

For the chosen C = 7+4D
4−2
√
2
, we have that (4−2

√
2)C−4D = 7 ≥ 5√

log 2
≥ 5√

logN
. It follows

that [(4− 2
√
2)C− 4D]

√
logN ≥ 5, which in turn gives that 5+ (4D+2

√
2C)
√
logN ≤
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4C
√
logN . Continuing the above computation, we have that

E[w(Alg)] ≥
[
1− 5 + (4D + 2

√
2C)
√
logN

4
√
k

]
OPT

ω
≥
[
1− C

√
logN√
k

]
OPT

ω
,

as desired.

Note that Proposition 3.8 bounds the competitive ratio in the case where a bound on

the width of the poset is known. Asymptotically, however, if k grows quickly enough, this

assumption can be dropped, and a tight algorithm can be achieved (see Corollary 3.2).

Corollary 3.2. Let P be a poset of width ω ≤ log k. Algorithm 4 run with η(N, k) =√
16 log k logN

k
(i.e., with width bound ω′ = log k) is ω

(
1 − 38 logN√

k

)−1
-competitive. Thus,

if (PN)N≥1 is a sequence of posets of width at most ω with |PN | = N and k = k(N)

is such that log(N)/
√
k → 0, the competitive ratio of Algorithm 4 run with η(N, k) =√

16 log k logN
k

is ω(1 + o(1)) as N →∞.

Proof. Using the notation from Proposition 3.8, we have that D = 4 log k and C =

7+4D
4−2
√
2
≤ 38 log k. Since k → ∞, we can restrict our attention to posets PN for which

log k(N) ≥ ω. In this case, the reciprocal of the competitive ratio of the algorithm on PN

is at least
1

ω

(
1− 38

√
log k
√
logN√

k

)
≥ 1

ω

(
1− 38 logN√

k

)
.

Thus, if log(N)/
√
k → 0 as N →∞, then the competitive ratio is ω(1 + o(1)).

3.7 Algorithms for the Special Case of Group Bias

Recall that under group bias, elements are partitioned into disjoint groups G1, . . . , Gg,

and the observed scores are w̃(a) = w(a)/βj for a ∈ Gj (see Ex. 3.1). These group-

specific bias factors imply comparability within each group and incomparability between

groups. We can thus cast group bias as a special case of poset bias, wherein the poset is

composed of disjoint chains, and the width is the number g of groups. Since g is known
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in advance, Corollary 3.1 implies that PROXYLABEL is (g + 1)e2-competitive, which is

an improvement over the 2e3(2g + 1)(1 + o(1)) bound obtained by POSETLABEL. We

next provide a general framework for extending vanilla k-secretary algorithms to obtain

better competitive ratios under group bias (Section 3.7.1), using which we can, e.g., get

a g(1 − 5(k/g)−1/2)−1-competitive algorithm using an algorithm of [4]. In Section 3.7.2,

we exhibit further improvements in performance when scores and group assignments are

stochastic.

3.7.1 A framework for extending vanilla algorithms to account for group bias

As mentioned above, our methods for the poset setting can be applied to the group setting

as well. However, the structure of the poset in the group setting is quite simple (it is a dis-

joint union of chains), so we might expect simpler algorithms and better competitive ratios

compared to the poset setting. Indeed, there is room for improvement, since PROXYLABEL

is not tight compared to the lower bound in Proposition 3.2, and ADATHRESHOLD is only

tight when (logN)/
√
k → 0.

One natural idea is to apply a vanilla k-secretary algorithm on each group, selecting at

most k/g elements from each. Since secretary algorithms take the number of elements N

as input, a pure parallelization over groups would require advance knowledge of the group

sizes. However, one can avoid this issue by only parallelizing phases of the algorithm

that do not make use of N . To make this explicit, we define a class of independent-sample

secretary (ISS) algorithms, which do not use knowledge of N during their selection phases.

Definition 3.10 (independent-sample secretary (ISS) algorithm). A k-secretary algorithm

AC(N, k) which takes as input the number of elements N and the selection capacity k, and

operates on a stream C of elements, is an independent-sample secretary (ISS) algorithm if

the following hold for some pk ∈ [0, 1]:

1. A can be temporally decomposed into a sampling phase ACsample(N, k) which re-

turns a sample S ⊆ C, followed by a selection phase AC\Sselect(S, k) on the remaining
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Algorithm 5: GROUP-AWARE PARALLELIZATION (GAP) for (adversarial) group
bias.

input: ISS algorithm A(N, k), N , k, number of groups g, stream of elements C
1 Produce a sample S using the sampling phase ACsample(N, k/g)

2 Run the selection phase AC∩Gj\S
select (S ∩Gj, k/g) for each j ∈ [g]

elements C \ S; and

2. the sampling phase returns the first Bin(N, pk) elements and makes no selections.

Note that the sampling phase of an ISS algorithm uses the number N of elements, which

prevents us from parallelizing this phase in a straightforward way. To get around this,

we run the selection phase on the entire stream (unparallelized) and form group-specific

samples by intersecting the unparallelized sample with each group. On the other hand,

since ISS algorithms do not make use of N during their selection phases, we are free to

directly parallelize these selection phases. For example, the k-secretary algorithm of [4],

the matroid18 secretary algorithm of [45], and the graphic matroid secretary algorithm of

[67] can all be viewed as ISS algorithms. The resulting algorithm (Algorithm 5) preserves

the competitive ratio of the vanilla algorithm up to a factor of g.

Proposition 3.9. Let A be an f(k)-competitive ISS algorithm for the vanilla k-secretary

problem satisfying ordinal fairness19 with respect to the total order on elements. Then GAP

(Alg. 5) using A is g · f(k/g)-competitive for the k-secretary problem under group bias.

Moreover, GAP satisfies ordinal fairness with respect to the group poset.

Proof. The crux of this proof is that the GAP is distributionally equivalent to running the

vanilla algorithm on each group separately, with a selection capacity of k/g for each group.

More formally, we claim that GAP induces the same sampling and selection probabilities

as running AC∩Gj(|Gj|, k/g) independently on each group Gj .

18The matroid secretary setting can again be extended to include bias models; e.g., elements can be parti-
tioned into groups. The goal is then to (fairly) select an independent set of maximum true utility.

19In this case, ordinal fairness reduces to (i) an increasing probability of selection with respect to increasing
rank, and (ii) decisions being made only with respect to the rank of the element rather than observed utility.
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To verify this, it suffices to show that sampling probabilities are preserved, since the

selection phases are run independently of each other. To that end, note that P(a ∈ S) = pk/g

regardless of the group membership of a. Thus, the sampling distribution induced by GAP

on Gj is the same as that of AC∩Gj(|Gj|, k/g). We can thus analyze each group separately.

Letting AlgC∩Gj(|Gj|, k/g) denote the output of AC∩Gj(|Gj|, k/g), we have

E
[
w(Alg5)

]
=

g∑
j=1

E
[
w
(
AlgC∩Gj(|Gj|, k/g)

)]
≥

g∑
j=1

OPTk/g(Gi)

f(k/g)
≥

OPTk/g

f(k/g)
≥ OPTk

gf(k/g)
,

where OPTm(G) is the sum of the top m scores in group G, and OPTm is the sum of the

top m scores overall. The parallelized algorithm therefore has competitive ratio at most

gf(k/g).

Proposition 3.9 shows that a large class of secretary algorithms can be extended to the

group bias setting while suffering only a factor g in competitive ratio. In particular, any

tight ISS algorithm (i.e., one whose competitive ratio is 1 + o(1) as k → ∞) such as

the (1 − 5k−1/2)−1-competitive algorithm of [4] can be extended to a tight algorithm (one

whose competitive ratio is g
(
1 + o(1)

)
as k →∞) for the group bias setting.

3.7.2 Stochastic group assignment

We end our discussion on group bias by considering a stochastic setting, where each el-

ement is assigned independently to a group according to a probability distribution p =

(p1, . . . , pg). Element scores are then sampled independently from the same nonnegative

distribution. We assume that group assignments and score assignments are independent

together as well.

Since the scores are stochastic, the top k elements will be proportionally distributed be-

tween the groups, on average. A natural idea would then be to apply the GAP framework,

replacing the uniform quotas with proportional quotas of pjk for group Gj . To ensure
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Algorithm 6: GAPCAP for the stochastic group setting
input: N , k, distribution over groups p, quotas vector s

1 S ← first ⌊N
e
⌋ elements; Rj ← top sjk scores in S ∩Gj , for each j ∈ [g]

2 for a ∈ Gj, a ̸∈ S do
3 if w̃(a) ≥ minRj then
4 if the current sjkth best element from Gj was sampled then Select a.
5 Update Rj to be the sjk highest scores seen so far from Gj

that the selection probabilities are the same across groups,20 we will require the probabil-

ity of an element in the sample to be independent of k (otherwise, the differing selection

capacities would result in different selection probabilities). We give an example of how

the k-secretary algorithm of [65] can be parallelized and show that the resulting algorithm

(GAPCAP) is constant-competitive.

Proposition 3.10. Under the group bias setting, where groups are assigned according to

the distribution p and scores are sampled independently from the same nonnegative dis-

tribution, GAPCAP on input of a proportions vector s = p is 2e(1 + o(1))-competitive;

additionally, if pj < 1 − 1
k

for all j ∈ [g], then the competitive ratio is bounded by 4e.

Moreover, GAPCAP satisfies OF.

The factor of e in the competitive ratio comes from bounding the probability that one of

the top-scoring elements in a group is selected by the algorithm. Since groups and scores

are stochastic, the expected number of the top k elements in group Gj is pjk, which means

that hedging is good on average. This is ultimately why we are able to avoid the factor of

g in competitive ratio, as explained in more detail in the proof below. As with GAP, one

drawback of this algorithm is that it imposes quotas, which limits its applicability.

Proof of Proposition 3.10. Recall that each element is assigned to a group according to the

probability distributions p = (p1, . . . , pg), and the algorithm applies proportional quotas

sk = pk. Let OPTp denote the optimal parallelized solution; that is, the set of the top pjk

elements from group Gj , for j ∈ [g].

20This quality is desired because it allows for a single sample to be taken, which is then intersected with
each group to obtain group-specific samples according to GAP.
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We begin by showing that each element in OPTp is selected with probability at least e−1.

To see this, suppose a ∈ OPTp, and without loss of generality, a ∈ G1. Then a is selected if

and only if it arrives after the sample, and the p1kth best element from G1 seen so far was

in the sample. Note that the probability of any particular element being sampled, given an

arrival time in [1, ℓ], is ⌊N/e⌋
ℓ

. Hence,

P({a is selected} | {a arrives at time ℓ}) =


⌊N/e⌋
ℓ−1 if p1k G1 elements have arrived,

1 otherwise.

So, letting Alg denote the set of elements returned by GAPCAP, we have that

P({a ∈ Alg}) =
N∑

ℓ=⌊N/e⌋

P({i arrives at time ℓ})

· P({p1kth best G1 element at time ℓ was sampled})

=
1

N

N∑
ℓ=⌊N/e⌋

P({p1kth best G1 element at time ℓ was sampled})

≥ ⌊N/e⌋
N

N∑
ℓ=⌊N/e⌋

1

ℓ− 1

>
⌊N/e⌋
N

ln

(
N

⌊N/e⌋

)
≈ e−1.

It follows that E(w(Alg)) ≥ 1
e
w(OPTp). Finally, letting OPT denote the true optimal set of
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elements, it remains to compare OPTp to OPT. To that end, suppose a ∈ OPT. Then

P({a ∈ OPTp} | {a ∈ OPT}) =
g∑
j=1

P({a ∈ Gj})

· P({w(a) ≥ pjkth best Gj element} | {a ∈ Gj})

=

g∑
j=1

pjP({w(a) ≥ pjkth best Gj element} | {a ∈ Gj})

≥
g∑
j=1

pj P({|Gj ∩ OPT| ≤ pjk})︸ ︷︷ ︸
k→∞−−−→ 1

2

=
1

2
− o(1).

It follows that for any a ∈ OPT, we have

P({a ∈ Alg} | {a ∈ OPT}) ≥
(
1

2
− o(1)

)
P({a ∈ Alg} | {a ∈ OPTp})

≥
(
1

2
− o(1)

)
e−1.

Hence GAPCAP is 2e(1 + o(1))-competitive. Moreover, if pj < 1− 1
k

for all j ∈ [g], then

P({|Gj ∩ OPT| ≤ pjk}) > 1
4

[76], thus resulting in a competitive ratio of 4e.

3.8 Experimental Case Study (Simulation)

In this section, we compare the impact of (1) the vanilla adaptive threshold-based k-

secretary algorithm of [4], (2) the parallelized version of the same k-secretary algorithm

using GAP, (3) POSETLABEL, and (4) ADATHRESHOLD on a real-world dataset. We de-

velop a prediction model based on training data and use the resulting gender-specific errors

to construct a partial ranking of the applicants. Using the model-predicted scores as a ba-

sis for the first two algorithms and the partial ranking as a basis for the second two, we

compare selection rates across gender.

We use the Aspiring Minds’ Employability Outcomes 2015 (AMEO 2015) dataset,
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which was created by Aspiring Minds, an organization which offers pre-employment as-

sessments. We pre-process the data to only consider job seekers in computer science fields,

and to only consider the following attributes: gender, standardized high school test scores,

college tier, college GPA, college city tier, age at graduation, and Aspiring Minds test

scores. 2212 data points remain after pre-processing, among which a random sample of

1600 is taken to be the training data. The other 612 data points comprise the test data,

which includes 166 female and 446 male job seekers.21

We take the Aspiring Minds computer programming test score as a proxy for utility

(“true scores”), and as such, develop a model for predicting computer programming scores

from the other attributes. In particular, we predict computer programming using linear

regression.22

In the Aspiring Minds dataset, we see that the female and male score distributions are

qualitatively similar (µfemale = 459.27, σfemale = 80.54, µmale = 477.99, σmale = 93.613)

and are depicted in Figure 3.6 (top left). In order to compare different algorithms under

different distributional settings, we transform the Aspiring Minds dataset in two ways:

decrease all female scores by 28.09 points (chosen so that the means differ by σmale/2)

to create a left-shifted distribution, and increase all female scores by 65.53 points (again,

chosen so that the means differ by σmale/2) to create a right-shifted distribution. See Figure

3.6 for a depiction of the true and predicted computer programming scores in the data, after

training on unshifted (left-most) and shifted (center, right) data.

We generate score intervals for applicants (and thus partial rankings) by statistically

comparing true scores and predicted scores by gender in the training data. In particular,

suppose the true scores of Group j in the training data are in the vector y, and the predicted

scores are ŷ. Then observe that ŷtransf. :=
σy
σŷ

(
ŷ−µŷ

)
+µy has the same mean and standard

deviation as y. Now let σj denote the standard deviation of y − ŷtransf., which is a measure

21We make this dichotomy here because all candidates in the dataset were labeled as male or female.
22We remark that any other machine learning model could have been used to predict performance as well.

This is simply an example of a predictive model that could be used in a hiring setting.
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Figure 3.6: Experiment results for three “true score” distributions are shown: the unaltered
programming scores (left), the distribution with left-shifted female scores (center column),
and the distribution with right-shifted female scores (right). The true score distributions are
shown by gender (top), as well as the predicted scores from the regression model (center
row) and the selection rates of three algorithms (bottom).

of error in these transformed scores. We can form score intervals in the test data as follows:

given a predicted score w̃(a) in Group j, we construct the interval

[
σy
σŷ

(
w̃(a)− µŷ

)
+ µy − λσj,

σy
σŷ

(
w̃(a)− µŷ

)
+ µy + λσj

]
= [ŷtransf.(a)− λσj, ŷtransf.(a) + λσj],

(3.9)

where λ > 0 is a parameter controlling the confidence in the score range. Note that under

this construction, interval lengths will be uniform within any group, but may differ between

groups. We call this the error-correction approach.

A total of twelve experiments were performed: the four algorithms23 were each run on

the three distributions discussed above, each of which comprised the 612 applicants in the

23The vanilla adaptive-thresholding algorithm of [4] and the GAP algorithm which parallelizes it are both
run on the ML-predicted scores. POSETLABEL and ADATHRESHOLD are run using the error-correction
approach.
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test data. Each of these experiments was given a selection capacity of k = 25 and was run

10,000 times (see Appendix H in [53] for the same experiments run with k = 50). Since

POSETLABEL has an extensive sampling phase compared to the other three algorithms,

we scaled its sample size by 1/3; in this way, the selection rates of POSETLABEL will be

large enough to make meaningful comparisons to those of the other algorithms. Finally,

we set the λ parameter in (3.9) to be 1/6, which struck a nice balance between accounting

for uncertainty and retaining enough ordinal information (experiments run with λ = 1/3

and λ = 1/12 produced qualitatively similar results, which can be found in Appendix H of

[53]).

The performance of the vanilla k-secretary algorithm, POSETLABEL, and ADATHRESH-

OLD is sensitive to the true score distributions in each of the three scenarios: when the

female true score distribution is low, fewer female applicants are selected, and when the

female true score distribution is high, more female applicants are selected; GAP (paral-

lelizing the algorithm of [4]), on the other hand, uses quotas and is not sensitive to these

distributional changes. Use of quotas might have been desirable if demographic parity

was the goal, but its lack of sensitivity to scores can be undesirable given the legal back-

drop of hiring in the U.S. and given its coarse, non-individualistic nature. POSETLABEL

and ADATHRESHOLD instead produce selection rates that are closer to each other (thereby

giving some benefit of the doubt to the group with higher uncertainty in their evaluation)

compared to the vanilla algorithm as well as GAP. Since both these algorithms use posets

derived from errors in prediction, they are better justified from a legal standpoint as well.

Biases enhanced by prediction models. The above experiments showed a natural

adaptiveness in selection rates as the underlying data was altered in the three scenarios

considered. This adaptiveness can be attributed to the trends in the underlying data captured

by the prediction models. However, if the prediction model carries a definitive bias (e.g.,

a trend not seen in underlying data but picked up by the ML model) against some group,

then algorithms making decisions based on the predictive model will be impacted. We
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Figure 3.7: The four algorithms are run on centered data (i.e., the true scores of the female
group were translated so that both groups have the same mean true score). The regression
model was then modified to introduce an additive bias of 50 points against the female
group. Shown above are the true score distributions (left), the predicted score distributions
(center), and the resulting selection rates (right).

next show that, in fact, when score intervals are constructed as per the error-correction

approach (equation (3.9)), such group-specific biases can be corrected using our proposed

poset-based algorithms.

To demonstrate this, we artificially bias the prediction model as follows: we first center

the underlying data so that both groups have the same mean in the training data, and then

fit a linear regression model to predict CS scores. We artificially decrease the gender co-

efficient in the best fit linear regression model by 50 points, thus introducing a (definitive)

additive bias against the female group. We ran the four algorithms on the test data using

the shifted predictions.

We find that since the vanilla algorithm has no way of accounting for this additional

ML-model bias, it results in a very low selection rate for female applicants. The POSET-

LABEL and ADATHRESHOLD algorithms, on the other hand, are able to account for this

additional ML-model bias using the error-correction approach (eq. (3.9)) and therefore in-

corporating knowledge of the true scores in the training data. The selection rates produced

by these algorithms are consequently more appropriate (given the true score distributions)

than that of the vanilla algorithm, as shown in Figure 3.7. This experiment reiterates that

the poset-based approaches can be sensitive to changing trends in data and can mitigate the

impact of various sources of bias.
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3.9 Discussion: Managerial Considerations and Open Questions

Selecting a set of qualified people is an incredibly important yet complex problem in prac-

tice. This work is the first to formally consider bias in data using partially ordered sets, and

the first to consider bias within the context of the secretary problem. For the general case of

partial ordinal rankings, we provided two algorithms: one with an order-optimal compet-

itive ratio (POSETLABEL), and another using adaptive thresholds with a tight competitive

ratio (ADATHRESHOLD). These algorithms make selections based solely on the partial

rankings and arrival order (thus satisfying ordinal fairness, by Prop. 3.1), which means that

properties of the poset (say, those designed to mitigate bias) directly affect selection de-

cisions. We additionally provided simpler algorithms for the special case of group bias,

where the poset has simpler structure and vanilla secretary algorithms can be parallelized

across the groups. Our key takeaway is the following: accounting for uncertainty and bias

can improve the quality of selected applicants and produce fairer decisions.

3.9.1 Practical and managerial implications

The necessity for bias-aware methods is born in part out of the disparate amount of errors

in evaluations, and our analysis shows that poset-based interventions can provably increase

the true total utility of applicants selected. Many of the ideas presented here can be adapted

to other data-driven models where there is reason to believe that underlying data is biased.

Our algorithmic approaches are also versatile: (1) the random partitioning technique of

POSETLABEL can be adapted to a non-algorithmic setting by forming independent review

committees, each of which reviews a random subset of the applicant pool. Such a process

can reduce the impact of a single reviewer who may dominate a debrief; (2) enforcing

diversity in selections (GAP) might be desired for certain applications such as appointment

committees in academic review boards; and (3) the technique of adaptive thresholding

used in ADATHRESHOLD can be applied generally in practice. For example, in a rolling
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decisions scenario, where there is no bound on the number of applicants over time, one

can periodically update the threshold based on the available data; additionally, if score

distributions shift over time, thresholds can be computed using a sliding window to ensure

up-to-date selection criteria. These managerial considerations can positively impact hiring

practices.

Employers naturally try to avoid litigation, and since large disparities in outcomes can

trigger disparate impact lawsuits, outcomes-based constraints such as the 4/5 rule24 are

commonly used [77]. Instead of such quota-based or proportionality constraints, which

are coarse and arguably non-individualistic, we propose to account for uncertainty using

partial rankings of applicants, the construction of which may or may not use protected

information. Our experiments show how one can construct a partial ranking using group-

specific errors and how such an intervention can decrease disparities in outcomes without

enforcing quotas. The fairness intervention (i.e., the construction of the partial ranking) is

modular, separated from the selection process; as such, it can be audited separately from

downstream decisions.

Another important managerial takeaway of our work is that the width of the partial

ranking affects performance: the more ordinal comparisons one can make, the better the

achievable performance is. If the width of a partial ranking is too large, then an employer

can seek to reduce the width by investing more resources into (1) gathering more informa-

tion on individual applicants (e.g., by offering interviews or internships), or (2) improving

the evaluation metric.

3.9.2 Open questions

Here, I list some open questions related to

1. Secretary problems operate under many assumptions, such as access to a random

sample of applicants and the knowledge of the total number of applicants.25 Theo-
24This rule states that the selection rate of any protected group be at least 4/5 that of any other group.
25In some cases, these assumptions can be justified in practice; e.g., data on past applicants could act as
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retically speaking though, designing algorithms which avoid rejecting elements “in

sample sets” is an open question; in particular, for a fixed poset secretary algorithm,

let pi denote the probability of selecting the ith element to arrive. For fixed k,

what is the asymptotic optimal competitive ratio for an

algorithm satisfying p1 = · · · = pN , as N →∞?

This problem remains open for the poset and the classical k-secretary problems. The

optimal competitive ratio for fixed N in the classical setting has been found using

LP-based approach (see Section 2.3 for the main ideas) [47], but asymptotic results

are not known.

2. Determining an optimal competitive ratio without the knowledge of N also remains

an open question in both the unbiased and biased settings, although [74] showed

an N ′-dependent lower bound26 on competitive ratio for the classical 1-secretary

problem when N is chosen adversarially from the set {1, . . . , N ′}.

What is the optimal competitive ratio for the poset secretary

problem when N is unknown but sampled from a known distribution?

3. The capacity constraint considered in this chapter can be viewed as a uniform ma-

troid constraint. The design of poset secretary algorithms with general matroidal

constraints remains an open area. In particular, letM be an unknown matroid whose

ground set is the set of applicants {a1, . . . , aN}. Assume that an algorithm, having

observed a subset A of applicants, can observe the matroid restricted to A. In this

setting,

find an optimal algorithm for the poset secretary problem with the additional

constraint that the set of selections must be independent inM.

the random sample, and time constraints in hiring can upper bound the number of applicants that can be
reviewed.

26In particular, the lower bound they found was the N ′-th harmonic number.
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It may be useful to restrict one’s attention to a subset of posets or a subset of ma-

troids. For example, under the group bias model, this problem is simpler: one can

enforce group quotas by enforcing a partition matroid constraint; then, to incorporate

the other matroid constraint, one can use Svensson and Zenklusen’s framework for

designing secretary algorithms on the intersection of matroids [78].

Some of our algorithms (GAPCAP and GAP) make use of group-specific selection ca-

pacities (i.e., quotas). Legally speaking, demographic-aware methods, such as quotas, may

or may not be admissible in certain situations [79, 80, 81]. Whether such a disparate

treatment can be justified in practice by the inadequacies in data/evaluations is a complex

question which I discuss in detail in Chapter 5. In short, if the poset contains only justifi-

able comparative information amongst candidates and gives no leeway simply due to group

membership, one does not have to adhere to quotas to make “fair” selections. We believe

such an approach is attractive from a practical, ethical, and legal perspectives as well (e.g.,

see [82, 83]).
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CHAPTER 4

CONSTRAINED ONLINE LEARNING

This chapter contains excerpts from [10] and [84] and includes joint work with Swati

Gupta and Vijay Kamble.

In Chapter 3, I discussed an online optimization problem where an adversarially chosen

set of inputs are presented to an algorithm in random order to be classified. Decisions in

that setting were not associated with feedback; in other words, the information given to

the algorithm did not depend on the decisions it made. In this chapter, I consider a setting

where feedback is decision-dependent. When feedback is available, it may be possible to

assess accuracy, FPRs, and other statistical performance measures, which allows for richer

possibilities for formulating fairness notions.

I begin, in Section 4.1, by discussing how offline fairness constraints can be adapted to

online settings. Next, in Section 4.2, I formulate a dynamic pricing problem to motivate the

bandit learning framework discussed in Section 4.3. In Section 4.3, I formulate the main

problem discussed in this chapter: can one converge to the minimum of an N -dimensional

function while maintaining comparative fairness between coordinates? Finally, I end this

chapter in Section 4.4 with a discussion of comparative fairness and perceptions of unfair-

ness.

4.1 Memory and Online Decision-Making

A key question in extending static notions of fairness to dynamic settings is that of memory:

how far back should one look? Suppose, for example, that we wanted to satisfy comparative

fairness in probabilities of selection in applicant screening: similar contexts should receive

similar decisions, and the same context should always receive the same decision. If our
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memory extends all the way to the first set of decisions made, then an applicant with context

c today must be treated the same as an applicant with context c was treated on day 1. While

this would unambiguously satisfy the goal of comparative fairness, it would arguably be too

constraining: one bad decision early on can prevent good decisions later on. We categorize

temporal fairness notions based on the amount of memory used, as we discuss next.

No memory: fairness within each period. The first and most basic possibility in

this regard is to simply ignore the temporal aspect and ensure that the desired static fair-

ness constraints are satisfied independently in each time period. That is, we require that

Fi (xt, Dt:t) ≤ 0 for all i = 1, . . . , k and all times t = 1, . . . , T , where Dt:t is the data from

the current time period only (e.g., contexts of the current batch of applicants, not contexts,

decisions, or feedback from previous batches). In some situations, this may suffice from a

fairness perspective. For instance, it may be acceptable that salaries of women fell due to

some event (such as a pandemic) if men’s salaries proportionally fell as well to ensure that

the salaries are always equitable. From a technical perspective, such fairness constraints

can often be employed in practice using standard optimization techniques. For example,

assuming that the concerned functions are well-behaved (e.g., convex or concave) and the

feasible region is structured (e.g., polyhedral), the theory of online convex optimization can

readily handle the problem of optimizing the utility over time while ensuring that the de-

cision rules are feasible at each time. However, in many scenarios, such time-independent

notions may be insufficient; e.g., it may be difficult to justify that a small business loan

application was approved today, but an applicant with an identical profile was rejected the

next day. When consistency across time is desired, full memory or partial memory notions

may be appropriate, as discussed next.

Full memory: fairness across all time. The second possibility lies on the opposite

end of the spectrum, requiring that the fairness of a decision must be satisfied with respect
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to decisions across all times. That is for each i = 1, . . . , k,

Fi
(
xt, D1:t

)
≤ 0 for all i = 1, . . . , k. (4.1)

In many cases, full memory constraints are quite stringent (cf. Example 4.1 and Propo-

sition 4.1), since they can disallow any change in decisions over time [6]. Such a require-

ment is impractical in scenarios where changes in the decision rule may be practically

necessary across time, e.g., to learn an unknown utility function; such changes may even

be acceptable from a fairness standpoint, e.g., at least increases in salaries over time are

generally acceptable (and often necessary in view of inflation).

Example 4.1. Consider an applicant-screening scenario in which we must assign a proba-

bility of selection x ∈ X = [0, 1] to each context c ∈ C ⊂ RN , and we want our decision

rule to be Lipschitz (i.e., to satisfy individual fairness) with respect to some metric d. If

we opt for full memory, then decisions made at time t are constrained by decisions made

at time 1. If context c was observed at time 1 and a bad decision was made, then decisions

made on c in the future must also be sub-optimal. Under modest assumptions, this can lead

to poor performance, as shown in Proposition 4.1.

Partial memory. There are several possibilities between these two extremes. For ex-

ample, one can impose a sliding window constraint, where the fairness constraint can be

based on data from the previous m time periods. Similarly, one can impose a time-decay

constraint, where recent decisions are weighted more heavily than older decisions. Impor-

tantly, this can help prevent the issues discussed in the previous example.

Example 4.2. Suppose we are making cancer diagnosis decisions at a local clinic, and we

would like to approximately equalize false negative rates across the disjoint groups C1 and

C2, where C1 ∪ C2 = C. However, the air quality in the city in question has degraded

over the past several years, and this change is suspected to impact the relationship between

contexts and cancer risk. Due to this changing socio-environmental landscape, we want
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to constrain decisions only based on the previous m decisions. Suppose that the available

data Dt−m:t = (ct−m, . . . , ct, xt−m(ct−m), . . . , xt(ct), yt−m, . . . , yt) contains the previous

m contexts, the previous m decisions, and the previous m outcomes (whether or not the

individual was eventually diagnosed with cancer). In this case, the sliding-window false

negative rate for group Ci at time t (i.e., after the tth decision) is

FNR(Ci) =

∑
j=max{1,t−m},...,t

cj∈Ci

1[xj(cj) = 0, yj = 1]

|{max{1, t−m} ≤ j ≤ t : cj ∈ Ci, yj = 1}|
.

To approximately enforce equal false negative rates, we require that at each time t,

F1(xt, Dmax{1,t−m}:t) = FNR(C1)− FNR(C2)− ε ≤ 0

F2(xt, Dmax{1,t−m}:t) = FNR(C2)− FNR(C1)− ε ≤ 0.

As alluded to in Example 4.1, there can be tensions between fairness and learnabil-

ity in online learning problems. To quantify this tension, we need a way to quantify the

performance of an online learning algorithm. We do so using the notion of regret; a non-

contextual version of regret was defined in Section 2.2.2, but I extend it to the contextual

setting here. Suppose that at time t, we observe context ct ∈ C and choose a decision rule

xt : C → X . Given a class of potential cost functions F , the regret up to time T is defined

as

sup
f∈F

sup
c1,...,cT

E
[ T∑
t=1

f(ct, xt(ct))− inf
x∗

( T∑
t=1

f(ct, x
∗(ct))

)]
.

Simply put, the regret of an algorithm is the worst-case difference between its achieved util-

ity and the optimal utility achieved by a fixed decision rule. Many variants of the above no-

tion of regret exist, including those which replace the left-most supremum with an expecta-

tion and those which allow the utility function to change over time. In Example 4.1, if a sub-

optimal decision is made on the first context c1 (i.e., f(c1, x1(c1))−f(c1, x∗(c1)) = δ > 0),
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then by choosing c1 = · · · = cT , we see that the regret up to time T is at least Tδ = Ω(T ),

which indicates poor performance. This asymptotic lower bound holds when contexts are

generated randomly as well, as long as f and the distribution over C are nice enough, as

shown below in Proposition 4.1.

Lemma 4.1. Consider the following problem class: the context space is C = [0, 1]N , the

decision space is X = R, and decisions are required to be L1-Lipschitz. Assume that for

each c ∈ C, the cost function f(c, ·) : X → R has a unique minimizer x∗c , and that the

function c 7→ x∗c is L2-Lipschitz. Further, suppose that the contexts c1, . . . , cT are sampled

independently from a distribution with positive density over C. Now let |x(c1) − x∗c1| = δ.

Then there is some ρ = ρ(N, δ) > 0 such that for each t > 1, P(|x(ct)− x∗ct| ≥ δ/2) ≥ ρ.

Proof. First, note that the statement holds trivially if δ = 0, so we may assume that δ > 0.

Let ε = δ
2(L1+L2)

> 0. Since the distribution over C has positive density, we have that

P(∥ct − c1∥2 ≤ ε) ≥ ρ > 0 for all t > 1, where ρ depends only on δ and N .

Now suppose that ∥ct − c1∥ ≤ ε, for some t > 1. Then, since |x(c1) − x∗c1| = δ and

|x(ct)−x(c1)| ≤ L1ε, we have that |x(ct)−x∗c1| ≥ δ−L1ε. Moreover, since |x∗ct −x∗c1 | ≤

L2ε, we have that

|x(ct)− x∗ct | ≥ δ − (L1 + L2)ε =
δ

2
.

Thus, P(|x(ct)− x∗ct | ≥ δ/2) ≥ P(∥ct − c1∥ ≤ ε) ≥ ρ, as desired.

An immediate consequence of this lemma is that linear regret is unavoidable when

enforcing individual fairness with full memory in this setting.

Proposition 4.1 (Full memory IF incurs linear regret). Consider the following problem

class: the context space is C = [0, 1]N , the decision space is X = R, and decisions are

required to be L1-Lipschitz. Assume that for each c ∈ C, the cost function f(c, ·) : X → R

is α-strongly convex, has a unique minimizer x∗c , and that the function c 7→ x∗c is L2-

Lipschitz. Further, suppose that the contexts c1, . . . , cT are sampled independently from a

distribution with positive density over C. In this setting, any algorithm incurs linear regret.
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Proof. Consider the N = 1 where the cost functions are either f(c, x) = (x − c)2 for all

c ∈ C or f(c, x) =
(
x− (c+2)

)2 for all c ∈ C. In this case, regardless of c1 and regardless

of the decision x(c1), there is some choice of cost functions for which |x(c1) − x∗c1| ≥ 1.

In this case, Lemma 4.1 shows that P(|x(ct)− x∗ct| ≥ 1/2) ≥ ρ > 0 for some constant ρ.

Next, note that by α-strong convexity (Definition 2.7), if |x(ct) − x∗ct | ≥ 1/2, then

f(ct, x(ct))− f(ct, x
∗
ct) ≥

α
8

. Thus the regret is at least αρ
8
(T − 1) = Ω(T ).

There are two ways around this tension between online fairness and learning: first,

one can reduce the memory of the fairness constraint, thus allowing for more flexibility in

adjusting decisions over time. Second, one can relax the fairness constraint. Weakening

the fairness constraint may allow for learning, even in the full-memory framework.

Example 4.3. Recall from Proposition 4.1 that enforcing individual fairness with full mem-

ory can lead to poor performance. In this example, we show how such notions of com-

parative fairness can be temporally relaxed, potentially avoiding this issue. In particular,

suppose we have a finite context space C = {c1, . . . , cN} and are tasked with assigning

probabilities of selection in X = [0, 1] for applicant-screening.

If we were to impose individual fairness with full memory, as in Example 4.1, then the

decision xt(ci) for context ci at time t is constrained from above and below by decisions

made at times 1, . . . , t − 1. However, a job applicant will only feel mistreated if their

decision is worse than expected with respect to decisions made in the past (i.e., if they are

rejected and a similar applicant was selected in the past). Motivated by this, we present a

one-sided relaxation of comparative fairness which we call comparative fairness at the time

of decision (CFTD). In particular, given slacks s(i, j) ∈ R for i, j ∈ [N ], the constraints

imposed at time t are

xt(ci) ≥ xt′(cj)− s(i, j) for all t′ ≤ t and i, j ∈ [N ].

Importantly, these constraints allow decisions to become more conducive to applicants (i.e.,
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to increase) over time, while ensuring that no context is treated unfairly relative to deci-

sions made in the past. On the other hand, since decisions are allowed to increase arbitrarily

under this constraint, a decision made on context ci at time t may be viewed as unfair com-

pared to a decision made at time t + 10. The benefit of this weaker form of comparative

fairness is that this ability to increase decisions over time allows for learning in some sce-

narios where the unrelaxed constraint would not, as we illustrate in the next section.

As discussed above, there are important normative questions about the meaning of fair-

ness in dynamic decision-making and technical questions about the trade-offs between tem-

poral notions of fairness and performance. In a given decision-making setting, how can one

balance memory and stringency of a fairness constraint with the flexibility required to learn

a good decision? These questions pose technically new challenges in online optimization

and require new design tools and techniques. In Section 4.3, I illustrate techniques and

challenges in the design of temporally fair algorithms through the lens of bandit convex

optimization.

4.2 Motivating Example: Multi-Segment Pricing

In this section, I will introduce a dynamic pricing problem which fits in the online learning

framework. This problem directly motivates the problem formulated in Section 4.3.1. Sup-

pose that at each time period t ∈ [T ], a good must be priced for N customer segments. Let

xt = (x1,t, . . . , xN,t) ∈ [0, 1]N denote the prices given to the segments at time t.

Upon choosing a price of xi,t ∈ [0, 1] for Segment i, the decision-maker observes

a (noisy) demand of Di(xi,t) + ε. The corresponding revenue function for segment i is

Ri(xi,t) = xi,tDi(xi,t). The total revenue at time t is therefore R(xt) = R1(x1,t) + · · · +

RN(xN,t). The goal in most pricing literature is to either estimate the demand function(s)

or maximize revenue. We will focus on the goal of maximizing revenue [85, 86, 87].

If the revenue is concave and perfect gradient information is available, then standard

optimization techniques (e.g., gradient descent) can be used to maximize revenue. How-

86



ever, we are only given noisy observations of the demand Di(x), so we can only glean noisy

observations of the revenue Ri(x) for each segment i. Thus, when the revenue function is

concave, this problem can be framed as a bandit convex optimization problem [41], where

the function to be minimized is −R1(x1)− · · · −RN(xN).

The simplest demand model in economics is the linear model: Di(x) = aix + bi for

some ai, bi ∈ R with ai < 0. Under this model, the negative revenue function −R(x) is

smooth and strongly convex.1 Thus, a modified gradient descent method, such as that of

Hazan and Levy [41], can be used to attain Õ(
√
T ) regret.

However, in some cases, one may want to enforce some regularity in decisions across

segments. For example, in movie ticket pricing, Segment 1 might be youth, Segment 2

might be adult students, and Segment 3 might be everyone else. In this case, we may want

to ensure that x1 ≤ x2 ≤ x3 and x3 ≤ x2 + 1. This would guarantee that the youth

price is the lowest, the general adult price is highest, and all adult prices are similar. Such

constraints have been studied in the offline setting by Cohen et al. [88]. However, as

discussed in Section 4.1, enforcing such constraints in online settings with full memory

can lead to high regret. Thus, in the next section, I discuss algorithm design for a temporal

relaxation of such constraints.

4.3 Convex Optimization with Bandit Feedback under CFTD

Motivated by the multi-segment pricing problem of Section 4.2, this section is devoted

to the design and analysis of bandit convex optimization algorithms satisfying compara-

tive fairness at the time of decision (Definition 4.1)). The problem is formulated in Sec-

tion 4.3.1, and related work is given in Section 4.3.2. In Section 4.3.3, I present algorithms

for one and two groups which use a novel technique which we call lagged gradient de-

scent. Finally, in Section 4.3.4, I present a simpler algorithm for the general N -group

1In fact, even some demand models whose negative revenue curves are non-convex have the property that
the negative revenue is smooth and strongly convex in some ball around the optimum. See Appendix D of
[84] for an explanation of this.
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setting which yields a worse (but still sublinear) regret bound.

4.3.1 Problem formulation

We now formulate the problem of stochastic convex optimization with bandit feedback

under the constraint of ensuring comparative fairness at the time of decision. We assume a

finite context space C = {c1, . . . , cN}. At each time t ∈ [T ], the decision-maker chooses a

point xt = (x1,t, . . . , xN,t) ∈ [xmin,∞)N , where xi,t = xt(ci) is the decision on context ci.

The cost incurred on xt is f(xt) =
∑N

i=1 fi(xi,t).

In this setting, the cost functions fi are unknown to the principal. The principal hopes to

learn to administer the solution to minx f(x) under a temporal fairness constraint (described

below) over a discrete time horizon T . We make the following assumptions on the cost

functions fi.

Assumption 4.1. We assume that for all i ∈ [N ], the function fi is

1. α-strongly convex, i.e., fi(y) ≥ fi(x) +∇fi(x)(y− x) + α
2
(y− x)2 for all x, y ∈ X ,

and

2. β-smooth, i.e., fi(y) ≤ fi(x) +∇fi(x)(y − x) + β
2
(y − x)2 for all x, y ∈ X ,

for some α > and β > 0 known to the principal.

These assumptions are commonly made in the convex optimization literature and they

allow us to focus on the difficulties that arise in adapting gradient-driven online optimiza-

tion procedures to satisfy the CFTD constraint.2

Comparative fairness at the time of decision (CFTD). As noted in Section 4.1, imposing

a comparative fairness constraint can lead to high regret. For example, if we imposed

individual fairness (see Section 2.1) in full memory, then we would be forced to choose

x1 = · · · = xT , since |xi,t − xi,t−1| ≤ L · d(ci, ci) = 0 for each i ∈ [N ], thus preventing

2In pricing, the corresponding assumption is that the revenue functions are strongly concave and smooth.
This assumption is satisfied under the popular linear demand model that is commonly assumed in the pricing
literature [89, 90].
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learning. However, a relaxation such as comparative fairness at the time of decision allows

more room for learning. For convenience, I rephrase this constraint below.

Definition 4.1. A sequence of decisions is said to satisfy comparative fairness at the time

of the decision (CFTD) if

xi,t ≥ xj,t′ − s(i, j) for all i, j ∈ [N ], and 1 ≤ t′ ≤ t ≤ T. (4.2)

The constraints xi ≥ xj − s(i, j) for all i, j ∈ [N ], in addition to the constraints

x ≥ xmin, form the CFTD polytope XN
F .

Dynamics and feedback. At each time period t, the algorithm produces a decision xt ∈

XN
F and observes bandit feedback, i.e., the function values for each i at the chosen decision

xi,t, corrupted with noise. In particular, we assume that the feedback observed is a random

variable Yi,t = fi(xi,t) + εi,t, where (εi,t)1≤t≤T for each i ∈ [N ] is a sequence of random

variables representing the noise in the feedback.3 Note that the distribution of εi,t can

potentially depend on xi,t. We make the following commonly made assumption on this

sequence.

Assumption 4.2. For each i, and a sequence of decisions xi,1, . . . , xi,T , the random variables

εi,1, . . . , εi,T are independent, have zero mean, and are sub-Gaussian: there exists a constant

c > 0 such that P(|εi,t| ≥ s) ≤ 2e−cs
2 for all s. We also assume that they have bounded

norm maxi,t ∥εi,t∥ψ2 ≤ Emax, where ∥εi,t∥ψ2 = inf
{
s > 0 : E[exp(ε2i,t/s2)] ≤ 2

}
.

Objective and constraints. The problem is an online decision-making problem, in that the

decision xt at time t is made using the historic informationHt−1 = (x1, y1, . . . , xt−1, yt−1).

These decisions are further constrained to respect the CFTD constraint: xi,t ≥ xj,t′ −

s(i, j) for all i, j ∈ [N ], and 1 ≤ t′ ≤ t ≤ T . The regret incurred by an algorithm is

3In fact, the algorithms and analysis presented in this section can also accommodate feedback of the form∑N
i=1 Yi,t.
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defined to be

sup
f∈F

T∑
t=1

∑
i∈[N ]

E(fi(xi,t))− T min
x∈XN

F

∑
i∈[N ]

fi(xi), (4.3)

where the expectation is over the randomness in (xt)1≤t≤T , F is the set of all α-strongly

convex and β-smooth separable functions on RN , and XN
F is the set of decision vectors x

that satisfy the CFTD constraints.

4.3.2 Related work

Our work makes fundamental contributions to decision-constrained stochastic convex op-

timization under bandit feedback. In general, none of the existing algorithms from the

convex optimization toolkit can be easily modified to satisfy CFTD. For example, CFTD

may require that decisions are monotonically increasing in each dimension as we see in

Section 4.3.3. Even this requirement cannot be met by simple modifications of existing

algorithms. In the noiseless bandit feedback setting, Kiefer gave an O(1)-regret algorithm,

now well known as GOLDEN-SECTION SEARCH, for minimizing a one-dimensional con-

vex function [91]. This algorithm iteratively uses three-point function evaluations to “zoom

in” to the optimum, by eliminating a point and sampling a new point in each round. Its me-

chanics render it infeasible to implement it in a fashion that respects the monotonicity of

decisions. For higher dimensions, aO(1)-regret algorithm has been designed by [92]. This

algorithm is based on gradient-descent using a one-point gradient estimate constructed by

sampling uniformly in a ball around the current point. This key idea recurringly appears in

several works on convex optimization with bandit feedback (e.g., [93], [94], [41]). How-

ever, due to the randomness in the direction chosen to estimate the gradient, such an ap-

proach does not satisfy monotonicity.

For the case of noisy bandit feedback, [95] has shown a lower bound of Ω(
√
T ) in the

single-dimensional setting that holds for smooth and strongly convex functions and showed
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that an appropriately tuned version of the well-known Kiefer-Wolfowitz [96] stochastic ap-

proximation algorithm achieves this rate. This algorithm uses two-point function evalua-

tions to construct gradient estimates, which are then utilized to perform gradient-descent.

Our near-optimal algorithms in Section 4.3.3 are the most related to this approach, where

we tackle the significant additional challenge that the two-point evaluations need to con-

sistently satisfy monotonicity over time while attaining the same regret bounds (up to log-

arithmic factors). For the case of convex functions, Agrawal et al. designed an algorithm

that achieves the Õ(
√
T ) bound under bandit feedback [97]. In the one-dimensional case,

their approach is the most related to the golden-section search procedure of [91], and as

such, is infeasible to implement in a monotonic fashion.

Though not motivated by fairness concerns, two recent parallel works have considered

the problem of ensuring monotonicity of decisions in stochastic optimization under bandit

feedback ([98] and [99]).4 Assuming that the functions are only known to be Lipschitz

and unimodal they find that the optimal achievable regret is Θ̃(T 3/4), which is higher than

the Θ̃(T 2/3) regret achievable without the monotonicity requirement. In contrast, Theo-

rem 4.2 implies that under the assumption that the cost functions are smooth and strongly

convex, the unconstrained optimal regret bound of Õ(
√
T ) is attainable while ensuring

monotonicity of decisions (up to logarithmic terms). We also note that, because the set-

tings considered by these other works are more pessimistic in their view of the possible

cost functions, algorithm-design for optimizing the worst-case turns out to be simpler. In

particular, both [98] and [99] show that we cannot do better than the simple approach of

sequentially traversing the decision space in a fixed direction and using a fixed step size un-

til the utility keeps increasing (as determined by a sequence of two-point hypothesis tests).

In contrast, the problem of leveraging gradient information while maintaining monotonic-

ity, while also ensuring negligible impact on regret, results in several novel and non-trivial

aspects of our algorithm design.

4It may be worth mentioning that the first public drafts of both these works appeared after the first public
draft of an earlier version of our paper [100], although the research was conducted in parallel.
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4.3.3 Algorithm design and analysis for N = 1, 2 groups

Ensuring CFTD imposes complex constraints across decisions over time. In this section,

we tackle the challenges that arise in designing a near-optimal regret algorithm for the

simplest case of two population groups. First, let’s examine what the CFTD constraints

require in this setting. These constraints can be broken down into two parts:

1. Coordinate-wise monotonicity. We first require that xi,t ≥ xi,t′ for 1 ≤ t′ ≤ t ≤ T

and for i = 1, 2, which means that the decisions on each coordinate must (weakly)

increase over time.

2. Cross-coordinate constraints. We also have that x1,t ≥ x2,t′ − s(1, 2) and x2,t ≥

x1,t′ − s(2, 1) for all 1 ≤ t′ ≤ t ≤ T , which means that the decision for group i at

any time can be at most s(i,−i) less than the highest decision seen by group −i so

far.5

Because several ideas will be necessary for designing a near-optimal regret algorithm that

satisfies these constraints with just bandit feedback, we break down this problem into parts.

First, we will consider a single-group online stochastic optimization problem where the

only constraint is to satisfy weak monotonicity. The algorithmic approach we develop for

that case will then be used as a component in the two-group case where we additionally

have to tackle the cross-coordinate constraints.

Single group monotonic stochastic optimization with bandit feedback.

In this section, we consider the problem of minimizing a smooth and strongly convex func-

tion f(·) over the feasible set X under noisy bandit feedback, while ensuring that the deci-

sions monotonically (weakly) increase over time and while ensuring low regret. We denote

x∗ = argmaxx∈X f(x). As we noted earlier in Section 4.3.2, none of the existing stochas-

5We adopt the convention of “Group −i” indicating the group other than Group i. So, Group −1 refers to
Group 2, and Group −2 refers to Group 1.

92



Algorithm 7: Lagged Gradient Descent (LGD) (noiseless bandit)
input: strong convexity parameter α, smoothness parameter β, time horizon T , xmin

1 Set x′
1 ← xmin and x1 ← x′

1 + δ, and observe f(x′
1) and f(x1)

2 for t = 1, . . . , T/2 do
3 Let ∇̃t ← f(xt)−f(x′

t)
xt−x′

t

4 if − 1
β ∇̃t ≥ (1 + γ)δ then

5 Sample f(·) at x′
t+1 = x′

t − 1
β ∇̃t − δt+1 (lagged iterate)

6 Sample f(·) at x(t+1) = x′
t+1 + δt+1 (non-lagged iterate)

7 else
8 Exit from loop and stabilize at xt

tic optimization algorithms designed for this setting satisfy monotonicity.

Algorithmic approach. At their core, our algorithm relies on gradient estimates con-

structed from monotonic two-point function evaluations (i.e., “secant” information) to im-

prove decisions as in the well-known Keifer-Wolfowitz algorithm for convex optimization

with noisy bandit feedback [96]. Due to the monotonicity constraint, the challenge is to

ensure that sufficient progress is continually made towards reaching the optimal decision

using gradient information while avoiding excessively overshooting the optimum (since

backtracking is disallowed). There are two key algorithmic ideas we develop to tackle this

challenge: (a) taking gradient steps from a “lagged” point to avoid overshooting the opti-

mum, and (b) adapting the lag size to local gradient estimates to tailor the degree of caution

to the distance from the optimum point, while ensuring monotonicity.

Warm-up: the case of noiseless bandit feedback.We first consider algorithm design in the

noiseless bandit setting: a decision xt ∈ X 1
F = [xmin,∞) is made at each time t ∈ [T ], and

for each decision xt, the algorithm observes f(xt). The decisions made by the algorithm

are constrained to be monotone: x1 ≤ x2 ≤ · · · ≤ xT .

We present a monotonic procedure called LAGGED GRADIENT DESCENT (LGD) (Al-

gorithm 7) for this setting, which is a variation on classical gradient descent. At each round,

we use two queries (one at xt and one at the “lagged” point x′t = xt − δ) to estimate the

gradient. Since we need to ensure monotonicity of iterates, we need to sample first at the
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lagged point x′t and next at xt to get an estimate of the gradient. The size of δ will depend

on the time horizon T and be optimized for minimizing the regret of the overall scheme.

We then move by an amount proportional to the estimated gradient.

While increasing decisions, even in this non-noisy case, we need to be careful about

not excessively overshooting the optimum point, which could result in high regret due to

the monotonicity constraint that disallows backtracking. To avoid overshooting, we move

proportional to the gradient from the lagged point x′t instead of from xt. Since the estimated

gradient ∇̃t in LAGGED GRADIENT DESCENT is less steep than the true gradient at x′t, the

smoothness of f allows us to ensure that we never overshoot. However, since we jump

from x′t instead of xt, a small jump (of a magnitude smaller than |xt − x′t|) may violate

monotonicity. To avoid this, we jump forward only if the gradient is steep enough; in

particular, if the magnitude of the estimated gradient is at least β(1 + γ)δ, for some γ > 1,

defined in Theorem 4.1.

Lemma 4.2 below shows that the decisions resulting from LAGGED GRADIENT DE-

SCENT (LGD) are monotonic, they avoid overshooting, and their convergence rate to the

optimum is exponential.

Lemma 4.2. Let f : X 1
F → R be an α-strongly convex and β-smooth function. Let

x1, . . . , xT/2 be the non-lagged points generated by LAGGED GRADIENT DESCENT (Al-

gorithm 7), and assume that x1 ≤ x∗ = arg minx∈R f(x). Then, for γ > 1, the following

hold:

1. Decisions increase monotonically toward the optimum: x1 ≤ x2 ≤ x3 ≤ · · · ≤

xT/2 ≤ x∗;

2. The convergence rate is exponential up to halting: ht+1 ≤ h1 exp
(
− 2αct

)
, where

ht = f(xt)− f(x∗) and c = 1
2β
− 1

(1+γ)β
.

Proof. We begin by proving “1.” To show that we never overshoot, we will exploit smooth-
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ness. In particular, for any t such that xt ≤ x∗, we have

xt+1 − x′t = −
1

β
∇̃t = −

1

β
∇f(xt) for some xt ∈ [x′t, xt]

=
1

β
∥∇f(xt)∥ since xt ≤ x∗

≤ x∗ − xt assuming∇f(x∗) = 0

≤ x∗ − x′t .This proves “1.”

To show the convergence (“2”), first note that by α-strong convexity, we have that f(y) ≥

f(x)− 1
2α
∥∇f(x)∥2. For y = x∗, this becomes:

∥∇f(x)∥2 ≥ 2α
[
f(x)− f(x∗)

]
. (4.4)

Now we wish to bound the gap ht = f(xt)− f(x∗). For any t ≥ 2, we have

ht+1 − ht = f(xt+1)− f(xt)

≤ ∇⊤t (xt+1 − xt) +
β

2
(xt+1 − xt)

2 β-smooth

≤ (∇̃⊤t + βδ)(xt+1 − xt) +
β

2
(xt+1 − xt)

2 Lemma 2.1

= − 1

2β
∥∇̃t∥2 − δ∇̃t −

β

2
δ2 definiton of xt+1

≤ − 1

2β
∥∇̃t∥2 −

(
− ∇̃t

(1 + γ)β

)
∇̃t −

β

2
δ2 since − 1

β
∇̃t ≥ (1 + γ)δ

= −
(

1

2β
− 1

(1 + γ)β

)
∥∇̃t∥2 −

β

2
δ2

≤ −
(

1

2β
− 1

(1 + γ)β

)
︸ ︷︷ ︸

=:c

∥∇̃t∥2.

By the mean value theorem, there is some xt ∈ [x′t, xt] ⊂ [xt−1, xt] such that∇f(xt) = ∇̃t.

Using 4.4, we get: ht+1 − ht ≤ −c∥∇̃t∥2 = −c∥∇f(xt)∥2
4.4

≤ −2αc[f(xt) − f(x∗)] ≤
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−2αcht. Note that for γ > 1 as specified in the lemma, 2αc ∈ (0, 1). So,

ht+1 ≤
(
1− 2αc

)
ht ≤ · · · ≤

(
1− 2αc

)t
h1 ≤ h1 exp

(
− 2αct

)
.

With this convergence rate established, we can calculate a regret bound for LGD. We

can break the regret of this procedure into three categories: regret during exploration, regret

due to stopping (i.e., regret incurred after the “for loop” has ended), and regret due to

potential overshooting (which is 0 by Lemma 4.2). We balance these three to obtain an

O(1) regret bound.

Theorem 4.1. Assume that x∗ = arg minx∈R f(x) ∈ (xmin,∞), and fix δ = T−1/2 and

γ = 1 + 1
log T

. Then LAGGED GRADIENT DESCENT (Alg. 7) is a O(1)-regret CFTD al-

gorithm for optimizing an α-smooth and β-strongly convex function in the noiseless bandit

setting.

Proof. As stated in the theorem, fix δ = T−1/2 as the lag size. Since overshooting never

occurs (by Lemma 4.2), we need only calculate the exploration and stopping regret. By

Lemma 4.2, the exploration regret is bounded by 2
∑∞

t=1 h1 exp
(
− 2αc(t− 1)

)
, which is

constant.

Now we analyze the stopping regret. If the algorithm stops at some time t, then it must

be that

− 1

β
∇̃t ≤ (1 + γ)δ ,

which allows us to bound the gradient: ∥∇t∥ ≤ ∥∇̃t∥ ≤ (1 + γ)δ. In other words, if we

stop at time t, then ∥∇t∥ ∈ O(δ), for γ = 1 + 1
log T

. When ∥∇t∥ ≤ 3δ, Lemma 2.1 tells us
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Algorithm 8: Adaptive Lagged Gradient Descent (ADA-LGD)
input: convexity parameters α, β, time horizon T , xmin, initial lag size δ1, stopping parameter

γ > 1, q ∈ (0, 1), noise sub-Gaussian norm bound Emax, Hoeffding constant C

1 δi ← qi−1δ1 for i ≥ 2, ξ ← 1− q, n(d) =
64E2

max log 2
p

Cα2d4 for any d, x1 ← xmin + δ1, t← 1, i← 0
2 repeat
3 i← i− 1
4 repeat
5 i← i+ 1

6 f(xt − δi)← average of n(ξδi) samples at xt − δi // estimate f(xt − δi)

7 f(xt − δi+1)← average of n(ξδi) samples at xt − δi+1 // estimate f(xt − δi+1)

8 g
(i)
t ←

f(xt−δi+1)−f(xt−δi)+αξ2δ2i /4
ξδi

// compute the approximate secant

9 until − 1
β g

(i)
t ≥ (2 + γ)δi

10 f(xt)← average of n(δi) samples at xt // estimate f(xt)

11
˜̃∇t ← f(xt)−f(xt−δi)+αδ2i /4

δi
// compute the approximate secant

12 Compute xt+1 ← xt − 1
β

˜̃∇t − δi

13 t← t+ 1

14 until T samples have been taken

that ∥xt − x∗∥ ≤ 3δ/α, and so f(xt)− f(x∗) ∈ O(δ2) by β-smoothness. Hence,

regret ≤ 2
∞∑
t=1

h1 exp
(
− 2αc(t− 1)

)
︸ ︷︷ ︸

∈O(1)

+ Tδ2︸︷︷︸
∈O(1)

.

So, we get a regret of O(1).

Theorem 4.1 shows that imposing monotonicity has no (asymptotic) effect on the hard-

ness of the noiseless setting: a non-monotonic constant-regret procedure is already known

[91], and LGD is a monotonic constant-regret procedure.

One important aspect of the noiseless setting is that gradient estimation is easy: one

simply requires two samples, and additionally, the gap δ between the samples can be ar-

bitrarily small, resulting in arbitrarily accurate gradients. As we will discuss in the next

section, when noise is introduced, there is a trade-off between the magnitude of δ and the

number of samples required to accurately estimate the gradient. This tension ultimately

results in a higher regret bound.

The challenges posed by noisy bandit feedback. Recall that in the noisy bandit setting,
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upon querying the tth point xt, the algorithm observes f(xt) + εt, where the noise εt is

assumed to be independent, mean zero, and sub-Gaussian of bounded sub-Gaussian norm

(Assumption 4.2). To appreciate the complication added by the noise, let’s suppose we

try to replicate the approach in LAGGED GRADIENT DESCENT, in which we utilize secant

calculations with a fixed lag size δ to estimate the gradient step. In the absence of noise, the

secant is always sandwiched between the true gradients at xt and the lagged point xt− δ by

the mean value theorem. Thus moving from the lagged point using the secant ensures that

the algorithm never overshoots the optimum. But when the function evaluations are noisy,

multiple function evaluations are necessary to evaluate the secant accurately enough for this

sandwich property to hold. In particular, one can show that Θ(1/δ4) function evaluations

are necessary at the two points to get such an accurate secant estimate (Lemma 2.3). So,

if one uses δ = T−1/2 as in the analysis of noiseless LGD (Theorem 4.1), the number of

samples required at each point is Ω(T 2). Such high sampling rates may be acceptable when

the algorithm iterates are very close to the optimum, but will lead to a high (linear) regret

when the iterates are farther from the optimum. Thus, clearly, δ cannot be set to be that

small.

At the same time if δ is too large then the algorithm may stop far from the optimum,

since the local gradient may prematurely become small enough relative to the lag size that

jumping from a lagged point may violate monotonicity (i.e., the condition− 1
β
g < (1+γ)δ

is satisfied). Such premature stopping will again cause high regret. Later in Section 4.3.4,

we will see that one can set a fixed δ that optimizes this tradeoff and obtain a regret of

Õ(T 2/3) in the multi-group setting.

However, it turns out that we can do strictly better and obtain the near-optimal regret

rate of Õ(
√
T ) by choosing the lag sizes adaptively. The key idea is that if the algorithm

stops moving with a particular lag size δ, then we reduce the lag size so that the algorithm

can continue to proceed. This ensures that smaller lag sizes and correspondingly higher

sampling rates are utilized only when the iterates are closer to the optimum when they do
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not result in high regret.

This approach, however, presents a crucial challenge: when estimating the secant at a

point xt and a lagged point xt − δ, the decision of whether the lag size must be reduced

from δ to some smaller quantity must be made before we sample at xt to insure mono-

tonicity of the iterates. To address this challenge, we design a novel algorithm that respects

monotonicity while searching for the correct lag size.

Adaptive Lagged Gradient Descent. We develop a novel procedure called ADAPTIVE

LAGGED GRADIENT DESCENT (ADA-LGD) (Alg. 8) in this section. In this procedure,

there are “non-lagged” iterates, denoted as (xt)t∈N, and “lagged” iterates denoted in relation

to the non-lagged iterates, e.g., xt − δi for some specified i. For any non-lagged iterate xt

such that xt+1 = xt − 1
β

˜̃∇t − δi, we say that δi is the lag size of xt.

We now describe how ADA-LGD reduces the lag sizes in a monotonic manner. Suppose

the current lag size is δi, and we are sampling at xt− δi. Right after sampling at xt− δi, we

sample at xt − δi+1 (where δi+1 = qδi for some q < 1). This has the benefit of providing

a gradient estimate at xt − δi. This estimate in turn gives us an estimate of the gradient at

xt, which can be used in deciding whether or not the lag size should indeed be reduced to

δi+1 or lower. If yes, then we continue to sample at xt − δi+2 and continue the search for

the right lag size; else, we finally sample at xt and continue the secant descent procedure.

Such pre-emptive sampling to search for the correct lag size thus guarantees monotonicity.

In view of these dynamics, it is useful to think of the iterates with the same lag size

as forming a phase, where phases are numbered chronologically: Phase 1 is the phase

containing x1, Phase 2 is the next phase, and so on. The lag size associated to Phase j is

denoted δnj
. Since multiple lag sizes can be skipped between xt and xt+1, it may be the

case that ni+1 > ni + 1. For example, see Figure 4.1, where the first jump is taken with a

lag size of δ2 = qδ1. While sampling at x2 − δ2 and x2 − δ3, since the estimated gradient

is not steep enough, the algorithm begins sampling at x2− δ4. The algorithm decreases the
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pmin = x1 − δ1

x2 − δ2x1

x2 = x1 − δ2 − 1
β

˜̃∇1(x1 − δ2, x1)

x3 = x2 − δ5 − 1
β
˜̃∇2(x2 − δ5, x2)

x2 x3 − δ5 x3

x3

x4 = x3 − δ5 − 1
β

˜̃∇3(x3 − δ5, x3)

x5 = x4 − δ8 − 1
β
˜̃∇4(x4 − δ8, x4)

x4 − δ5 x4 x5 − δ8 x5

Figure 4.1: Illustration of the points: the algorithm starts exploring at pmin = x1 − δ1 followed
by x1 − δ2. In this case, Phase 1 consists of x1, Phase 2 consists of x2 and x3, Phase 3 consists of
x4, and Phase 4 consists of x5; the step-size indices are n1 = 2, n2 = 5, n3 = 8, and n4 = 9. The
computation of xt+1 is given by approximate gradient from the chosen lagged point, as depicted by

the dotted lines, using the estimate ˜̃∇t(xt − δi, xt) obtained by sampling at xt − δi and xt.

lag size twice more before deciding that δ5 is an appropriate lag size. In this case, x2 − δ5

is the “chosen” lagged point. Theorem 4.2 formalizes the regret guarantee achieved:

Theorem 4.2. Assume that x∗ = arg minx∈R f(x) ∈ (xmin,∞), and assume the noise

is mean zero, independent, and sub-Gaussian of bounded sub-Gaussian norm (Assump-

tion 4.2). Then ADA-LGD (Algorithm 8) satisfies CFTD and, on input of δ1 = 1/ log T ,

γ = 1 + 1
log T

, any q ∈ (0, 1), and p = T−2, incurs regret of order O
(
(log T )2T 1/2

)
.

There are several steps in the proof of Theorem 4.2, which is presented below. We

first show that all the secant estimates are accurate enough with high probability so that

the sandwich property holds, i.e., the secant is indeed sandwiched between the gradients at

the two points (Claim 4.1 in the proof). With this established, we show that overshooting

does not occur (Claim 4.2), that the iterates are monotonic (Claim 4.3), and that we achieve

exponential convergence to the optimum (Claim 4.4) (again, with high probability) across

all the iterates, regardless of lag size. The challenging part is to bound the regret from

non-lagged and lagged iterates, which we address separately. For each source of regret,
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we derive a key phase-dependent regret bound that is inversely proportional to the local

gradient in that phase; this bounds the regret from the early phases (Claims 4.5 and 4.6).

We finally bound the regret from the later phases by leveraging the fact that the iterates are

closer to the optimum. Balancing regret between early and late phases yields the Õ(T 1/2)

regret bound (Claim 4.7).

Proof of Theorem 4.2. For this proof, we introduce some additional notation for ease of

exposition. Following our notion of phases, we can uniquely associate to each xt a pair

(s, i) such that xt is the sth iterate in the ith phase; we denote such an iterate as xt = y
(i)
s .

So, e.g., in Figure 4.1, we see that x1 = y
(1)
1 , x2 = y

(2)
1 , x3 = y

(2)
2 , x4 = y

(3)
1 and x5 = y

(4)
1 .

We now proceed with the proof.

We break the proof into several claims. We refer to the estimated gradient at the δi-

lagged point as g
(i)
t = f(xt−δi+1)−f(xt−δi)+ε(ξδi)

ξδi
and the probability parameter of the algo-

rithm as p = T−2.

Claim 4.1 (gradient accuracy). Let ˜̃∇t = f(xt)−f(xt−δi)+ε(δi)
δi

be the estimated secant at

epoch t, and let g(i)t = f(xt−δi+1)−f(xt−δi)+ε(ξδi)
ξδi

, where δi = qi−1δ1 is the ith lag size and

ξ = 1− q. Then these gradient estimates of the algorithm satisfy

˜̃∇t ∈ [∇f(xt − δi),∇f(xt)] and g
(i)
t ∈ [∇f(xt − δi),∇f(xt − δi+1)]. (4.5)

each with probability at least (1− p)2, where p = T−2.

Note that for this choice of p, we have that (1 − p)T → 1. This claim follows imme-

diately from Lemma 2.3 since each of the estimates is constructed by sampling
4E2

max log 2
p

Cε(d)2

times, where ε(d) = αd2/4 and d is the gap between the two points at which we are sam-

pling (i.e., d = δi in the case of ˜̃∇t and d = ξδi in the case of g(i)t ).

Claim 4.2 (overshooting). Assuming (4.5) holds for all estimated gradients,6 and that x1 =

xmin + δ1 < x∗, then all the iterates x1, x2, . . . xk (for k ≤ T ) generated by the lagged

6This happens with probability at least (1− p)T .
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secant movements in the outer loop of the algorithm do not overshoot the optimum; that is,

xt ≤ x∗ for all t ≤ k. Note that this implies that all lagged points sampled by the algorithm

(i.e., those sampled between xt and xt+1, for some t) also do not overshoot.

PROOF OF CLAIM 4.2. We show this by induction, where the base case follows from

assumption that x1 ≤ x∗. Suppose xt ≤ x∗, and that xt+1 was chosen based on a lag size of

δi. In other words, xt+1 = xt− 1
β

˜̃∇t−δi, where ˜̃∇t =
f(xt)−f(xt−δi)+ε(δi)

δi
and ε(δi) = αδ2i /4.

By (4.5) and the mean value theorem, ˜̃∇t = ∇f(xt) for some xt ∈ [xt − δi, xt]. So,

xt+1 − (xt − δi) = −
1

β
˜̃∇t = −

1

β
∇f(xt) for some xt ∈ [xt − δi, xt]

=
1

β
|∇f(xt)| since xt ≤ x∗

≤ x∗ − xt since∇f(x∗) = 0 and f is smooth

≤ x∗ − (xt − δi).

This proves Claim 4.2. Claim 4.2

Claim 4.3 (monotonicity). Assuming (4.5) holds for all estimated gradients, and that x1 <

x∗, samples taken by the algorithm (including lagged and non-lagged iterates) are non-

decreasing.

PROOF OF CLAIM 4.3. Again, suppose that xt+1 was chosen based on a lag size of

δi. In other words, xt+1 = xt − 1
β

˜̃∇t − δi, where ˜̃∇t ← f(xt)−f(xt−δi)+ε(δi)
δi

and g
(i)
t =

f(xt−δi+1)−f(xt−δi)+ε
(
ξδi

)
ξδi

, where δi = qi−1δ1 is the ith lag sizes and ξ = 1 − q. Note that

ξδi = (xt − δi+1) − (xt − δi) is the domain gap between xt − δi and xt − δi+1. To show

monotonicity, we need to show that the next lagged point exceeds the current point; i.e.,

we must show that xt ≤ xt+1 − δi.

Note that the lagged step is taken only for the first δi that achieves − 1
β
g
(i)
t ≥ (2 + γ)δi.
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So,

− 1

β
˜̃∇t ≥ −

1

β
∇f(xt) by grad. bounds (4.5)

≥ − 1

β
(∇f(xt − δi) + βδi) β-smoothness

≥ − 1

β

(
g
(i)
t + βδi

)
by grad. bounds (4.5)

≥ (1 + γ)δi by assumption.

Since γ > 1 by assumption, we have that (xt+1−δi)−xt = − 1
β

˜̃∇t−2δi ≥ (1+γ)δi−2δi >

0. In other words, we do not break monotonicity. This proves Claim 4.3. Claim 4.3

Claim 4.4 (convergence rate). Assume (4.5) holds for all estimated gradients, and that

x1 < x∗. Now let ht = f(xt) − f(x∗) be the instantaneous regret at xt. Then ht+1 ≤

h1 exp(−2αct), where c = 1
2β
− 1

(1+γ)β
. In particular, letting h

(i)
t = f(y

(i)
t )− f(x∗) be the

instantaneous regret at the tth point of the ith phase, we have that

h
(i)
t+1 ≤ h

(i)
1 exp

(
− 2αct

)
(Phase i convergence), (4.6)

when at least t + 1 distinct, non-lagged points are sampled in Phase i. Moreover, across

non-trivial phases, we get a cumulative contraction:

h
(i)
1 ≤ h

(1)
1 exp

(
− 2αcki

)
when ki distinct non-lagged points are sampled up to Phase i.

(4.7)

Consequently, since each phase contains at least one non-lagged point,

h
(i)
1 ≤ h

(1)
1 exp

(
− 2αc(i− 1)

)
(inter-phase convergence). (4.8)

PROOF OF CLAIM 4.4. To show the exponential convergence rate in Claim 4.4, we

will show that the improvement ht − ht+1 at time t is of order at least (approximately)
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|∇f(xt)|2. This will imply, by the strong convexity assumption, a contraction in ht, which

gives us an exponential rate of convergence. To that end, suppose we jump from xt using a

lag size of δi; in other words, suppose xt+1 = xt − 1
β

˜̃∇t − δi. Then the following holds:

ht+1 − ht = f(xt+1)− f(xt) (4.9)

≤ ∇⊤t (xt+1 − xt) +
β

2
(xt+1 − xt)

2 β-smooth (4.10)

≤ (
˜̃∇⊤t + βδi)(xt+1 − xt) +

β

2
(xt+1 − xt)

2 by (4.5) (4.11)

= (
˜̃∇⊤t + βδi)(−

˜̃∇t − δi) +
β

2
(− ˜̃∇t − δi)

2 (4.12)

= − 1

2β
∥ ˜̃∇t∥2 − δi

˜̃∇t −
β

2
δ2i (4.13)

≤ − 1

2β
∥ ˜̃∇t∥2 −

− ˜̃∇t

(1 + γ)β

 ˜̃∇t −
β

2
δ2i (4.14)

= −
(

1

2β
− 1

(1 + γ)β

)
∥ ˜̃∇t∥2 −

β

2
δ2i (4.15)

≤ −
(

1

2β
− 1

(1 + γ)β

)
︸ ︷︷ ︸

=:c

∥ ˜̃∇t∥2. (4.16)

By (4.5) and the mean value theorem, there is some xt ∈ [xt − δi, xt] ⊂ [xt−1, xt] such

that∇f(xt) =
˜̃∇t, which gives:

ht+1 − ht ≤ −c∥
˜̃∇t∥2 = −c∥∇f(xt)∥2

≤ −2αc[f(xt)− f(x∗)] by (4.4)

≤ −2αcht by Claim 4.2.

For this to constitute a contraction, we need that (1 − 2αc) ∈ [0, 1). To that end, note

that 2αc =
[
1− 2

1+γ

]
α
β

. Since γ > 1 (as specified in the algorithm), 1 − 2
1+γ
∈ (0, 1),

and since 0 < α ≤ β, we have that α/β ∈ (0, 1]. It follows that 2αc ∈ (0, 1) ⊂ [0, 1), as

desired. This immediately gives a linear convergence rate:
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ht+1 ≤
(
1− 2αc

)
ht ≤ · · · ≤

(
1− 2αc

)t
h1 ≤ h1 exp

(
− 2αct

)
.

The contractions in (4.6)-(4.7) follow immediately, and (4.8) follows from the fact that if

y
(i)
1 = xt and y

(i+1)
1 = xs, then t < s. Claim 4.4

Claim 4.5 (regret from gradient descent jumps). Assume (4.5) holds for all estimated gra-

dients, and that x1 < x∗. Then, let regretLGD(k) be the total regret incurred during the first

k phases on the points xt, as well as the two lagged points just after xt (see the boxed points

in Figure 4.1); i.e., regretLGD(k) is the regret incurred during the following samplings:

• the
64E2

max log 2
p

Cα2δ4ni

samples at xs = y
(i)
t ,

• the
64E2

max log 2
p

Cα2ξ4δ4ni

samples at xs+1 − δni
, and

• the first
64E2

max log 2
p

Cα2ξ4δ4ni

samples at xs+1 − δni+1,

for phases i ∈ [k] (for any k) and their respective tth points. Then regretLGD(k) during the

first k phases is of order O
(
h log 1

p

δ41
+ log 1

p

∑k
i=1

1

|∇f(y(i+1)
1 )|2

)
.

PROOF OF CLAIM 4.5. As we progess toward the optimum, we potentially use smaller

and smaller lag sizes. This results in cumbersome sampling when close to the optimum. To

prove Claim 4.5, we will use the exponential decay of instantaneous regret to allay some

of this regret. Additionally, we will show that the instantaneous regret during Phase i is of

order δ2ni
; since the gradient at y(i)1 is of order δni

, this fact will ultimately ultimately allow

us to bound regretLGD in terms of gradients.

Recall that we are bounding regret incurred during the first k phases only, as stated in

the claim. Let q be the contraction in the lag sizes, i.e., δi+1 = qδi. We will bound the regret

at xt, xt+1 − δi, xt+1 − δi+1; among these three points, the instantaneous regret is highest

at xt, so we simply bound the instantaneous regret at each of these points by ht. For any i,

let T (i) be the index of the last point in Phase i; i.e., y(i)
T (i) is the last point in Phase i. The
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number of samples at each of these three points is bounded by
64E2

max log 2
p

Cα2ξ4δ4ni

, so this in turn

gives us the following upper bound, where h = f(xmin)− f(x∗):

regretLGD ≤
128E2

max log
2
p

Cα2ξ4δ41
h+

k∑
i=1

192E2
max log

2
p

Cα2ξ4δ4ni

T (i)∑
t=1

h
(i)
t

=
128E2

max log
2
p

Cα2ξ4δ41
h+

k∑
i=1

192E2
max log

2
p

Cα2ξ4q4niδ41

T (i)∑
t=1

h
(i)
t

=
128E2

max log
2
p

Cα2ξ4δ41
h+

192E2
max log

2
p

Cα2ξ4δ41

k∑
i=1

1

q4ni

T (i)∑
t=1

h
(i)
t

≤
128E2

max log
2
p

Cα2ξ4δ41
h+

192E2
max log

2
p

Cα2ξ4δ41

k∑
i=1

1

q4ni

T (i)∑
t=1

h
(i)
1 e−2αc(t−1) by (4.6)

=
128E2

max log
2
p

Cα2ξ4δ41
h+

192E2
max log

2
p

Cα2ξ4δ41

k∑
i=1

1

q4ni
h
(i)
1

T (i)∑
t=1

e−2αc(t−1)

≤
128E2

max log
2
p

Cα2ξ4δ41
h+

192E2
max log

2
p

Cα2ξ4δ41
(
1− e−2αc

) k∑
i=1

1

q4ni
h
(i)
1 .

To continue this analysis, we bound h
(i)
1 . To that end note that |∇f(y(i)1 )| < β(2 +

γ)δni−1, since a previous secant g must have satisfied − 1
β
g < (2 + γ)δni−1. So,

β(2 + γ)δni−1
(a)
> |∇f(y(i)1 )| = |∇f(y(i)1 )−∇f(x∗)|

(b)

≥ α|x∗ − y
(i)
1 |, (4.17)

where (a) follows from the fact that |∇f(y(i)1 )| < |∇f(y(i)1 − δj)| ≤ |g| for some j (by

(4.5)), and (b) follows from strong-convexity. Finally, by smoothness, we have

h
(i)
1

(c)

≤ β

2
(x∗ − y

(ni)
1 )2

(4.17)
<

β3(2 + γ)2

2α2
δ2ni−1 =

β3(2 + γ)2

2q2α2
δ2ni

, (4.18)

again where (c) follows from smoothness, since∇f(x∗) = 0.
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xtixti − δni
xti − δni+1xti − δni+2︸ ︷︷ ︸

ξδni

︸ ︷︷ ︸
ξδni+1

︸ ︷︷ ︸
ξδni+2

Figure 4.2: Points sampled while transitioning from lag size δni
.

Continuing the analysis from above, we have

regretLGD ≤
128E2

max log
2
p

Cα2ξ4δ41
h+

192E2
max log

2
p

Cα2ξ4δ41
(
1− e−2αc

) k∑
i=1

1

q4ni
h
(i)
1

≤
128E2

max log
2
p

Cα2ξ4δ41
h+

96E2
maxβ

3(2 + γ)2 log 2
p

Cα4ξ4δ41
(
1− e−2αc

)
q2

k∑
i=1

δ2ni

q4ni

=
128E2

max log
2
p

Cα2ξ4δ41
h+

96E2
maxβ

3(2 + γ)2 log 2
p

Cα4ξ4δ21
(
1− e−2αc

)
q2

k∑
i=1

q2ni

q4ni

=
128E2

max log
2
p

Cα2ξ4δ41
h+

96E2
maxβ

3(2 + γ)2 log 2
p

Cα4ξ4δ21
(
1− e−2αc

)
q2

k∑
i=1

1

q2ni
.

At this point, for convenience, we will replace 1
q2ni

with a gradient estimate. In particular,

let xti = y
(i+1)
1 be the iterate at which we jump using δni+1

for the first time. Then it must

be that |∇f(xti)| < β(2 + γ)δni
, or in other words, qni >

|∇f(xti )|
β(2+γ)δ1

. So, continuing the

inequalities above,

regretLGD ≤
128E2

max log
2
p

Cα2ξ4δ41
h+

96E2
maxβ

3(2 + γ)2 log 2
p

Cα4ξ4δ21
(
1− e−2αc

)
q2

k∑
i=1

1

q2ni
(4.19)

≤
128E2

max log
2
p

Cα2ξ4δ41
h+

96E2
maxβ

5(2 + γ)4 log 2
p

Cα4ξ4
(
1− e−2αc

)
q2

k∑
i=1

1

|∇f(xti)|2
. (4.20)

Claim 4.5

Claim 4.6 (regret from transitioning lag sizes). Assume (4.5) holds for all estimated gra-

dients, and that x1 < x∗. Here we bound the regret which is unaccounted for in Claim

4.5; i.e., we bound the regret incurred at exploratory lagged points. More precisely, let
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regretδ-transition(k) be the regret incurred from sampling at y(i+1)
1 −δni+1, . . . , y

(i+1)
1 −δni+1+1

for 1 ≤ i ≤ k. Then, regretδ-transition(k) ∈ O
(
log 1

p

∑k
i=1

1

|∇f(y(i+1)
1 )|2

)
, for any k ≤ T .

PROOF OF CLAIM 4.6. Here we bound the regret incurred while transitioning lag sizes

(e.g., the regret from the samples taken at points which do not appear in boxes in Figure

4.1). In order to bound the regret resulting from δ-transitions, we argue that whenever we

transition from phase ni, the current gradient is small in magnitude compared to δni
. This

allows us to bound the number of lagged points sampled during any transitions from δni
to

δni+1
, which in turn gives us a bound on the total regret resulting from these transitions.

Let t1, . . . , tk be such that xti = y
(i+1)
1 . To bound the regret from transitioning lag

sizes, let us consider the regret incurred transitioning from δni
to δni+1

, which happens at

time ti (note that ni and ni+1 are not consecutive if the algorithm goes down multiple lag

sizes during the same round). The regret incurred from transitioning to δni+1
is the regret

incurred at xti − δni+1, xti − δni+2, . . . xti − δni+1+1 (see Figure 4.2). Let us begin by

bounding the number of lag sizes that can be passed in one round. Suppose we sample at

xti − δni+j and decide to decrease the lag size to δni+j . In other words, we observe that

− 1

β
· f(xti − δni+j)− f(xti − δni+j−1) + ε(ξδni+j−1)

ξδni+j−1︸ ︷︷ ︸
=:g

< (2 + γ)δni+j−1 (4.21)

and therefore need to begin sampling at xti − δni+j+1. In this case, observe that

|∇f(xti)|
(a)

≤ |g|
(b)

≤ β(2 + γ)δni+j−1 = β(2 + γ)qj−1δni
.

where (a) follows from (4.5) and (b) from (4.21). Thus for

Ji = max

{
2,

⌈
1

log q
log

(
|∇f(xti)|
β(2 + γ)δni

)⌉
+ 1

}
,

we will not transition; i.e., ni+1 < ni + Ji and we will not sample at xti − δni+Ji+1.
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Next, we will bound the instantaneous regret incurred by sampling at xti − δni+j . Sup-

pose we have just transitioned to δni+j , and must now sample at xti−δni+j and xti−δni+j+1

in order to determine whether or not to reduce the lag size further. Since we have just tran-

sitioned to δni+j , we know that (4.21) holds. This in turn implies that

|∇f(xti − δni+j)| ≤ |g| < β(2 + γ)qj−1δni
.

So, the regret we get from each sample (whether at xti − δni+j or xti − δni+j+1), is

bounded by

f(xti − δni+j)− f(x∗) ≤ β

2α

[
β(2 + γ)qj−1δni

]2
=

β3(2 + γ)2q2(j−1)δ2ni

2α
. (4.22)

We can now calculate our regret from lag transitions as follows:
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regret
δ-transition ≤

k∑
i=1

Ji∑
j=1

128E2
max log

2
p

Cα2ξ4δ4ni+j

·
[
f(xti − δni+j)− f(x∗)

]
≤

k∑
i=1

Ji∑
j=1

128E2
max log

2
p

Cα2ξ4δ4ni+j

·
β3(2 + γ)2q2(j−1)δ2ni

2α
by (4.22)

=
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q2

k∑
i=1

1

δ2ni

Ji∑
j=1

1

q2j

≤
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q2
(

1
q2
− 1
) k∑

i=1

1

δ2ni

1

q2(Ji+1)

=
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

δ2ni

1

q2(Ji−2)

=
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

δ2ni

e(log q
−2)(Ji−2)

=
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

δ2ni

e
(log q−2)

(⌈
1

log q
log

(
|∇f(xti

)|
β(2+γ)δni

)⌉
−1

)

≤
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

δ2ni

e
(log q−2)

(
1

log q
log

(
|∇f(xti

)|
β(2+γ)δni

))

≤
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

δ2ni

e
2 log

(
β(2+γ)δni
|∇f(xti

)|

)

=
64E2

maxβ
3(2 + γ)2 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

δ2ni

(
β(2 + γ)δni

|∇f(xti)|

)2

=
64E2

maxβ
5(2 + γ)4 log 2

p

Cα3ξ4q8
(

1
q2
− 1
) k∑

i=1

1

|∇f(xti)|2
.

Claim 4.6

Claim 4.7 (total regret). Assume (4.5) holds for all estimated gradients, and that x1 < x∗.

Then the regret is of order (log T )2T 1/2, for δ1 = 1/ log T , p = T−λ for λ > 3/2, and

γ = 1 + 1
log T

.
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PROOF OF CLAIM 4.7. The expressions of regret in Claims 4.5 and 4.6 grow rapidly

as k increases, so we only use these expressions to bound regret in early phases. For later

phases, we argue that the gradient is small, which gives us a bound on the late-phase regret.

Balancing the regret between early and late stages ultimately achieves the claimed Õ(T 1/2)

regret bound.

In particular, we will break the regret from the δ-transition into two categories: the

regret when the gradient is small (|∇f(xti)| ≤ T−d) and the regret when the gradient is

large (|∇f(xti)| > T−d). If kd is the number of δ-transitions until |∇f(xti)| ≤ T−d, then

kd is of order log T . To show this precisely, observe that

|∇f(xti)|2 ≤
2β2

α

(
f(xti)− f(x∗)

)
smoothnes and str. convexity

≤ 2β2h
(1)
1

α
e−2αc(i−1).

So, if i > 1
αc

(
1
2
log

2β2h
(1)
1

α
+ d log T

)
+ 1, then |∇f(xti)| ≤ T−d. In turn, if |∇f(xti)| ≤

T−d, then

f(xti)− f(x∗) ≤ β

2α2
T−2d,

by smoothness and strong convexity. Now, define regret
δ-transition to be the total regret

from transitioning lag sizes over all iterations; that is, if m is the last phase of the algorithm

(which is well-defined since number of iterations is bounded by T ), then regret
δ-transition =

regret
δ-transition(m). Then we can bound regret

δ-transition as

regret
δ-transition = regret

δ-transition(kd) +
[
regret

δ-transition− regret
δ-transition(kd)

]
≤

64E2
maxβ

5(2 + γ)4 log 2
p

Cα3ξ4q8
(

1
q2
− 1
) kdT

2d +
β

2α2
T 1−2d.
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Setting d = 1/4 and bounding kd by
⌈

1
αc

(
1
2
log

2β2h
(1)
1

α
+ d log T

)⌉
+ 2, we get that

regret
δ-transition ∈ O

(
(log T )2T 1/2

)
.

Since regretLGD is of the same order as regret
δ-transition (ignoring the lower-order term

h log 1
p

δ41
),

regret ≤ (1− p)T
[
regretLGD +regret

δ-transition
]
+
(
1− (1− p)T

)
T

∈ O
(
(1− p)T (log T )2T 1/2 +

(
1− (1− p)T

)
T
)

= O
((
1− o(1)

)
(log T )2T 1/2 + o(T 1/2)

)
,

for p = T−λ, λ > 3/2. This gives us a regret bound of O
(
(log T )2T 1/2

)
.

The case of two groups.

Having developed a procedure that achieves near-optimal-regret for single-dimensional

monotonic stochastic convex optimization with bandit feedback, we now return to the prob-

lem of two groups.

Algorithmic Approach. Assume without loss of generality that max{s(1, 2), s(2, 1)} >

0 (otherwise if both are 0, then we get the single group case).7 Recall that we have to ensure

the constraint x1,t ≥ x2,t′ − s(1, 2) and x1,t ≥ x2,t′ − s(2, 1) for all 1 ≤ t′ ≤ t ≤ T . Our

overall approach is simply described as a continuous-time procedure in the case where we

have access to perfect gradient feedback, i.e.,∇fi(xi,t):

1. Coordinate descent phase (continuous-time). Starting with x1,0 = x2,0 = xmin,

pick an arbitrary coordinate, say i, and increase it while keeping the other coordinate

−i fixed until either (a) ∇fi(xi,t) = 0, or (b) xi,t = x−i,t + s(−i, i). Switch the

7While we require slacks to be nonnegative, the algorithm allows for negative slacks as well with a minor
adjustment. In particular, assuming that the feasible set of decisions is non-empty, we compute the minimum
decision on each dimension that is feasible. The algorithm then proceeds from this point.
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coordinate i← −i and repeat until, for both i = 1, 2, either xi,t = x−i,t + s(−i, i) or

∇fi(xi,t) = 0. Once that happens, go to step 2.

2. Combined descent phase (continuous-time). If ∇fi(xi,t) = 0 for both i = 1, 2,

then we are done – the CFTD constraint doesn’t bind and the unconstrained optimum

is the same as the constrained optimum. Else, there is some i∗ ∈ {1, 2} such that

∇fi(xi∗,t) = 0 and x−i∗,t = xi∗,t + s(i∗,−i∗) (since we assumed at least one slack

is non-zero). At that point, we can deduce that the corresponding CFTD constraint

will be tight at the optimum (which means we can again reduce to the single group

case). Then define g(x) = fi∗(x) + f−i∗(x+ s(i∗,−i∗)), and continue reducing xi∗,t

and x−i∗,t = xi∗,t + s(i∗,−i∗) jointly until∇g(xi∗,t) = 0.

It is clear that this continuous-time dynamic finds the constrained optimum while sat-

isfying CFTD. The challenge then is to convert this process into a practical discrete-time

procedure with only noisy bandit feedback on each dimension, while ensuring optimal

overall regret. To adapt the above continuous-time dynamic to a discrete-time setting with

noisy bandit feedback, we use a similar discretization as ADA-LGD, where for each coor-

dinate, we compute non-lagged iterates and slowly move towards the non-lagged iterates

using lagged iterates while searching for the right lag size to estimate the gradient. How-

ever, due to the two-group setting, a number of methodological adaptations must be made

to overcome the following challenges:

(1) the unconstrained optimality for a particular group, i.e., ∇fi(xi,t) = 0, can only be

approximately detected, which means that more care must be taken before entering

the combined phase;

(2) similarly, since the unconstrained optimality for a particular group can only be ap-

proximately detected, the trigger for switching between groups in the coordinate

descent phase must be adapted as well (recall that reaching optimality for a group

triggered the switch to the other group in the continuous-time method);
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Algorithm 9: Switch-then-Combine Adaptive Lagged Gradient Descent
(SCADA-LGD)

input: α strongly convex and β-smooth f(x1, x2) = f1(x1) + f2(x2), horizon T , slacks s(1, 2), s(2, 1), xmin, γ,
q ∈ (0, 1), ξ = 1− q, initial lag δ = δ(1) = δ(2), GRAD(x, y) = gradient computed using average of samples at x
and y (Lem. 2.3), n(d) = 64E2

max log 2
p
/(Cα2d4), where Emax is a bound on the noise, and C is the Hoeffding

constant.
1 Initialize queues to maintain tuples of (sampling point, number of samples, and the type of sampling point (S)):

Q1 = Q2 = {
(
xmin, n(ξδ), S = 1

)
,
(
xmin + ξδ, n(ξqδ), S = 2

)
,
(
xmin + δ, n(δ), S = 0

)
}

// S = k > 0 represents the kth lagged point, S = 0 represents a non-lagged point,
and S ∈ {−1,−2} represents the two feasibility iterates.

2 Initialize x1 = x2 = xmin

3 Coordinate Descent Phase:
4 while fewer than T samples have been taken do
5 Xi = [xi, x−i + s(i,−i)] for i = 1, 2 // current feasible points for Group i = 1, 2
6 if ∃j : Qj ∩ Xj ̸= ∅ then Set i ∈ {j |Qj ∩ Xj ̸= ∅}; else go to Combined Phase (line 10)
7 set switch = False
8 while Qi ∩ Xi ̸= ∅ do
9 Sample: Let (xi, nx, Si) be the lowest point to sample in Qi ∩ Xi by first coordinate (with ties broken

arbitrarily) and obtain nx samples of fi(xi); Update Qi ← Qi \ (xi, nx, Si)
10 Gradient checks based on type (Si) of xi:

(a) if xi is a jth lagged point (i.e., Si = j) and j > 1 then

if − 1
β

GRAD((j − 1)st lagged point, xi) < (1 + γ)δ(i):

Plan to sample next lagged point: Qi ← Qi∪ {
(
xi + ξqδ(i), n(ξqδ(i)), S = j + 1

)
}

δ(i) ← qδ(i) and adjust the sample size for the next non-lagged iterate in Qi to n(δ(i))

(b) if xi is a non-lagged point (i.e., Si = 0) then

Let g = GRAD(xi − δ(i), xi)

if − 1
β
g < T−1/4 then set Qi ← ∅ (never move group i in coordinate descent again)

else populate queue with the next non-lagged and lagged points:

Let y = xi − δ(i) − 1
β
g, and

Qi ← Qi ∪ {(y − δ(i), n(ξδ(i)), S = 1), (y − qδ(i), n(ξqδ(i)), S = 2), (y, n(δ(i)), S = 0)}

if lagged size has dropped enough so that δ(i) < δ(−i), then switch group: switch = True

(c) if xi is the second feasibility iterate (i.e., Si = −2) then

Let g = GRAD(previous feasibility iterate, xi)

if − 1
β
g ≥

(
(2+γ)β

qα
+ 1

)
δ(−i) then

set Q1, Q2 ← ∅ (i.e., enter the combined phase)

else if Q−i = ∅ then sample at (x1, x2) for the remaining time until T

Add feasibility iterates: if (switch = True or Qi ∩ Xi = ∅) AND δ(i) < δ(−i) then
set X−i ← [x−i, xi + s(−i, i)]

Q−i ← Q−i ∪ {
(
maxX−i − δ(i), n(ξδ(i)), S = −1

)
,
(
maxX−i − qδ(i), n(ξqδ(i)), S = −2

)
}

switch groups: i← −i

11 Combined phase:
12 while fewer than T samples have been taken do
13 Run ADA-LGD with previously sampled lagged points (with lags δ(−i) and qδ(−i)) on function h:
14 if Group 2 is tight, set h(x) = f1(x) + f2(x+ s(2, 1)); else set h(x) = f1(x+ s(1, 2)) + f2(x)

(3) recall that the analysis of ADA-LGD depended on controlling the lag sizes and re-

sulting gradient accuracy as the sampling process approached the optimum. Since
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the two groups may have different derivatives at the current point, their lag sizes may

differ significantly as well. This raises an issue as the group with the smaller deriva-

tive will spend more time sampling, thus causing the other group to incur regret in

the meantime;

(4) moreover, if the two groups have different lag sizes, this disparity must be reconciled

when entering the combined phase, where the groups must proceed jointly with a

single lag size.

We explain our novel discrete-time bandit algorithm SCADA-LGD below, which ad-

dresses these concerns.

Coordinate descent phase (SCADA-LGD). In the coordinate descent phase of SCADA-

LGD, each group maintains a queue of points to sample denoted as Qi for group i, and the

iterate with the minimum value for coordinate i is sampled first. As in ADA-LGD, we call

iterates computed using gradient jumps “non-lagged iterates” (i.e, xi ← xi−δ(i)−gi(xi)/β

where gi(xi) denotes the estimate of the gradient at xi), and we move towards non-lagged

iterates using “lagged iterates” (defined by xi − δ(i)) to control the accuracy of the gra-

dients. We additionally introduce a new set of iterates, which we refer to as “feasibility

iterates,” which are used to detect whether or not the combined phase should be initiated.

These iterates are used to provide the group with larger lag size (and thus a lower-accuracy

gradient estimate) with a higher-accuracy gradient estimate, thus alleviating concern (4) if

the combined phase is initiated.

The two groups are optimized in turn, one at a time, and the following values of gradi-

ents are used to detect various conditions:

(a) Low gradient accuracy: If the point sampled is the kth lagged point8 (k > 1), and

the gradient estimate is less than O(δ(i)), then we know that we need to sample the

8We do not compute the gradient for the first lagged point, since there is no “previous” lagged point with
which a difference quotient can be calculated. The samples taken at the first lagged point are only used to
estimate the gradients at the next lagged point.
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next lagged point (with a lower lag size) as well. As was the case for ADA-LGD,

this check allows us to continue converging to the optimum despite the low-gradient

condition being met.

(b) Low gradient or Switch to other group: If the point sampled is a non-lagged iterate

in group i, and the gradient estimated is small enough (i.e., less thanO(T−1/4)), then

we permanently switch to sampling group−i and never optimize group i in the coor-

dinate descent phase again. This is to ensure that group −i does not incur excessive

regret while group i is already close to its optimum and thus further improvements

to group i would take a large number of steps. Otherwise, the next non-lagged and

lagged iterates are computed (as in ADA-LGD) and added to the queue to sample.

If the lag size of group i is smaller than the lag size of group −i, then a switch to

optimizing group −i is triggered. This is to prevent the algorithm from devoting too

much time to one group without optimizing the other. Intuitively, if the slacks were

high enough that the constraints are never tight, then this would ensure that the lag

sizes of the two groups differ by at most a factor of q, in the coordinate descent phase.

(c) Combined Phase Trigger: When the next points to sample for group i are the two

feasibility iterates, then a gradient estimate is computed using the function values

at these two points. At this stage, we know that group −i is close to its optimum,

since feasibility iterates are only added in such a scenario. So, if the gradient is large

enough (i.e., greater than Ω(δ(−i))), then we can infer that group i is far from its

optimum, and this indicates that the CFTD constraint is tight at the joint optimum;

hence, in this case, the combined descent phase is triggered.

After these checks, it may be the case that (i) a switch to the other group was triggered,

or that (ii) there are no more feasible points for group i to sample. If either of these sit-

uations occurs, then the algorithm will switch groups, adding feasibility iterates to Q−i if

applicable (that is, if the lag size of group i is smaller than the lag size of group −i). If
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Figure 4.3: (left) An illustration of a potential decision trajectory of Algorithm 9, drawn
over a shaded decision space X 2

F . The red iterates are sampled to estimate f ′1, the blue
iterates are sampled to estimate f ′2, points marked with an “x” are lagged iterates, brown
vertices are the “feasibility check iterates” described in the algorithm, and pink iterates in
the combined phase. Points which are infeasible when calculated are shaded and will be
sampled if and when they become feasible. (right) An actual decision path generated by
Alg. 9, as discussed in Section 14.

neither (i) nor (ii) occur, then we remain on group i and repeat this process.

Combined descent phase (SCADA-LGD). The decisions for the two groups are locked

together once the combined phase is initiated. This means that the function f(x1, x2) can

be expressed as a single-variable function h(x) = f1(x)+ f2(x+ r) for some r ∈ R. Since

feasibility iterates were sampled in the group with larger lag size, both groups enter the

combined phase with similar-accuracy gradients, which provide the first gradient estimate

of h. At this point, ADA-LGD is run on h for the remainder of the time horizon.

The following result shows that SCADA-LGD achieves an order-optimal (up to poly-

logarithmic factors) regret guarantee.

Theorem 4.3. Assume that f(x1, x2) = f1(x1)+f2(x2) is α-strongly convex and β-smooth

function, (x∗1, x
∗
2) = arg min(x1,x2)∈R2 f(x1, x2) ∈ (xmin,∞)2, and that the noise is mean

zero, independent, and sub-Gaussian of bounded sub-Gaussian norm (Assumption 4.2).

Then SCADA-LGD (Alg. 9) satisfies CFTD and, on input of δ = 1/ log T , γ = 1 + 1
log T

,

any q ∈ (0, 1), and p = T−2, incurs Õ
(
T 1/2

)
regret.

Proof. Algorithm 9 is composed of two phases: (1) a coordinate descent phase, in which
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F with the following scenario in Alg. 9: Group 2 has un-
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lagged points, filled-in circles the non-lagged points, and empty circles the feasibility iter-
ates; gradients of f1 are estimated at red nodes, and gradients of f2 are estimated at blue
nodes. g1, . . . , g4 denote gradient estimates obtained from the two nodes indicated by the
brackets. The orange square of side length D

(
δ(2)
)

is relevant to Claims 4.8-4.9.

ADA-LGD (Alg. 8) is run separately on the two groups, and the group being optimized

changes each time a lag size is contracted; and (2) a combined phase, where the decisions

for one group are locked with respect to the decisions for the other, and the two are opti-

mized simultaneously. Much of the analysis is identical to that of Algorithm 8; as such, we

focus on the differences, and break up the argument into claims.

Claim 4.8. Suppose δ(2) < δ is the lag size for Group 2, and Group 1 has hit the boundary

of the feasible region (see Fig. 4.4) at (x(1), x(2)). Then the following hold with probability

at least (1− p)4:

• if x∗1 − x1 ≤ D(δ(2)), then the algorithm does not enter the combined phase; and

• if x∗1 − x1 ≥ D(δ(2)) +H(δ(2)), then the algorithm enters the combined phase.

Proof of Claim 4.8. First suppose that x∗1−x1 ≤ D(δ(2)). Then by smoothness, we have

that |f ′1(x1)| ≤ βD(δ(2)) = (2 + γ)β
2

α
· δ(2)

q
. Now let g1 be the gradient estimate obtained
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from points x1 − δ(2) and x1 − qδ(2), as shown in Figure 4.4. Then

− 1

β
g1 =

1

β
|g1| ≤

1

β
|f ′1(x1 − δ(2))|

≤ 1

β
|f ′1(x1)|+ δ ≤ D(δ(2)) + δ(2)

= (2 + γ)
β

α
· δ

(2)

q
+ δ(2)

with probability at least (1 − p)2. In this case, the algorithm does not enter the combined

phase.

Now suppose that x∗1−x1 ≥ D(δ(2))+H(δ(2)). Expanding this expression, we get that

x∗1 − x1 ≥ (2 + γ)β
2

α2 · δ
(2)

q
+ βδ(2)

α
. This implies by strong convexity that

|f ′1(x)| ≥ (2 + γ)
β2

α
· δ

(2)

q
+ βδ(2).

Since |g1| > |f ′1(x)|with probability at least (1−p)2, it follows that− 1
β
g1 ≥ (2+γ)β

α
· δ(2)
q
+

δ(2) with the same probability. Hence, in this case, the algorithm will enter the combined

phase. Claim 4.8

Claim 4.9. Let g1 be the gradient estimated at the feasibility iterates (see Figure 4.4), and

let z∗ = (x∗1, x
∗
2) be the unconstrained optimum.

• If z∗ ∈ X 2
F , then the algorithm never enters the combined phase.

• If the algorithm enters the combined phase based on the gradient estimate g1 (as in

Fig. 4.4), then − 1
β
g1 ≥ (2 + γ)δ(2).

Proof of Claim 4.9. We begin with the first claim. It is enough to show that Group 1

sampling will not induce a transition to the combined phase, given that Group 2 has already

undergone at least one lag size transition. As in Claim 4.9, let δ(2) < δ be the current lag

size of Group 2. We will argue that the Group 2 gradient must be small, since this group

has transitioned from the previous lag size δ(2)/q; thus, the optimum x∗2 of f2 must be close
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to the current point x2.

To that end, let g4 be the gradient which induced the transition to δ(2) (see, e.g., Fig.

4.4). It follows that − 1
β
g4 < (2 + γ) δ

(2)

q
. Let y be the non-lagged iterate corresponding to

g4 (so, in Fig. 4.4, y = x2). Then α|x∗2 − y| ≤ |f ′2(y)| < |g4| < (2 + γ)βδ(2)/q. It follows

that

|x∗2 − x2| ≤ |x∗2 − y| < (2 + γ)
β

α
· δ

(2)

q
= D

(
δ(2)
)
. (4.23)

Since we are assuming that z∗ ∈ X 2
F , it must be that |x∗1− x1| ≤ D

(
δ(2)
)

as well. Thus, by

Claim 4.8, the algorithm will not enter the combined phase with high probability.

To prove the second statement, let g1 be the gradient estimate (in the Group 1 direction)

which induced the transition to the combined phase (see, e.g., Fig. 4.4). Then, since α ≤ β

and 0 < q < 1,

− 1

β
g1 ≥

(
(2 + γ)β

qα
+ 1

)
δ(2) > (2 + γ)δ.

In other terms, since the algorithm transitions to the combined phase only when the gra-

dient in the Group 1 direction is large enough, a lag size transition will not be triggered.

Claim 4.9

Claim 4.10. The feasibility check iterates (e.g., the brown nodes in Figure 4.3) increase the

overall regret during the coordinate phase by at most a factor of two.

Proof of Claim 4.10. Feasibility check iterates are sampled Õ(1/δ4i ) times, where δi

is the current lag size of the other group. Thus the regret incurred at the two feasibility

check iterates is strictly less than the regret incurred at the previous two lagged iterates in

the other group. Claim 4.10

Claim 4.11. Let δn1 > · · · > δnm be the distinct non-trivial lag sizes of Group j (excluding

δ if δ is a non-trivial lag size), where δi = qiδ. Defining n0 = 0, we have that ni+1 − ni ∈

O(1) for 0 ≤ i < m. Moreover, the number of gradient-scaled jumps taken with lag size

δni
is constant as well, for 1 ≤ i ≤ m.

Proof of Claim 4.11. Let us begin by bounding ni+1 − ni, for i ≥ 1. Let xti+1
denote
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the first non-lagged iterate which admits a lag size of δni+1
. In this case, the previous non-

lagged iterate x admitted a lag size of δni
. We can show that the gradient estimate g at x is

an underestimate (in magnitude) by O(δni
):

g ≥ fj(x)− fj(x− δni
)

δni

≥ ∇fj(x− δni
) +

α

2
δni

by the Sandwich Lemma (Lem. 2.3) and strong convexity. Thus xti+1
must be shy of

the optimum by at least Ω(δni
), and thus has gradient of order Ω(δni

). Since the gradient

changes by at most a constant factor from x to xti+1
, the number ni+1 − ni of transient lag

sizes must also be constant.

The above argument can be extended to bound n1 as well. If the initial lag size of δ

was non-trivial (i.e., some gradient-scaled jump was made using a lag size of δ), then the

above argument hold verbatim. Otherwise, the initial non-lagged iterate (xmin + δ) has a

gradient of magnitude O(δ). However, since δ = 1/ log T and the optimum is assumed to

be strictly greater than zero, we may assume that T is large enough so that the gradient at

xmin + δ is large with respect to δ.

Finally, we argue the “moreover” claim. While δni
is the lag size, the gradient has mag-

nitude Θ(δni
). Once the gradient drops below O(qδni

), a lag transition is initiated. Since

the gradient-scaled jumps yield linear convergence, t jumps with lag size δni
would yield

instantaneous regret of order e−tδ2ni
. For t ∈ O(1), this would result in an instantaneous

regret of order (qδni
)2, which would trigger a lag size transition. Claim 4.11

Claim 4.12. The waiting regret (i.e., the regret incurred by Group 1 over the blue nodes

and by Group 2 over the red nodes in Figure 4.3) is Õ(T 1/2).

Proof of Claim 4.12. Note that smaller lag sizes require more sampling: if δ(2) < δ(1),

then more time will be spend sampling f2 at x2 − δ(2) and x2 − qδ(2) than will be spent

sampling f1 at x1 − δ(1) and x1 − qδ(1). In order to capture worst-case waiting regret for a

group, we will consider the case where δ(2) ≤ δ(1) at all times and bound the waiting regret
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of Group 1.

Let δn1 > · · · > δnm be the non-trivial lag sizes used by Group 2 (excluding δ, if δ is

a non-trivial lag size). Note that δn1 is not necessarily δ, and δni+1
/δni

is not necessarily

q. For each i, let Ti denote the number of samples taken where δni
is the lag size or in

transitioning to δni+1
. Thus, letting T0 denote the number of samples prior to δn1 , we have

that
∑m

i=0 Ti = T .

We will now bound the waiting regret of Group 1 during these m + 1 phases. First,

consider the time period associated with Ti, for any 1 ≤ i ≤ m. During this phase, Group

2 has already transition to a lag size of δni
from a lag size of δni

/q. Note that once this

transition is made, the algorithm switches to optimizing over Group 1. Since the algorithm

did not enter the combined phase in the previous round, it must be that the gradient in the

Group 1 direction is of order δni
. Thus, the total waiting regret for Group 1 is of order

T0 +
m∑
i=1

Tiδ
2
ni
.

Now let us consider bounds on Ti, for 0 ≤ i ≤ m. By Claim 4.11, we know that

the number of gradient-scaled jumps that Group 2 takes during this phase is constant, and

similarly the number of lags transitions (i.e., ni+1 − ni) is also constant. It follows that

Ti ∈ Õ(δ−4ni
).

We can similarly bound T0. As in the previous calculations, we will ignore constants

for simplicity. To bound T0, we first bound the number of gradient-scaled jumps before the

current gradient is of order qδ (as this would trigger a lag size transition). To that end, the

linear convergence rate of ADA-LGD (Alg. 8) implies that the gradient after t gradient-

scaled jumps is of order e−tM2, where M = max(x,y)∈X 2
F
|f ′2(y)|. It follows that the gradi-

ent is of order qδ after ln M
qδ

jumps; since δ = 1/ log T , the total number of gradient-scaled

jumps before the first lag size transition is of order log log T . Finally, by Claim 4.11, n1 is

constant as well, which implies that T0 ∈ O
(
(log T )5 log log T

)
.
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Putting all of this together, the waiting regret for Group 1 is of soft order
∑m

i=1 δ
−2
ni

.

Letting x2,ti denote the first non-lagged iterates for Group 2 to admit a lag size of δni
, we

have that |∇f2(x2,ti)| ∈ Θ(δni
). Thus we can rewrite the waiting regret for Group 1 as∑m

i=1 1/|∇f2(x2,ti)|2. Finally, since we stop optimizing over Group 2 when its gradient is

bounded in magnitude by T−1/4, we can bound this further by mT 1/2. Since there can be

at most logarithmically many gradient-scaled jumps before the gradient is of order T−1/4,

the waiting regret is Õ(T 1/2). Claim 4.12

Since the combined function h is α-strongly convex and β-smooth, we have the same

convergence rate for the combined phase as before. Moreover, since the algorithm does not

erroneously enter the combined phase with high probability, the optimum of h is the same

as the constrained optimum with high probability. Thus, the regret analysis of Algorithm 8

carries over.

Numerical validation

To validate the CFTD behavior of SCADA-LGD, we run it on a synthetic example. The

functions being optimized are f1(x) = (x − .6)2/.36 and f2(x) = (x2 − .1)2/.81, which

are chosen so that

min
x∈[0,1]

f1(x) = min
x∈[0,1]

f2(x) = 0 and max
x∈[0,1]

f1(x) = max
x∈[0,1]

f2(x) = 1.

A sample decision path for this input over T = 10, 000 time periods is shown in Figure 4.3

(right), where the initial decision is (0, 0), and the decisions increase in both coordinates

over time. Note that Group 1 overshot its optimum slightly in this run, but the decision path

did not overshoot its joint constrained optimum.
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Figure 4.5: Illustrative decision paths of three groups under C2-LGD (Algorithm 10).
Points at which groups hit the low-gradient condition are marked. At point x1, Groups 1
and 2 are combined, and at point x2, Group 3 is combined with the other two groups.

4.3.4 Algorithm design and analysis for N groups

We now consider the multi-group setting beyond two groups. In this case, an overall ap-

proach similar to the two-group case can be used when perfect gradient feedback is avail-

able. The groups can take turns ascending along their coordinate until they either hit a

constraint boundary or meet the local optimality condition∇fi = 0. When all groups have

stopped moving, each group that has stopped because it hit a constraint boundary can be

associated with a group that has stopped because ∇fi = 0, by tracing the path of tight

CFTD constraints leading up to this group (there could be more than one such group). We

can thus partition the groups into disjoint clusters, where each cluster is associated with a

set of groups that have stopped because ∇fi = 0. Each such cluster moves together from

that point onwards, with the relative positions of the different groups in the cluster locked.

We then continue the procedure with these clusters as the new groups and so on, until all

current clusters are at their optimum.

However, in the case where only noisy bandit feedback is available, similar challenges

arise as in the two-group setting in converting this high-level approach to a practical algo-

rithm that incurs near-optimal regret. Since we anticipate the details of such an algorithm

to be quite cumbersome, we instead consider a simpler approach where we use static lags
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instead of dynamic lags. In particular, unlike the two-group setting, where a decision for

a group is allowed to increase despite meeting the low gradient condition by adaptively

choosing a lower lag size, with a static lag, each group (or a cluster) meets the low gradient

condition at most once. The algorithm initially considers each group to be its own clus-

ter. Each cluster is optimized in turn sampling at the next feasible point or moving to the

boundary if no feasible points exist. If no clusters can move and not all clusters are at a low

gradient, then one of the high-gradient clusters is combined with one of its constraining

low-gradient clusters, and the process continues. This process, which we call CYCLE-

THEN-COMBINE LAGGED GRADIENT DESCENT (C2-LGD), is described formally in Al-

gorithm 10. A sample decision path of this algorithm for the case of three groups is shown

in Figure 4.5.

We show below that this algorithm attains Õ(N3T 2/3) regret. That said, we conjecture

that an asymptotically better regret bound of Õ(
√
T ) can be obtained using a dynamic-lag

approach, where the latter Õ hides dependence on N .

First, I introduce some notation that will be used in the multi-group algorithm (Algo-

rithm 10), starting with the succession function, which cycles between the different clusters

of groups.

Definition 4.2 (succession function). Let N ∈ N and let Π be a partition of [N ]. For any

A ∈ Π, define the successor

φ(A; Π) :=


argmin

B∈Π:minB>minA
minB if ∃B ∈ Π with minB > minA

argmin
B∈Π

minB else.

Note that φ( · ; Π) corresponds to the linear ordering of Π by the minimum elements of

its blocks.

Next, we define the feasibility distance, which quantifies the extent to which a cluster

A can move without violating any of the constraints.
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Definition 4.3 (feasibility distance). Let N ∈ N, let ∅ ≠ A ⊊ [N ], let s : [N ]×[N ]→ R≥0,

and let x ∈ RN satisfy. Then the feasibility distance of A is d(A;x) = mini∈A,j ̸∈A xj +

s(i, j)− xi.

With these definitions in mind, we outline our N -group algorithm, CYCLE-THEN-

COMBINE LAGGED GRADIENT DESCENT (C2-LGD) (Alg. 10). The high-level idea of

the algorithm is to maintain a clustering (i.e., a partition) of the groups, optimize each

cluster separately in coordinate-descent fashion, and combine clusters whenever none can

move and doing so would loosen a tight constraint. These ideas are described in more detail

below.

Making gradient-scaled jumps. As with all other algorithms presented in this paper,

gradients are estimated using a lagged and non-lagged point. However, while ADA-LGD

and SCADA-LGD used adaptive lag size, C2-LGD uses a fixed lag size δ, which greatly

simplifies algorithm design and analysis. In C2-LGD, whenever a cluster’s gradient be-

comes smaller than O(δ), it can no longer move without risking breaking monotonicity,

so it is no longer optimized in isolation (although it may be optimized further after being

combined with another cluster).

Switching between clusters. Since all clusters have the same lag size, each cluster

takes the same number of samples to make a gradient-scaled jump. Thus, there is no con-

cern over one cluster obtaining copious amounts of regret while another cluster is sampling

at a single point. We can therefore employ a simple trigger: switch to the next cluster after

(1) a point has been sampled, or (2) the boundary has been hit.

Combining clusters. Suppose we have reached a point where no cluster can move. If

all clusters are at a low gradient, then we have reached an approximate optimum, and no

further movements are made. Otherwise, there are clusters at tight constraints. In this can,

we argue that there must be a low-gradient cluster which is preventing a tight cluster from

moving without violated the CFTD constraint. In this case, we combine two such clusters

and continue.
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Theorem 4.4. Assume that f(x) =
∑N

i=1 fi(xi) is α-strongly convex and β-smooth, x∗ =

argminx∈RN f(x) ∈ (xmin,∞)N , and the noise is mean zero, independent, and sub-

Gaussian of bounded norm (assumption 4.2). Then C2-LGD (Alg. 10) satisfies CFTD

and, on input of δ = T−1/6, γ = 1 + 1
log T

, and p = T−2 is Õ(N3T 2/3)-regret.

Proof of Theorem 4.4. First, we argue that Algorithm 10 run on a single group would re-

sult in Õ(T 2/3) regret. To that end, we bound the pre-stopping regret and the post-stopping

regret separately. Since the convergence rate is exponential, the number of queried points

is bounded by a constant. Since each point is queried Õ(δ−4) times, the total regret from

exploration is Õ(δ−4). Next, since the algorithm stops when the gradient is of order δ, the

instantaneous stopping regret is of order δ2. Since overshooting is avoided with high prob-

ability, the total regret is Õ(δ−4+Tδ2) = Õ(T 2/3). Next, we return to the N -group setting.

Before bounding the regret, we prove that the algorithm never encounters a situation where

all clusters are constrained by each other.

Claim 4.13. Suppose the condition at line 6 (that no clusters can move and not all clusters

are at a low gradient) is satisfied. Then either (1) some subset of clusters is locked in place

with respect to each other (i.e., their joint feasible decisions form a line), or (2) some cluster

must be at a low-gradient condition and constraining the movement of another cluster.

To prove this claim, suppose (1) does not hold, and suppose C1, . . . , Ck are the current

clusters. For each j ∈ [k], let ij = minCj be a representative group from cluster Cj . We

can therefore represent the constraints placed on Cj by linear inequalities on xij ; i.e., for

each j ̸= m ∈ [k], there exist bj,m ∈ R such that

xij ≤ xim + bj,m

is the constraint placed on Cij by Cim . Moreover, since the slacks s(·, ·) are nonnegative,

bj,m ≥ 0.

Now consider the directed graph G = ({C1, . . . , Ck}, A), where the arc (Cij , Cim)
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means that Cij is constrained by Cim (i.e., xij = xim + bj,m). We now argue that this graph

must be acyclic. For the sake of contradiction, suppose that there is a cycle (j1, . . . , jℓ);

i.e.,

xij1 = xij2 + bj1,j2

...

xijℓ−1
= xijℓ + bjℓ−1,jℓ

xijℓ = xij1 + bjℓ,j1 .

This implies that xij1 ≥ · · · ≥ xijℓ ≥ xij1 . If these inequalities are all equalities, this

contradicts our assumption that (1) does not hold; otherwise, if one of the inequalities is

strict, this also yields a contradiction. Thus, G is acyclic.

Now, choose any cluster C which has at least one out-going arc (which must exist, since

not all clusters are at a low gradient). Find a maximal directed path beginning at C, and let

(Cij , Cim) be the terminal arc. Since G is acyclic, there are no out-going arcs from Cim ,

which means that Cim is at a low gradient and is constraining the movement of Ci+j . This

proves the claim.

The previous claim shows that the algorithm operates without getting stuck. Next, we

bound the cluster-combining regret and stopping regret separately.

Regret from erroneously combining clusters

Claim 4.14. The total regret incurred due to erroneously combining clusters (i.e., combin-

ing clusters whose joint unconstrained optimum is in the interior of the feasible region) is

of order Õ(N3Tδ2).

To justify Claim 4.14, first note that clusters are combined at most N−1 times through-

out a run of the algorithm. We define f 1
i = fi to be the initial group-specific functions.

Each time clusters are combined, we define a new set of functions which are “close” to the
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previous set of functions, and for which the clusters were combined correctly.

Suppose that clusters have been combined k times, and the current partition of the

groups is Ck = {Ck
1 , . . . , C

k
N−k}. For any cluster C, we define minC to the the represen-

tative group of that cluster. Thus, there exists a sequence of gaps η ∈ RN such that the

function evaluation at a point x ∈ R for cluster C can be expressed as

fkC(x, η
k) :=

∑
j∈C

fkj (x+ ηkj ).

Suppose we are combining clusters C and D at the representative points (xt, yt). With-

out loss of generality, suppose C is tight and D is at a low gradient. Then the slacks s and

the current lockings induce linear constraints x ≤ y + bC,D and y ≤ x + bD,C for some

bC,D, bD,C ≥ 0, where x is the representative decision for cluster C, and y for cluster D.

Since C is tight, we have that xt = yt + bC,D, and since D is at a low gradient condition,

|(fkD)′(yt, ηk)| ∈ O(δ) with high probability.

Let XC,D be the polyhedron in R2 defined by the constraint imposed on C by D and

vice versa (i.e., the gray region in Figure 4.6). Now let (x′, y′) = argmin(x,y) f
k
C(x, η

k) +

fkD(y, η
k). With high probability, we have not overshot in either the C or the D direction.

So, if (x′, y′) ̸∈ XC,D, then we have correctly combined the clusters. Otherwise, (x′, y′) ∈

XC,D (see Figure 4.6 for a depiction of this scenario). In this case, |y′ − yt| ∈ O(δ) and

|x′−xt| ∈ O(δ). So, letting (w1, w2) be the projection of (x′, y′) onto the facet x = y+bC,D,

and letting (ρ, ρ) = (x′, y′)− (w1, w2), we have that ρ ∈ O(δ).

Now let ηk+1 be the new gaps after combining clusters C and D. To account for the

O(δ) error from combining C and D, we consider a new function

fk+1
C∪D(x, η

k+1) =
∑
i∈C∪D

fk+1
i (x+ ηj),

where fk+1
i (x) = fki (x+ρ). For all other clusters E, we define fk+1

E = fkE . Thus, with high

probability, according to the functions fk+1
1 , . . . , fk+1

N , we have not erroneously combined
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clusters. Moreover, for any i and any m ≤ N − 1, we have that fmi (x) = fi(x + r) for

some r ∈ O(Nδ). This will allow us to bound the regret of the original function f with

respect to the modified function fm.

To that end, suppose we arrive at a point where xt is within Nδ of the constrained

optimizer of fm. Then, letting z denote the constrained optimizer of f , we have that ∥xt −

z∥2 ∈ O(N3/2δ), since the optima differ by at most Nδ in each coordinate. So, the worst-

case stopping regret in the case of erroneously combining lags is TN3δ2.

Stopping regret

Claim 4.15. Suppose C2-LGD has reached a point where each cluster has met the low-

gradient condition. Then the regret incurred during the remainder of the time horizon is of

order Õ(NTδ2).

To justify Claim 4.15, suppose that the algorithm reaches a point where all the clusters

C1, . . . , Ck have reached the low-gradient condition. So, for all i ∈ [k], letting gCi
=∑

j∈Ci
g(j), we have that |gCi

| ∈ O(δ) with high probability. Let fCi
(x) =

∑
j∈Ci

fj(x+ηj)

for the appropriate shifts η, and let z∗Ci
= argmin fCi

(x). Note that gCi
is the gradient of

fCi
. Then, letting xt denote the current point for Ci, we have that ∥xt − z∗Ci

∥ ≤ δ
α

, and so

fCi
(xt)− fCi

(z∗Ci
) ≤ ∇fCi

(z∗Ci
)⊤(xt − z∗Ci

) +
β

2
∥xt − z∗Ci

∥2 = β

2
∥xt − z∗Ci

∥2 ∈ O(δ2)

Since this is true of all clusters, we have that f(x)−f(z) ∈ O(Nδ2), where x is the current

point, and z is the optimum subject to the current lockings. By the above bound on regret

due to erroneously combining groups, we have that

f(x)− f(z∗) ∈ O(N3δ2),

where z∗ is the constrained optimum.
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XC,D

(x′, y′)

(w1, w2) = Proj(x′, y′)

(xt, yt)

Decision path where previous
iterates where sampled

O(δ)

x
≤
y
+
bC
,D

y
≤
x
+
bD
,C

Figure 4.6: Illustration of an erroneous entering of the combined phase, relevant to the
O(δ2) regret bound of Theorem 4.4. Here, XC,D is the set of feasible points constrained by
EFTD slacks on clusters C and D. In this scenario, the combined phase for clusters C and
D is entered at (xt, yt) (thereafter, the iterates will lie on the tight constraint), despite the
fact that the unconstrained joint optimum (x′, y′) for these two clusters is in the interior of
XC,D. As discussed in the proof, one can ensure with high probability that (x′, y′) is O(δ)
away from (xt, yt) in both coordinates, implying that it is O(δ) away from its projection
(w1, w2) onto the facet x = y + bC,D.

Total regret

In addition to the regret described above, we have the exploration regret of Õ(Nδ−4) and

the waiting regret of Õ(Nδ−4). In sum, the total regret is of order Nδ−4+N3Tδ2. Choosing

δ = T−1/6, we get a regret bound of Õ(N3T 2/3).

4.4 Discussion: Unfairness and Perceptions thereof

Notions of comparative fairness, such as individual fairness (Section 2.1), are based on the

idea that similar individuals should receive similar decisions. In online settings, where out-

side factors can change over time, this is arguably not necessarily the case. For instance,

someone of context c1 may be offered a price of $1 today; the next day, there may be a

supply shortage that causes someone of context c2 to receive a price of $3. From the per-
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spective of c2, this may seem unfair, but the actual unfairness of this situation is debatable.

In general, there may be a difference between perceptions of unfairness and unfairness

itself, since perceptions of unfairness are often relative [101, 102, 103, 26, 104].

In deciding on a temporal fairness constraint, one can try to account for these differ-

ences. For example, if one wishes to allow for price increases to account for inflation, then

the monotonicity constraints could be relaxed to the following, for some s(i, i) < 1.

xi,t+1 ≥ s(i, i)xi,t for all i ∈ [N ] and 1 ≤ t < T.

It is important to identify fairness goals in every decision-making scenario and not blindly

apply a popular fairness constraint.

4.5 Open Questions

I end this chapter with several open questions stemming from Section 4.3.

1. Given the gap between the lower bound of Õ(
√
T ) and the upper bound of Õ(T 2/3)

for a general number of groups, can this gap be closed? In particular,

Does there exist a Õ(
√
T )-regret algorithm for bandit convex optimization of a

smooth, strongly convex, separable, N -dimensional function satisfying CFTD?

2. Multiplicative slacks. In many scenarios, multiplicative allowable disparities in

treatment could be more appropriate than additive disparities. For example, in the

context of pricing, a firm may want to price an item while ensuring that the price

disparity between the youth and the general population is not more than 25%. In par-

ticular, consider slack functions s̄(·, ·) : [N ]×[N ]→ R≥0 defined on ordered pairs of

groups, and consider the following notion of comparative fairness with multiplicative

slacks.
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Definition 4.4 (CFTD with Multiplicative Slacks)). We say that a decision sequence

(x1, . . . , xT ) ∈ X TN satisfies CFTD with multiplicative slacks if the following in-

equalities hold:

xi,t ≥ s̄(i, j)xj,t′ for all i, j ∈ [N ] and 1 ≤ t′ ≤ t ≤ T. (4.24)

The following question is open:

For any N , does there exist a Õ(
√
T )-regret algorithm for bandit convex

optimization of a smooth, strongly convex, separable, N -dimensional function

satisfying CFTD with multiplicative slacks?

One setting where our current results extend is the case where there is a function

m : [N ] → R>0 such that s̄(i, j) = m(j)/m(i). In this case, (4.24) effectively

requires that ximi ≥ xjmj . In this case, one can redefine the decision space for

group i as yi = ximi. Our algorithms then readily apply to optimizing y in this

setting.

3. Time decay. Certain fairness goals may require consistency with recent decisions,

but not on decisions made long ago; as such, there is room for adapting CFTD to

better fit specific objectives. For example, one may wish to incorporate a time-decay

element to the comparative fairness constraint, which can be achieved by having the

slack functions s be dependent on the difference in the times at which the decisions

were received by the two groups. In particular, we may have that xi,t ≥ xj,t′ −

s(i, j, t−t′) for all t ≥ t′, where the slack function now also takes the time difference

t−t′ as input. If s is assumed to be increasing in the time difference, this would allow

for greater changes in decisions over time.

What is the optimal regret for an algorithm for bandit convex optimization of an

N -dimensional function satisfying these time decay constraints?
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Note that with these time decay constraints, it may be easier to drop the smoothness

and strong convexity assumptions and still achieve sublinear regret, since overshoot-

ing can potentially be undone.

4. Beyond strong convexity. The analysis (and algorithms) of this chapter relied on the

objective function being strongly convex.

Can the results of this chapter be extended beyond the strong convexity assumption?

As discussed earlier, for the simplest case of single-dimensional optimization, [98]

and [99] have shown that a significant impact on the achievable rate of regret is in-

evitable under the monotonicity constraint if only unimodality and Lipschitzness of

the cost function are assumed. While it seems that smoothness is necessary to obtain

the near-optimal regret rate of Õ(
√
T ) in our setting (since smoothness is funda-

mental to controlling overshooting of the optimum), we are hopeful that the strong

convexity assumption can be relaxed (to, e.g., just assuming convexity) without im-

pacting the regret guarantee.
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Algorithm 10: Cycle-then-Combine Lagged Gradient Descent (C2-LGD)

input: Number of groups N , sub-Gaussian norm bound Emax, n(d) =
64E2

max log 2
p

Cα2d4 , smoothness
parameter β and strong convexity parameter α of f(x1, . . . , xN ) =

∑N
i=1 fi(xi), time

horizon T , non-negative CFTD slacks s, xmin, γ, lag size δ
1 Initialize queue Qi ← ∅ for i ∈ [N ] // will contain points to query

2 Initialize the partition Π =
{
{1}, . . . , {N}

}
of groups, and set activeA = Yes and gA = −∞ for

each A ∈ Π
3 For any A ⊆ [N ], define fA(x) =

∑
i∈A fi(x); initialize A = {1}

4 Add xmin, xmin + δ to Qi for i ∈ [N ]
5 while fewer than T samples have been taken do
6 if activeB = No for each cluster B ∈ Π (i.e., no clusters can move) then
7 if each cluster is constrained by some other cluster then
8 Find clusters C,D which are locked in place with respect to each other (see

Claim 4.13)
9 else

10 Find clusters C ̸= D ∈ Π such that C is at a tight constraint imposed by some group
in D, and D has met the small gradient condition (see Claim 4.13)

11 Update Π← Π ∪ {C ∪D} \ {C,D}
12 Let A = C ∪D, and set gA = −∞ and activeA = Yes
13 Let i = minA, and add xi, xi + δ to Qi // add points to the

representative group’s queue

14 Let i = minA // choose a representative group
15 XA = [xi, xi + d(A;x)] // current feasible points for cluster A
16 if Qi contains any elements in XA then
17 Let xi ← minQi, remove xi from Qi, and update xj (for j ∈ A \ {i}) accordingly (i.e.,

letting d = minQi − xi, we set xj ← xj + d for all j ∈ A)
18 Update activeB for B ∈ Π as necessary (formerly tight clusters may now be active; in

particular, if B is at a tight constraint imposed by some group in A and B is not at any
tight constraints imposed by any group in any other cluster, then B will no longer be at a
tight constraint)

19 Sample n(δ) times at xj for j ∈ A
20 if xi is a non-lagged iterate for cluster A then
21 Update the gradients g(i) for i ∈ A and set gA =

∑
i∈A g(i)

22 if − 1
β gA ≥ (1 + γ)δ then

23 Add xi − 2δ − 1
β gA and xi − δ − 1

β gA to Qi

24 else
25 Set activeA = No

26 if Qi contains no elements in XA then
27 Set xi = maxXA and update xj (for j ∈ A) accordingly
28 Set activeA = No and update activeB for B ∈ Π (formerly tight clusters may now be

active)
29 if − 1

β gB < (1 + γ)δ for every cluster B ∈ Π then
30 Exit the while loop and remain at point x for the remaining iterations

31 A← φ(A; Π) // move to the next group
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CHAPTER 5

ALGORITHMS AND THE LAW

This chapter contains excerpts from [82] and includes joint work with Swati Gupta and

Deven Desai.

Many important decision-making processes are subject to law and policy. That said,

technology often evolves faster than the law, and it is often unclear how existing laws affect

new technologies. In Section 5.1, I provide a legal analysis of the algorithms presented in

Chapter 3 with respect to U.S. law and caselaw. Next, I highlight open questions regarding

pricing algorithms and the law in Section 5.2.

5.1 Hiring

For example, decisions made in the hiring process are subject to anti-discrimination law

in the U.S. This is the case regardless of whether an algorithm was used to make the deci-

sions. However, whether or not the decision-making process is automated affects the way

in which the law interacts with decision-making. For instance, when using algorithms to

make decisions, the decision-making process is explicit and documented, and thus can po-

tentially be audited. Unautomated decision-making, on the other hand, is often a nebulous

process in which it is difficult to identify intent. The ways in which algorithmic decision-

making is affected by—and is affecting—the law is an emerging issue of great importance.

In this chapter, I partially answer the following question:

Are the poset secretary algorithms of Chapter 3 legal in the context of applicant screening?
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5.1.1 Motivation from Industry

How employers identify whom to interview and then hire has important effects across so-

ciety. Employment significantly affects access to healthcare, continuing education and,

therefore, quality of life. The benefits of employment are not, however, evenly distributed

across race and gender categories in the United States. After George Floyd’s death, com-

panies acted to address racial injustice by making public statements, donations to support

racial equality, and Juneteenth a company holiday [105]. Several companies went further.

Microsoft announced a $150 million investment to improve diversity including setting a

goal of doubling the number of “Black and African American people managers, senior in-

dividual contributors and senior leaders” in the United States by 2025 [80]. Wells Fargo

made a commitment to “double Black Leadership” by 2025 and “will evaluate senior lead-

ers based on their progress in improving diversity and inclusion in their areas of responsibil-

ity, in addition to other efforts” [80]. Google has set a goal of having 30% of its leadership

from “under represented groups” by 2025 [106]. Boeing seeks to increase representation

of “Black employees by 20% while boosting other underrepresented groups over the next

three years” [106]. Adidas announced plans to fill at least “30% of new positions with

black or Latinx people” [107]. Yet, both Microsoft and Wells Fargo received letters from

the Labor Department’s Office of Federal Contract Compliance Programs (OFCCP) due to

concern that the plans may discriminate based on race [105]. At the same time, the OFCCP

announced a settlement with Microsoft in September 2020 for $3 million back pay and

interest to address hiring disparities “against Asian applicants” for several positions from

December 2015 to November 2018 [108]. The two OFCCP positions clash and appear to

create a world where inaction opens the company to litigation, if not breaking the law, and

corrective action creates the same risks. One might argue that the recent OFCCP inquiries

were peculiar to the Trump administration’s approach to this area of law and not something

the current administration would pursue. Administrations, however, change and a new one

might follow the Trump approach. Regardless of who is in the White House, legal activism
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to challenge steps taken to address diversity or challenge discriminatory results are not

likely to go away.1

The reason this challenge is not likely to go away is that a company may be pursuing

diversity goals and/or be addressing affirmative action plans; but the two are not the same,

and the difference matters [109]. As the Equal Employment Opportunity Commission ex-

plains in “Section 15 Race and Color Discrimination” of its Compliance Manual, diversity

can be understood as “a business management concept under which employers voluntar-

ily promote an inclusive workplace” [110]. Companies have pursued diversity to attract

talent and gain “a competitive advantage” [110]. In contrast, affirmative action refers to

“those actions appropriate to overcome the effects of past or present practices, policies, or

other barriers to equal employment opportunity” [111]. Such steps may occur because of

a court order, negotiated settlement, or government regulation [110]. Employers may also

use a voluntary affirmative action plan “in appropriate circumstances, such as to eliminate a

manifest imbalance in a traditionally segregated job category” [110]. There is a conceptual

and practical link between diversity goals and affirmative action. A company may pursue

diversity “for competitive reasons rather than in response to discrimination” and “such ini-

tiatives may also help to avoid discrimination” [110]. As the legal status of diversity plans

is unclear, methods to support both options are needed.

As another motivation, companies may want to see whether they are missing hiring

and talent opportunities. Companies can be stuck in an equilibrium because they rely

on, or exploit “old certainties,” rather than explore “new possibilities” [112]. This ex-

ploration/exploitation trade-off began in organizational business literature but has become

a significant part of how the machine learning community thinks about understanding in-

formation [113]. As a matter of best organizational and ML practices, companies need

ways to explore new candidate pools.

1As Primus has explained, “If equal protection requires the law to be thoroughly colorblind, then a statu-
tory doctrine that requires racial classification and makes liability turn on the status of groups considered
collectively is an equal protection problem.”
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Regardless of the motivation behind a company plan, there is a steady drumbeat for

algorithmic transparency, especially in employment and admissions contexts [114]. Thus

an entity may have to or wish to reveal the process at some point. In either case the entity

would want to show that their process is sound from both a mathematical and a legal view.

These issues could push any company to avoid steps to address diversity because of litiga-

tion risks, both real and perceived. Although some scholars argue that the use of machine

learning would constitute a valid business necessity claim so long as the target variable is

job-related, thus rendering the question of equality of outcomes irrelevant, debates about

which actions are and are not allowed to address diversity persist, especially when using an

algorithmic approach [115]. Simply put, when entities wish to be proactive regarding di-

versity, potential discrimination, or wish to explore whether they have missed opportunities

in hiring talent [69], they will need a path that passes muster against a range of challenges.

This paper thus seeks to offer techniques and legal analysis to enable companies to pur-

sue legal and ethical hiring goals and face this question: How to improve equal opportunity

and employment practices without crossing into arguably illegal discriminatory practices?

The ideas discussed here are general and key takeaways can be applied to several stages

in the hiring pipeline. That said, this paper uses the screening stage of employment to

exemplify methods and analysis and offer one way to attack the general problem.

5.1.2 Algorithms and the Hiring Process

Employers want to hire a great workforce, but reaching and assessing the full viable range

of potential employees poses problems. Many parts of the hiring process use algorithms as

a way to manage and sort candidates. The practice can be traced back at least 40 years [116,

117]. The problem is that there are a number of junctures in the hiring pipeline at which

bias can affect decisions, as depicted in Figure 5.1. Job advertisements on various platforms

can be targeted at specific audiences [118, 119]. Application rates can differ across groups

due to presumed employer bias [120]. Data-driven tools for evaluating résumés can be
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Figure 5.1: Some ethical concerns in various stages of the employment pipeline.

biased due to inequalities in training data [121], imbalance in data [122], or differences in

false positive/negative error rates in prediction algorithms leading to bias as a downstream

effect [123]. Referral hiring can lead to favoritism [124]. Customer evaluations of free-

lancers can adversely impact certain groups [125]. Final hiring decisions can be influenced

by human biases of the hiring committee [126]. After going through the hiring pipeline,

candidates also see a significant difference in salaries offered [58], and retention rates can

differ dependent on the work environment [127]. Indeed, societal biases are pervasive and

can affect decisions made by experts [128].

In addition, when automated systems are used at any stage, missed opportunity (false

negatives) with respect to minority candidates is often shrugged off as an artifact of the pre-

diction model, necessary for overall accuracy [129]. These models often train on historic

data, which can depict imbalanced selection rates across different groups of candidates,

and these trends can be learnt by automated methods [130, 131]. History can dictate future

actions. In short, existing pipeline practices can reiterate and increase disparity in oppor-

tunity and outcomes. Although the hiring pipeline can be improved in many places, we

find the screening stage to be particularly ripe for improvement, and we therefore focus the

article on this stage for the reasons outlined below.

First, data-driven methods, by their nature, can pose a problem. Seemingly objective

methods interact with real-world data, and so automated decisions can reflect and therefore,
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reinforce societal inequalities [132, 133]. Even when there is no intent to discriminate, and

the decision system uses the same data and applies the same rule to all, there may be a

disproportionate effect on a protected class (i.e., groups protected by law from discrimi-

nation, such as those defined by sex, race, age, etc.) [134, 135, 136]. The problems in

screening map to the more general ones present when using data-driven decision-making

in hiring. So, screening is a good lens through which to investigate the concerns around

using algorithms and data in the employment context in general.

Second, algorithms are already used for screening applications. Such automated meth-

ods offer numerous advantages: speed, cost-effectiveness, potential objectivity, and unifor-

mity in process. These properties may seem desirable at first glance from an ethical and

fairness perspective; consistency in decisions is often a good thing, and a lack of human

involvement would seem to minimize the role of implicit bias in hiring decisions [137].

Thus, automated methods have become commonplace in screening. Adjusting algorithmic

techniques may be a more palatable idea and more feasible in an industry currently using

automated processes than using algorithms in a heretofore un-automated process. New

algorithmic interventions may, therefore, be more likely to be applied in practice.

Third, changes at early stages of the hiring pipeline are vital to address later bias.

Changes at later stages are only meaningful if they act on a diverse pool of candidates.

Without a diverse candidate pool at those stages, efforts to address bias become empty the-

ater, because there will be few to no candidates from underrepresented groups for which

the changes would help. As such, we focus specifically on automated screening processes:

how should applicant-screening methods be developed? These algorithmic tools should be

designed with the goal of (a) selecting applicants of a desired quality, (b) satisfying some

agreed upon fairness criteria, and (c) adhering to US anti-discrimination law.
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5.1.3 Biases in Data

We broadly refer to systematic inconsistencies in data which adversely affect certain groups

as “bias.” The first step in reducing discrimination is to understand the source of this bias.

Unfair decisions can stem from many places, and identifying the origins of the bias allows

for precise interventions. In the hiring process (automated or otherwise), applications will

typically be assigned a score, thus allowing comparisons of applicants based on a single

number or with respect to a single ranking of candidates [25, 138]. This evaluation metric

can be hard-coded into an algorithm or developed dynamically, and in either case, can be

unfair. A natural question is whether we can model this bias precisely and account for it

within the algorithms to make them justifiably (provably) fairer.

Bias in evaluations can take different forms and be observed in different ways. For in-

stance, a screening algorithm developed, but not employed, by Amazon penalized résumés

which included the word “women’s” due to data of past hiring trends in the company [11].

This algorithm penalized, for example, those who attended all-women colleges, and re-

warded vocabulary typically used by men. In a similar vein, an empirical study showed

that science faculty’s assessment of résumés varied dependent on the gender of the student

[58]. These are fairly blatant examples of discrimination, as toggling a protected attribute

results in different treatment. Note that this form of unfairness—while blatant—can be

hard to observe in practice, as applicants are never truly identical but for a small number of

attributes.

Many cases of bias in evaluations, however, are more nuanced. Consider using SAT

scores to screen candidates—a practice employers such as McKinsey, Bain, Goldman

Sachs, and Amazon have been known to use even for candidates with advanced degrees

[139, 140, 141]. Studies show that even if students are equally able to perform well on a

test, if the test is announced to exhibit differences across groups, students in a negatively

stereotyped group perform lower than the students in a non-stereotyped group [56]. An-

other study from 2013 shows that SAT scores are correlated with family income, potentially
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pointing to issues of access [142]. Inside Higher Education looked at SAT scores in 2015

and found that despite fee waivers and increased efforts to provide support and tutoring to

low-income families,

“In each of the three parts of the SAT, the lowest average scores were those

with less than $20,000 in family income, and the highest averages were those

with more than $200,000 in income, and the gaps are significant. In reading,

for example, the average for those with family income below $20,000 is 433,

while the average for those with income of above $200,000 is 570.”

Thus, compared to 2013, gaps in performance with respect to racial groups not only per-

sisted but increased. This problem with SAT scores is further evident in a recent study by

Faenza et al. [143], which showed a shift by approximately 200 points in SAT scores from

schools with different economic need indices. Thus, an employer using SAT scores appears

neutral but sets up a pre-selected pool.

These issues regarding bias in data raise important design questions for algorithmic

intervention. When designing a decision-making algorithm, can we control for bias in

historic data (thus avoiding Amazon’s situation discussed above)? In other words, what

steps can be taken to control for historic, economic, and/or social factors that are known to

skew seemingly objective metrics such as the SAT?

5.1.4 Approaches to addressing bias to date and their limits

A variety of algorithmic techniques have been proposed for coping with biased data and

improving fairness, from pre-processing techniques which involve modifying data before

feeding it to an algorithm [144]; to in-processing techniques, which modify the algorithm

itself [145, 146]; to post-processing techniques, which modify decisions made by an algo-

rithm after the fact [147, 148]. Current computer science literature highlights that merely

scrubbing protected class information from an application may not help mitigate existing

biases [149], and that algorithms have to use protected information to fix existing biases
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in data [7]. Using protected information, however, may put the hiring process at odds

with anti-discrimination law. Other prevalent approaches include iteratively removing data

which is correlated with protected information [146]; such approaches, however, may re-

move highly predictive information.

Algorithmic bias mitigation refers to the design of algorithms which perform well de-

spite uncertainties about candidates’ qualifications. This encompasses, for example, the

design of procedures to select qualified candidates given biased data, or the design of al-

gorithms which provably satisfy some notion of fairness. As discussed earlier, bias in

evaluations can render bias-agnostic methods suboptimal [69, 30, 150, 7]; at the same time,

imposing constraints such as demographic parity (i.e., proportional selection from different

demographic groups) can hinder performance in some cases [31], which points to potential

trade-offs between bias mitigation and quality of selections. In our approach, we will take

the view of algorithmic bias mitigation, given fine-tuned uncertainties in the evaluation of

each individual.

Algorithmic Bias Mitigation. Attempts to mitigate bias often begin with an understand-

ing of the nature of the bias, or in other words, the inconsistencies in measurement of the

ability of candidates. Mitigating the impact of such inconsistencies is an instance-specific

endeavor; no cure-all exists. Nonetheless, there is theoretical work on mitigating bias un-

der various mathematical assumptions. For instance, attempts have been made to address

miscalibration of evaluations between multiple evaluators [151], and techniques have been

developed for cases where some information is known about how biased each evaluator is

in each evaluation [152]. In general, mathematical techniques can be developed as long as

some assumptions on bias are made.2 Certain “coarse” sources of bias seem to be preva-

lent across demographic groups, and algorithms can be designed with these in mind. One

2This points to multiple issues in bias-mitigation. First, the assumptions on bias are difficult to justify
empirically, as “ground truth” is seldom available (for example, the true ability of a candidate is never truly
known, especially for candidates who are not hired). Second, it is difficult to assess bias-mitigation techniques
for a similar reason: if one does not know the ground truth, then it is hard to quantify how good any decision
is.
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might say these are the first approximations to incorporate the knowledge of large trends

visible broadly across demographic groups, such as are seen in SAT scores discussed ear-

lier [143]. Addressing these coarser sources of bias from a theoretical point of view can

provide insight in dealing with other forms of bias.

A recent mathematical model that captures the dependence of errors in testing over

groups is the group model of bias. The model is based on the empirical work of Wennerås

and Wold [153], and was introduced by Kleinberg and Raghavan in the context of offline

selection (e.g., applicant-screening) [69], further studied by Salem and Gupta [150], Faenza

et al. [143], and Blum and Stangl [154] in the context of selection problems. This model

assumes that bias is fairly consistent within each demographic group, and thus evaluations

offer more accurate rankings within each group, but not across the groups. For example,

once one accounts for difficulties in comparing one demographic group to another, there

may be no way to confidently compare an 90% attained by a white male scholar Adam to

a 85% attained by a Latina scholar Tia. But one can compare Adam against another white

male scholar John with 83%, and note that Adam is better.

This model is at the same time appealing and dissatisfying in its simplicity. It is ap-

pealing in the sense that the model sheds light on best practices when the data is biased

consistently for certain groups. That consistency indicates that information about group

membership alone allows selection algorithms to reduce bias in selections. It is dissatisfy-

ing, however, in its coarseness, as it ignores intra-group differences in testing/evaluation er-

rors and ignores any potential comparisons between groups. Adding to the example above,

let us say that Tia also belongs to a low-income family, and we want to compare Tia to an-

other Latina scholar May (not from a low-income family). This model does not account for

such confounding variables of socio-economic status. Follow-up work by Celis et al. [70]

proposed a multiplicative model of bias in the context of rankings, wherein candidates in

the intersection of different groups face a consistently higher bias. This approach, however,

again equalizes the amount of bias within each smallest “unique” group (e.g., male, white,
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and age above 45 or lesbian, Asian, aged 39). It may not be okay to equalize the experience

of every male, white person above the age of 45 or of every lesbian, Asian, under age 50.

The underlying problem with this is the assumption of group membership, which may not

even be accurate. Indeed, whether a Chinese Asian, an Indian Asian, and a Filipino Asian

faces the same amount of bias, and so should be treated the same, seems unlikely.

Current Industrial Practices. How then do companies actually hire candidates, while

reconciling with anti-discrimination laws and biases in the hiring pipeline? In a recent sur-

vey, the only specific public claim made by vendors of pre-employment assessments was

adherence to the 4/5ths rule—outlined in the 1978 Uniform Guidelines on Employee Se-

lection Procedures—which requires that group-specific selection rates of any pre-screening

are all within a factor of 4/5 of each other [54]. Yet this approach is coarse as it is agnostic

to quality of candidates. Applying a 4/5ths rule in selection up front (e.g., as the current

practice in the industry suggests [54]) does not change the perceived potential of candi-

dates, nor account for uncertainties and biases in the data systematically. It can therefore

simply set up the underrepresented group’s candidates for failure, and lead to resentment

and enlivening of negative stereotypes [155, 156].

The trade-offs in algorithmic approaches track legal issues. If an employer uses an al-

gorithmic tool to evaluate and screen candidates, the employer may face legal challenges

depending on the outputs of the tool. A likely challenge is that the tool created illegal dis-

parate impact. Disparate impact addresses when “facially neutral policies or practices have

a disproportionate adverse effect or impact on a protected class” [157, 158]. The disparate

impact doctrine is thus supposed to address situations where intent is not at hand or cannot

be ascertained [159]. In short, outcomes based on unaware algorithms may fit quite well

with disparate impact challenges, because unaware algorithms are facially neutral, may

lack intent to discriminate, and nonetheless yield statistically discriminatory results.3

3Despite the fact that the 4/5 rule is mentioned as evidence of disparate impact in the 1978 Uniform
Guidelines on Employee Selection Procedures, there is no precise quantification of disparate impact. The 4/5
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The possibility of a disparate impact claim leads to an obvious approach. An employer

may design a more aware algorithm that takes protected class status into account. However,

this approach may run into a disparate treatment challenge. Disparate treatment is the

legal doctrine that prohibits intentional use of race or other protected classes in making an

employment decision. Thus, we return to the paradox described above, because it seems

that an employer is trapped between using facially neutral systems that reflect systemic

and historically conditioned, biased results or facing lawsuits for using aware systems to

mitigate such effects. This paradox is exacerbated by current legal scholarship debating

what algorithmic interventions to address bias, if any, are allowed and the implications of

the lawsuit Ricci v. DeStefano, in which an action by the City of New Haven that tried to

account for disparate impact of an administered promotion test led to litigation that was

decided against the city. In Section 5.1.5, we outline the poset approach, which we argue

provides a way to solve the hiring paradox. Section 5.1.6 turns to an in-depth discussion on

the takeaways from Ricci v. DeStefano and explains how the poset approach fits within legal

rules so that one can use a bias aware approach to hiring and yet maintain individualized

assessments of candidates.

5.1.5 A new approach: coping with uncertainty using partial orders

As discussed in Section 5.1.3, coping with uncertainties in data is a fundamental problem in

applicant screening systems, as well as in data-driven decision-making more generally. In

this section, we will discuss one method, called the poset approach, for applicant-screening

in the face of uncertainty which has emerged recently in the computer science literature

[150]. In Section 5.1.6, we will use this approach as a vehicle for discussing the legality of

algorithmic bias mitigation in hiring.

Consider the following scenario: there are three candidates A, B, and C, with ability

scores of 82, 68, and 67, respectively, and you wish to grant interviews to two of them. The

rule is often used as a trigger for litigation, but other statistical tests have been used in courts as well [160,
161].
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ability scores are known to be a strong predictor of job performance, but are only known

to be accurate up to 3 points. In this case, there is a significant chance that C is a better

candidate than B, but the utilitarian approach of selecting the highest-scoring candidates

would routinely select A and B. The core idea behind the poset approach is that the latter

approach is unfair to C, or more generally, that ignoring uncertainty can result in unfair

decisions. In other words:

Some applicants, due to insufficient or inaccurate data, cannot be reliably

ranked. The solution need not involve producing a (possibly inaccurate) rank-

ing. Instead, allowing for partial rankings can open the door to fairer deci-

sions.

The poset approach, which we explain in more detail below, makes use of a math-

ematical structure called a partially ordered set, or poset, which can be used to encode

uncertainty in ordinal information. Consider, for example, a set S1 = {4, 2, 5} of true

hirability of three candidates (which is often not observable in practice). This set is called

totally ordered since any pair of the scores can be ordered (i.e., ranked) with respect to the

relation ≤. In other words, we can rank the scores: 2 ≤ 4 ≤ 5, thus inducing an order

amongst the candidates.

However, in practice, one cannot observe directly how good a candidate might be at

their job. This is where partil orders can help us. Intuitively speaking, one can think

of a partial ordering as a set of comparisons, which may not cover all pairs of candi-

dates (i.e., a total order with some comparisons missing). For example, consider a can-

didate A who has experience in industry, consider a candidate B who has experience

in industry and who has an MBA, and a candidate C who has an MBA. Considering

these traits as binary (yes/no) attributes, one can represent their qualifications as the set

S2 =
{
{industry}, {MBA}, {industry,MBA}

}
. From the given information, one might

rank B above both A and C, since B is qualified with respect to both measures, and the

other candidates are only qualified with respect to one. However, A and C might be con-
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sidered incomparable, since their qualifications are complementary. In this case, S2 is a

partially ordered set, but not a totally ordered set. To be precise, a relation ⪯ is a partial

order on a set S if three conditions hold for all a, b, c ∈ S: (1) a ⪯ a; (2) if a ⪯ b and

b ⪯ c, then a ⪯ c; and (3) if a ⪯ b and b ⪯ a, then a = b. One can check that all these

properties are satisfies for the set S2. A poset is often visually depicted using its Hasse

diagram, which is directed graph in which edges represent orderings. For example, the

Hasse diagrams for S1 and S2 are as follows:

S1:

2

4

5

S2:

{industry} {MBA}

{industry, MBA}

Note that Hasse diagrams omit redundant edges: even though 2 ≤ 5, the edge 2→ 5 is not

included, since it is implied by the edges 2→ 4 and 4→ 5.

The poset approach is the process of (1) forming a partial ranking (i.e., a partial or-

der) of the candidate pool based on uncertainties, inaccuracies, or biases in data, and (2)

making selections based on this poset. By making selection decisions in this way, one can

concretely take uncertainty into account and, say, avoid routinely harming candidate C in

the example above. This can lead to bias mitigation in cases where the evaluation metric

is biased against a certain group; e.g., if a group is underrepresented in training data and

experiences large errors in the resulting ML model, the poset approach can confer benefit

of the doubt to those underrepresented candidates.

We next illustrate how posets can model uncertainty using two examples.

Example 5.1. The poset approach can illustrate how one can account for uncertainties while

also avoiding prohibiting discrimination based on gender.4 Using the poset approach, one

may incorporate demographic context of the candidates and quantify uncertainy in their

evaluations (either by directly observing the context, or by unsupervised methods such as
4As recently as June 15, 2020, the Supreme Court of the United States ruled that the Title VII of the Civil

Rights Act prohibits discrimination on the basis of sexual orientation and gender identity [162, 163].
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clustering). Suppose that in a training dataset, nonbinary candidates are underrepresented,

and as a consequence have high variance in errors in the prediction model. One may find

that a nonbinary candidate Max has a wide score range of 80-90% (e.g., due lack of training

data on nonbinary candidates), another male candidate Adam has a score between 85-87%,

and a third female candidate Trisha has a score between 92-95% (see Fig. 5.2). Now, using

only the score ranges to compare candidates, Trisha compares favorably to Max, but it is

unclear if Max is more qualified than Adam as their ranges overlap. In this case, we can

think of Max and Adam as mutually incomparable. The poset approach therefore allows

for individualized treatment of inconsistencies in data processed.

80 85 90 95

Trisha
Adam

Max

A

T

M

Figure 5.2: Score ranges and resulting Hasse diagram for the scenario in Example 5.1.

Example 5.2. Suppose that three candidates are to be selected based on two attributes: work

experience and college GPA. You have set cutoffs for each of these attributes and only wish

to select candidates exceeding each cutoff. See Figure 5.3 for a depiction of the candidate

pool, where each color represents a particular demographic group. Let the colored areas

around each candidate node represent a “confidence region;” i.e., with some high degree

of confidence, the candidate’s latent ability lies in the drawn region. Note that we can

infer partial rankings from these confidence regions in a similar way to Example 5.1: if the

confidence region of candidate A is strictly above and to the right of the confidence region

of candidate B, then A is ranked above B.

Using only raw scores, only the two blue candidates meet the cutoffs. However, tak-

ing confidence regions into account, we see that the two green candidates might meet the

cutoffs as well. How, then, should one choose three candidates among the green and blue

ones? One way to do so is to look at the partial ranking induced by the confidence re-

gions (shown using arrows in Figure 5.3). In this partial ranking, there are three candidates
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Figure 5.3: A depiction of the work experience and college GPA of five candidates coming
from three groups (differentiated by color). The thick dashed line represents a possible
selection criteria which, in this case, imposes a threshold on each of the two attributes.
Confidence regions are drawn around each data point to indicate, say, 95% confidence in
the inclusion of a candidate’s true ability. Given these confidence regions, one can construct
a partial ranking, as depicted by the Hasse diagram on the right. Arrows between candidates
indicate ranking with certainty with respect to both attributes (e.g., Candidate 1 is ranked
higher than Candidate 5 since the best work experience score (≈ 4) in the confidence region
of Candidate 5 is worse than the worst work experience score (≈ 5.5) of Candidate 1, and
similarly for College GPA. Note that there may be other reasonable ways of constructing
partial rankings as well.

who are maximally ranked (i.e., are not ranked below any other candidates): the two blue

candidates and the right-most green candidate. This is one justification for selecting these

candidates.

The process outlined in these examples (forming score ranges/regions for each candi-

date and inferring comparisons therefrom) can be applied quite generally, and allows for

explicit treatment of bias in data. Data-driven techniques, such as estimating latent group-

bias in a machine learning model, can be applied to generate these score ranges, which

in turn induce a partial ranking. Such methods can be used to avoid penalizing applicants

who come from underrepresented groups, who are more likely to face inaccurate evaluation

via machine learning models. A recent paper by Emelianov et al. shows that groups with

high error variances can receive worse treatment, even if the evaluations are unbiased for

all candidates [30], pointing to the need for interventions like the poset approach that take

uncertainty into account.
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The poset approach in practice. We end this section by providing a framework for using

the poset approach in practice. While this framework does not encompass every possible

use of the poset approach [150], it will describe the process from beginning to end and put

the poset approach in broader context.

Step 1. Clean-up and Process Past Hiring Data. To start, collect data from previous

hiring cycles. This data might include scores derived from textual analysis of résumés, test

scores for job-related tasks (e.g., computer programming test scores), automated scores

based on analysis of video interviews [54], college GPAs, courses taken, years of work

experience, job performance of those who were hired, and so on.

Step 2. Quantify Uncertainty and Bias. Use data analysis to quantify potential data bi-

ases. Clusterings, for example, can help determine if evaluations unfairly favor one group

over another. Looking at the data along different demographics (e.g., based on race, gen-

der, age) can point to potentially discriminatory decisions in the past. Use social science

studies (e.g., [56]) that highlight the impact of social status on the considered metrics (e.g.,

standardized test scores). This will help highlight qualitative and quantitative reasons for

disparities in the past hiring data.

Step 3. Construct a Partial Order. Trends identified in Step 2 can be used to construct

a partial ranking of candidates. For example, score ranges can be constructed for each at-

tribute of interest using a prediction model and estimates of its error variances, and these

ranges can inform partial rankings as in Figure 5.3. These ranges can take into account

distributional differences across protected attributes, differing error variances due to train-

ing data imbalance,5 observed inaccuracies in past predictions, and so on. When feedback

is available on past data, one can construct a partial order to account for group-specific

errors, even if the evaluation metric was provided by a third party and its inner workings

5This refers to the observation that a group which is underrepresented in training data often experiences
large errors in a resulting prediction model. In the poset approach, these larger errors could translate to larger
score ranges for the underrepresented group. Note that the groups in question could come from a clustering
and need not be demographic groups.
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are unknown to the user: the predicted scores can be modified to be distributionally similar

to the true scores on a group-by-group basis, and score ranges can be constructed around

these transformed scores. Unsupervised methods such as clustering can be used without

the specific knowledge of protected information, and a partial order can be constructed

based on the extent of uncertainty or bias in each cluster. More examples are discussed in

Chapter 3. The goal here is to account for uncertainties, inaccuracies, and biases in a direct

and mathematically justified way, thereby paving the way to fairer decisions.

Step 4. Adapt Selection Algorithms. Once the partial ranking has been constructed, se-

lections need to be made. Presumably, a hiring committee already has a screening process

(automated or otherwise) which aligns with the goals of the employer. In order to imple-

ment the poset approach, this screening process must be adapted to take a partial ranking

as input instead of numeric scores or a total ranking. Typically, this can be done by prior-

itizing maximality and randomizing wherever incomparabilities necessitate (see Chapter 3

for an example of this in an online setting).

Step 5. Auditing for Policy Compliance. The entire hiring pipeline may be subject to

auditing for compliance with anti-discrimination policy. It is prudent to document and be

able to justify each decision made in the hiring process, particularly those pertaining to

the four steps outlined above. For example, one should be able to explain how the partial

ranking was constructed and be able to justify those decisions by pointing to data and

relevant research. A deeper discussion of the legality of the poset approach (and algorithmic

bias mitigation more generally) is in Section 5.1.6.

5.1.6 Discussion and Best Practices—Law, Mathematics, and Posets in Practice

We now return to the business cases with which we started and the tensions they present

regarding diversity, equity, and legal interests. On the one hand, firms are seeking to address

diversity regardless of a history of discrimination. On the other hand, when evidence of

past or present practices creating barriers is found, companies addressing those practices
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learning, confidence

intervals, etc.

Figure 5.4: This figure outlines the process of correcting for bias according to the poset
model. First, using each applicant’s raw score (and any estimated bias or inaccuracy),
adjusted score ranges are produced, and partial rankings can be derived from these ranges.
The goal is for decisions made using these partial (adjusted) rankings to mitigate the bias
present in raw scores.

154



are pursuing affirmative action plans. In general, a firm that does little to account for race,

gender, and other protected classes may find it has created disparate impact; and yet, when

that firm seeks to take protected classes into account, such steps may violate the ban on

disparate treatment.

We offer that in the unlikely case where a firm has no reason to believe that norms,

traditions, or societal inequalities are negatively affecting the ability for members of a pro-

tected group to pass through the stages of the hiring pipeline, action may be possible under

diversity interests but not required by law. At least two shifts point to increased diversity

activity. First, many companies have made public commitment to large steps to address

diversity in employment. Second, there is a new push for companies to disclose work-

force diversity data, which has resulted in 82 of the top 100 companies doing so. The

public imperative combined with the data supports companies taking the initiative to ad-

dress workforce imbalances regardless of legal requirements to do so [164]. In contrast,

as matter of affirmative action, a firm with evidence of discrimination seeking to address

imbalances in its workforce should be able to take steps to do so. Such steps could involve,

for instance, scoring applicants using a machine learning model and developing confidence

intervals around scores using the poset approach. From a legal perspective, it is important

to be able to support the legality of each action, from the decision to address diversity to

the decision to use protected class information, to each design choice in the algorithm, to

each adjustment to future rounds of hiring.

The beauty of the poset approach is that it is agnostic to the motivation, diversity or

addressing discrimination via affirmative action, behind a company’s plan. To be clear,

whether a purely diversity-driven plan is legal is an unsettled question and beyond the scope

of this paper [109, 115]. Nonetheless, because of the current drive to address inequity, we

expect this question to arise in the near future and suggest that the poset approach would

aid and support such efforts. Furthermore, because many announced diversity programs

are likely backed by data about imbalances and unnecessary barriers to employment, such
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efforts will likely be seen as affirmative action plans under the law. Thus in this section we

address the core question of how well the poset approach stands up to legal scrutiny as an

allowed method to address affirmative actions plans.

Given that efforts to modify evaluation mechanisms or selection algorithms can raise

both disparate impact and disparate treatment issues, we now use a hypothetical employer

perspective in line with Microsoft’s and other companies’ announced goals to suggest best

practices. Insights are derived from a series of questions about how to identify workforce

imbalances (Section 5.1.6) and how to address said imbalances (Section 5.1.6).

Diagnosis

Q1: An employer is concerned that its workforce under-represents women and minorities.

May they do anything to change their current hiring practices?

Yes. The purpose behind Title VII is “[T]o achieve equality of employment oppor-

tunities,” and Congress “directed the thrust of the Act to the consequences of employ-

ment practices, not simply the motivation” [165]. That means that “unnecessary barriers

to employment” must fall, even if “neutral on their face” and “neutral in terms of intent”

[166]. Federal courts have disallowed a host of hiring and promotion practices that “oper-

ate[d] as ‘built in headwinds’ for minority groups” [167]. In addition, the Supreme Court

has upheld the legality of employment plans to address discrimination without reference to

its past practices or evidence of a possible violation of the law [168].

To take action, an employer “need[s] to point only to a ‘conspicuous ... imbalance in

traditionally segregated job categories’ ” [168]. Logically, this requirement implies that

initial, proactive analysis identifying the imbalance problems can serve as justification for

adjustments to hiring practices. As such, employers can and should use data science and

analytics to identify the imbalance in their hiring pipeline that it seeks to address [169, 170,

171].

As one example, the employer can use human resources data to examine its employ-
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ment practices. First, it can audit its current workforce and get fine-grained information

about who works at the company and at what levels. Such an approach allows the com-

pany to look beyond simple questions such as “Does it have an equal number of men and

women in the workforce?” Instead, the company can see the gender and minority makeup

at different levels of employment such as upper management, upper-middle management,

middle management, administration, hourly workers, contractors, and so on. Visualizing

the data with pie-charts or heat maps will provide clear, vivid ways to see the current state

of affairs. Second, after such a study, the company can see potential sources of issues. It

may find that women and minorities rarely move beyond middle management, are rarely

interviewed for promotion, or that screening to date has not selected, or under-selected,

women and minorities for interviews to be potential employees. At a general level, these

types of analyses support the case that there is something to fix. This gets us to the next

step in the process.

Q2: If a company finds that women and minorities are rarely interviewed and further

finds that screening to date has not selected, or under-selected, women and minorities for

interviews to be potential employees, do these conditions support allowing an employer to

use protected-class information to build or apply a bias-aware algorithm at the screening

stage?

Identifying a problem with a screening process or a structural problem in the company’s

workforce, reveals a clear “unnecessary barrier to employment” even if the algorithm is

neutral on its face and in intent. For example, if men tend to be scored higher than women

(e.g., as in Fig. 5.5), then a facially neutral selection algorithm would disproportionately

select men, even if true ability is similar across genders. In general, the identified, strong

evidence of bias in current algorithmic sorting in the hiring process, including the screening

stage, should constitute the sort of “built in headwind[] for minority groups” that the law

seeks to eliminate. With sufficient evidence of bias and systemic barriers to equality of

employment opportunities, an employer can make a case for using bias-aware algorithms.
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Corrective action

Voluntary action to comply with the goals of Title VII is not only allowed; it is favored

[172]. Nonetheless, in some cases, trying to further the goals of Title VII to address dis-

crimination raises the paradox where one approach looks like disparate impact and a cor-

rective action looks like disparate treatment. What can a company actually do?

Q3: May an employer use protected-class information to increase diversity among inter-

viewees?

This question is complex as it entwines various parts of the process that need to be

slowly unpacked. A recent case Ricci v. DeStefano [173] illustrates some problems and

provides guidance on allowed and prohibited actions.

Background. In Ricci v. DeStefano, the City of New Haven had developed a test for

firefighter promotion with the help and validation of experts. When administered, 77 people

took the lieutenant exam: “43 whites, 19 blacks, and 15 Hispanics. Of those, 34 candidates

passed: 25 whites, 6 blacks, and 3 Hispanics.” 41 people took the captain’s exam: “25

whites, 8 blacks, and 8 Hispanics. Of those, 22 candidates passed: 16 whites, 3 blacks, and

3 Hispanics.” Despite the experts’ opinions and validations of the test, the City rejected the

results because the pass rate caused the city to believe it might be sued for disparate impact.

The Supreme Court did not allow this after-the-fact change, because New Haven’s actions

relied on race, (the race of those who passed the test), to reject the results, and in that sense,

New Haven engaged in disparate treatment. Thus, it may appear that an entity cannot

account for and alter employment practices when there is evidence of potential disparate

impact in the entity’s practices, because such changes will necessarily constitute disparate

treatment [130]. That is incorrect [174].
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Analysis. As the Supreme Court put it, not allowing an entity to account for race to avoid

disparate impact liability “if the employer knows its practice violates the disparate-impact

provision,” is contrary to “Congress’s intent that “voluntary compliance” be “the preferred

means of achieving the objectives of Title VII” [175]. This rule, however, does not mean

an entity can simply assert there has been a history of past discrimination and so a need

to throw out a practice, because that might lead to “an unyielding racial quota” [176]. As

stated above, the entity has to show why the change is needed in light of the goals of Title

VII. In addition, the timing of when an entity makes changes matters.

The way the test was developed and administered by New Haven doomed the City’s

decision to reject the test’s outcomes. New Haven began well by hiring experts to de-

sign a likely valid test. The City spent $100,000 on experts on designing the tests for fire

departments [177]. The experts conducted interviews, went on ride-alongs, interviewed in-

cumbents at the promotional level at issue, and designed “job-analysis questionnaires and

administered them to most of the incumbent battalion chiefs, captains, and lieutenants in

the Department” [177]. As the Supreme Court noted, “At every stage of the job analy-

ses, IOS [the company that developed the test], by deliberate choice, oversampled minority

firefighters to ensure that the results—which IOS would use to develop the examinations—

would not unintentionally favor white candidates” [178]. Once the test was approved, New

Haven set a 3-month study period and gave candidates a study guide including the “source

material for the questions, including the specific chapters from which the questions were

taken” [178]. Nonetheless, after the tests were given, the results indicated disparate impact

[179].

The city’s ex-post actions were the problem. The Court rejected “invalidating the test

results” after the fact without “a strong basis in evidence of an impermissible disparate

impact” [180]. The ex-post rejection of the results created “visible victims”—that is, those

who studied for the test, passed, and whose hard work was discarded [181]. After the

city gave the test, it needed strong evidence that the test would be invalidated if the city
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were sued for disparate impact and lose, because otherwise those who had passed would

be harmed. The Court did not see such evidence and so did not allow the city to reject the

results.

Answer to Q3. Designing a screening system is quite different than what happened in

Ricci. Ricci was about a later stage of employment (i.e., promotions), and it involved a test

for which many test-takers had prepared, including spending money on test preparation

aid. The advantage of building a screening system is that the actions are ex-ante, and the

system is not a test for which someone can prepare [115]. Unlike in Ricci, where appli-

cants were seen as having an expectation that a potentially valid test for which they could

study be accepted, designing and using a screening algorithm occurs at an earlier stage of

the hiring process where no hiring or promotion decision is made. Thus in designing a

screening algorithm, one might observe selections over time and change the parameters to

create a more representative sample of qualified candidates, including making adjustments

during the “training” of the algorithm. These steps are analogous to the design steps—such

as making overt choices and oversampling at every stage to ensure that the test did “not

unintentionally favor white candidates”—taken by New Haven and of which the Supreme

Court wrote with approval [178]. In other words, designing and vetting a screening system

to ensure that the results are not having discriminatory outcomes should be legal.

Recall that one of the goals of Title VII is to reduce, if not eliminate, “unnecessary

barriers to employment.” The Ricci Court did not “question an employer’s affirmative

efforts to ensure that all groups have a fair opportunity” at a given stage of the hiring

process. An employer is allowed to examine “how to design. . .[a] practice in order to

provide a fair opportunity for all individuals, regardless of their race” before deploying

it [180]. Designing a screening algorithm is by its nature an ex-ante event for which a

candidate cannot prepare in the way one might for a test.

In short, if Question 2’s requirement is met, an employer should be able to develop a
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bias-aware algorithm to avoid disparate impact. Of course, we still need to address the

validity of the new practice and what is allowed in its design, which brings us to the next

question, which we partially answer through the lens of the poset approach.

Q4: What is allowed in the design of a bias-aware algorithm? Can it be designed to

improve the yield of whom to interview?

This is one of the grand challenges in this area. Let us focus our attention to the pro-

posed poset approach, and draw arguments from the Supreme Court’s decision in Johnson.

The key to using a bias-aware algorithm such as the poset approach of Salem and Gupta

is to establish the facts and evidence of a need to address bias (or more generally, incon-

sistencies in the data) as set forth above, and then to build a plan that assesses individuals

rather than setting up a purely number-driven process with quotas for each category [172].

If a plan is “blind hiring,” that is, dictates hiring “solely by reference to statistics” or “by

reflexive adherence to a numerical standard,” the plan is not likely to be allowed [182].

But, if a plan takes “numerous factors. . .into account in making hiring decisions, including

specifically the qualifications of [all] applicants for particular jobs,” the plan may take a

protected class into account as part of the overall evaluation [172]. In that sense, the pro-

tected class status “may be deemed a ‘plus’ in a particular applicant’s file, yet it does not

insulate the individual from comparison with all other candidates for the available seats”

[183, 184].

Comparison does not require pure, numeric ranking; indeed, that might tip into the sort

of “blind hiring” that is disfavored. As the Sixth Circuit stated, the “practice of rank-order

hiring from a single list grouping together males and females was impermissible under Ti-

tle VII because the City could not establish that higher scores on the test meant better job

performance.” [185]. The Second Circuit has explained that evaluations should be suffi-

ciently correlated with job performance to induce a rank ordering, where the quantification

of “sufficiently correlated” may depend on the extent of adverse impact of the evaluation

metric [186]. The Sixth Circuit additionally asserted that a certain cognitive ability test
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could not be used as the sole basis for a rank-ordering despite being predictive of job per-

formance, since the test failed to measure certain qualities of interest. Rank orderings based

on evaluations should therefore not be thought of as implicit to a screening practice, but

instead as a design choice which must be justified [185].

Discretion in comparison of candidates is allowed when it is part of the overall, in-

dividual assessment. For example, in Johnson v. Transportation Agency of Santa Clara

County, two candidates were deemed well-qualified based on a range of metrics, such as

experience, background, and test scores taken together. But each candidate had differences

within a given metric. One had more clerical work and more road maintenance work; the

other had more experience at a specific part of the business. As for test scores, the man

scored 75 on the interview portion of the assessment and the woman scored 73. The em-

ployer had set 70 as the minimum threshold for the interview and seven applicants crossed

the 70 mark. The range of acceptable scores was 70 to 80 [187]. The woman was given

the promotion over the man who had the higher score. Because the scores were within

the range of acceptable scores and the final hiring manager looked at a set of metrics with

gender as “but one of numerous factors he took into account in arriving at his decision,” the

plan’s incorporation of bias-awareness, here gender, was allowed [183].

Others cases also acknowledge the need for an approach beyond using an absolute score

or ranking. Given problems with rank-ordering, the Second Circuit of Appeals has allowed

a rather coarse approach where an employer may “acknowledge his inability to justify rank-

ordering and resort to random selection from within either the entire group that achieves

a properly determined passing score, or some segment of the passing group shown to be

appropriate” [188]. Courts have also indicated an acceptance for more nuanced methods.

For example, the act of “banding,” or considering score ranges instead of singular scores,

has been accepted to account for inaccuracies in evaluation. [189, 190]. Although these

cases consider banding in a quite limited sense in that scores ranges are centered on original

scores and are of uniform length, they support that one might relax the assumption of an
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absolute ranking of candidates.

In language that tracks the poset approach, the Second Circuit has also acknowledged

“that small differences between the scores of candidates indicate very little about the candi-

dates’ relative merit and fitness” [188]. Thus the court embraced an approach that assessed

“a statistical computation of the likely error of measurement inherent” in its exam. The

employer then used that measurement to set up zones of candidates clustered by test scores

within that error measurement. That practice was seen as a good solution to “insur[e] com-

pliance” with Title VII. The Second Circuit explained, “by creating a more valid method

to assess the significance of test scores, [the approach] eliminated the central cause of the

adverse impact, i.e., the rank-ordering system, while assuring appointments on the basis

of merit.” As such, if one is able to use protected information (as in Johnson, or in the

context of a valid affirmative action plan [115]), then the banding cases provide guideposts

for adopting the poset approach as described in Section 5.1.5.

Answer to Q4. 1. An algorithmic approach should be allowed. A takeaway from John-

son and the cases on banding and rank-ordering is that a precise numerical score is not

necessarily indicative of an applicant’s potential, and courts welcome approaches that bet-

ter compare candidates. Thus, score ranges can be used as part of an applicant-screening

procedure. This supports the use of score ranges to account for uncertainties in evaluations,

as outlined in Section 3.

Further, note that incorporating the poset model of bias is not the same thing as normal-

izing distributions of scores across groups. When we normalize scores across groups, we

are essentially transforming all scores so that group-specific distributions look similar, and

this process results in a full ranking of applicants. In contrast, the poset approach intention-

ally does not reduce each applicant to a number and allows for incomparabilities between

applicants. This allows for a more individual treatment of candidates, where uncertainty

in rankings can be acknowledged. The result is that applicants are assessed as individuals,
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Figure 5.5: (left) Example of score distributions (blue: Group 1, orange: Group 2) and
(right) potential score ranges for candidates from these distributions. Suppose a hiring
committee wants to select two of the applicants represented in the right plot. If only the
raw evaluations (the centers of the intervals) are used to make these decisions, then only
the two high-scoring Group 1 candidates could be selected, as they are the only applicants
meeting the cutoff. However, if score ranges are considered, then the highest-scoring Group
2 candidate meets the cutoff as well. In this example, adopting the poset method results in
a more diverse slate of candidates meeting the cutoff, vis-à-vis using raw scores.

potentially in a more mathematically sound way.

2. There are rules about when bias-aware algorithms can be used. Recall that the stage

at which an entity uses bias-aware algorithms matters. In the promotion context of Johnson,

the Court gave a further reason the plan was allowed. Unlike Ricci, where applicants were

seen as having an expectation that a potentially valid test for which they could study be

accepted, there was “no absolute entitlement” to the position at issue in Johnson. The entity

had seven qualified and eligible applicants, and choosing one over the other “unsettled no

legitimate, firmly rooted expectation” of any of the candidates. By extension, a bias-aware

applicant-screening plan that used a protected class as part of an overall assessment then

had all selected applicants compete on the same metrics should be allowed under the law.

3. There are legal rules on the goals of any hiring plan. The law respects plans that seek

to remedy an imbalance and that do not set aside positions for a given group while also

conducting annual reviews of goals as it fashions future rounds of hiring and promotion

[191]. One may work “to attain a balanced work force, not to maintain one” [192].

The Johnson Court also noted with approval that “the Plan sought annually to develop

even more refined measures of the under-representation in each job category that required
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Figure 5.6: (left) Example of (somewhat unusual) score distributions (blue: Group 1, or-
ange: Group 2) and (right) potential score ranges for candidates from these distributions.
Suppose a hiring committee wants to select two of the applicants corresponding to the right
plot. If only the raw evaluations (the centers of the intervals) are used to make these deci-
sions, then only the two high-scoring Group 2 candidates could be selected, as they are the
only applicants meeting the cutoff. However, if score ranges are considered, then the two
highest-scoring Group 1 candidates meet the cutoff as well. From this example, we see that
adopting the poset approach can be beneficial to the majority group as well and does not
routinely advantage the lower-mean group (in this case, Group 2).

attention” [193]. This idea of not maintaining a balanced workforce reflects the idea that

an entity cannot use a plan that sets up quotas to maintain balance based purely on class

statuses. By extension, suppose balance is achieved in a company through bias-aware

methods, and they notice this by continuous monitoring of their hiring practices (in a sense,

returning to Question 1). The company may then have to stop using bias-aware methods,

even if demographic imbalance persists in the general workforce for that line of work.

4. The poset approach does not impose quotas. In contrast to methods described in

some recent work [30], using score ranges (e.g., using the poset approach) instead of raw

scores does not set up a quota system.6 When using the poset approach, selection rates may

be influenced by protected information (e.g., when accounting for observed, group-specific

biases), but such protected information is not necessarily a determining factor in selection

decisions. For example, the poset approach could result in a set of candidates which is

6One can set aside seats for interviews as happens with the Rooney Rule in the NFL, but such
a rule is best-protected by following the legal constraints for affirmative action plans. See e.g.,
https://www.aclusocal.org/en/inclusion-targets-whats-legal. Further, quota-based approaches at screening
stages may create a pool of candidates destined for later rejection depending on the downstream decision
process. The poset approach enables selections based on the possibility of a candidate being qualified and so
better fits legal requirements at any stage of hiring.
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Figure 5.7: (left) Example of score distributions (blue: Group 1, orange: Group 2) and
(right) potential score ranges for candidates from these distributions. Suppose a hiring
committee wants to select two of the applicants corresponding to the right plot. If only the
raw evaluations (the centers of the intervals) are used to make these decisions, then only the
two highest-scoring Group 1 candidates could be selected, as they are the only applicants
meeting the cutoff. If the score ranges are considered, then the four highest-scoring Group
1 candidates meet the cutoff. This example shows that adopting the poset approach does
not necessarily increase the selection rate for the group with the lower mean score, and that
the poset approach does not necessarily constitute a quota system.

less demographically proportional than what raw scores might produce (see, e.g., Figures

5.7-5.8), or more demographically proportional (see, e.g., Figures 5.5-5.6), depending on

the data and the ascertained uncertainty therein.

5.1.7 Conclusion

We summarized recent work in the context of hiring, with a focus on screening algorithms.

We highlighted the seeming paradox of mathematics, law and practice that a company

might observe workforce imbalance due to its past practices, but the solutions to correct

for this imbalance are either at a contradiction with mathematics or anti-discrimination

law. The new poset-based approach [150] provides a framework for incorporating uncer-

tainties in rankings into a candidate-screening practice which allows, for example, hiring

committees to base decision on confidence intervals of ability scores. This approach can

potentially be legally justified based on past disparate impact and can be adjusted over time

as the data grows and hiring goals evolve; and thus can help avoid having a static plan as

the law requires.
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Figure 5.8: (left) Example of (somewhat unusual) score distributions (blue: Group 1, or-
ange: Group 2) and (right) potential score ranges for candidates from these distributions.
Suppose a hiring committee wants to select two of the applicants corresponding to the right
plot. If only the raw evaluations (the centers of the intervals) are used to make these deci-
sions, then one Group 1 and one Group 2 candidate will be selected, as they are the only
applicants meeting the cutoff. In this case, demographic parity is achieved, as both groups
have equal size. However, if score ranges are considered, then two additional Group 1 can-
didates meet the cutoff as well. This example shows that adopting the poset approach does
not necessarily make the new candidate slate (i.e., those meeting the cutoff) more represen-
tative compared to using raw scores—indeed, in this example, adopting the poset approach
moves the new candidate slate farther away from demographic parity.

No approach, however, is a fix-all solution. The poset approach cannot discount for

undetectable errors undetectable, or modeling errors due to missing data. The ranges of the

intervals impact the quality of selections. Further, two different mathematical approaches

could be used to define score ranges for candidates and result in different sets of selected

candidates. A legal dispute may require addressing which one of these approaches is more

valid. Further, there is an “are we there yet?” issue built into the Supreme Court’s rulings.

That is, it may be unclear at which point a workforce becomes “balanced” and the current

plan must be replaced. Although the poset approach is adaptive, detecting where there is

no longer any impact of societal biases in the data is non-trivial and we leave this as an

open question.

For any intervention in an existing framework, one has to consider if the intervention is

serving those for whom it is designed [194]. Partially ordered sets that are interval-based

might create an impression that certain underrepresented minorities carry high uncertainty

in their potentials and as a result, lead a risk-averse hiring committee to reject those can-

167



didates. On the contrary, the poset approach is able to highlight missed opportunities in

representation in the hiring pipeline. Taking uncertainties into account can expand and

improve the talent pool to include candidates who are qualified and would have been com-

petitive had there been no bias in the data. Thus, we believe that the analysis presented here

can pave the way forward for hiring qualified candidates in a fair way in the evolving legal

landscape.

5.2 Pricing and Privacy

In this section, I raise some open questions relating to pricing, law, and privacy. In general,

as laws regarding data use and and automated decision-making emerge, questions about

the legality of existing methods will as well.

First, consider price gouging: the act of dramatically increasing a pricing during an

emergency. Amazon was recently sued for allegedly price-gouging during the pandemic,

as they increased the price of essential goods by more than 450% (e.g., see Figure 5.9)

compared to previously seen prices (McQueen and Ballinger v. Amazon.com7). The legal

definition of price gouging varies across jurisdictions; e.g., bill H.R.7736 introduced to the

House in 2022 defined price gouging with respect to prices set over the prior 120 days.

Observe that price gouging is a temporally defined phenomenon and can potentially be

prevented using a temporal constraint. This prompts the following questions:

1. How can price gouging laws be encoded as constraints?

2. Let pt be the price set for a good on day t, and consider the constraint

pt ≤
c

m

m∑
s=1

pt−s for all t > m,

which may prevent some forms of price gouging. What are upper and lower bounds

on regret for bandit convex optimization subject to these constraints?
7McQueen and Ballinger v. Amazon.com, Inc., 422 U.S. Case 4:20-cv-02782 (2020).
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Figure 5.9: The price path of Purell hand sanitizer on Amazon from March 2015 to March
2021 (from https://camelcamelcamel.com/product/B00U2KYUAY)

Next, I am interested in the relationship between data privacy laws and algorithmic

decision-making. Data privacy laws, such as the California Consumer Privacy Act (CCPA)

[8] in California and the General Data Protection Regulation (GDPR) [9] in the E.U. restrict

the use of data in decision-making. These laws can limit discrimination (as in the CCPA)

or limit the use of automated decision-making (as in the GDPR) and potentially affect

personalized pricing. This leads to the following question:

1. How do existing data privacy laws limit the implementation of dynamic, personalized

pricing algorithms?

2. What ramifications does the “right to opt out” have on machine learning? If a cer-

tain group opts out of data collection moreso than another group, will the prediction

accuracy on that group suffer?
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CHAPTER 6

CONCLUSION

In this dissertation, I discussed models of fairness in online decision-making and relevant

algorithm design. I showed that offline notions of fairness can sometimes be satisfied with

full memory in an online setting (Chapter 3). In other cases, this results in poor performance

(Section 4.1). In such cases, there is a range of options for extending the offline notion of

fairness to an online setting, and both performance and impact might be considerations in

deciding which to take.

Apart from the more specific open questions mentioned throughout this dissertation,

there are some broad directions that merit study. First, it would be interesting to quantify

the trade-offs between memory of a fairness constraint and learnability, in various online

learning settings and notions of fairness. Having these trade-offs quantified could give

decision-makers useful information in deciding how to constrain their decisions.

Second, it would be interesting to see more work done on long-term effects of con-

strained decision-making. While there has been some work done in this area (e.g., studying

the long-term effects of affirmative action [72, 73]), much of this work focuses on demo-

graphic parity. It would be interesting to know the effects of other constraints, such as

conditional demographic parity, on population qualifications and behaviors over time. The

question of how decisions affect the relative qualification distribution across groups over

time is complex and dependent on the policy used.

Third, I would like to highlight a broad legal question which I believe has far-reaching

implications on algorithmic decision-making: what exactly constitutes disparate treat-

ment? In Chapter 5, I mentioned disparate treatment as a form of illegal discrimination

which involves the intentional use of protected information to harm a protected group.

This definition, however, is quite fuzzy. If an employer makes hiring decisions using a
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feature which is correlated with a protected attribute, does this constitute disparate treat-

ment? If an employer uses an ensemble approach, running several race-blind algorithms

and choosing the one which produces the most racially-balanced output, has the employer

applied disparate treatment? Outlining the limits of disparate treatment, to whatever extent

is possible, will help guide algorithmic decision-making going forward.

With the rise of online decision-making in important social contexts, the question of

impact is central. Deciding on fairness goals can be a difficult process, as there may be

conflicting considerations based on public perceptions, law, ethics, and utility. That said,

knowing which fairness goals can be achieved and understanding their impact allows for

more meaningful consideration.

171



REFERENCES

[1] B. Friedman and H. Nissenbaum, “Bias in computer systems,” ACM Transactions
on Information Systems (TOIS), vol. 14, no. 3, pp. 330–347, 1996.

[2] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on
bias and fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54,
no. 6, pp. 1–35, 2021.

[3] K. V. Deshpande, S. Pan, and J. R. Foulds, “Mitigating demographic bias in ai-
based resume filtering,” in Adjunct publication of the 28th ACM conference on user
modeling, adaptation and personalization, 2020, pp. 268–275.

[4] R. Kleinberg, “A multiple-choice secretary algorithm with applications to online
auctions,” in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, ser. SODA ’05, Vancouver, British Columbia: Society for Indus-
trial and Applied Mathematics, 2005, pp. 630–631, ISBN: 0-89871-585-7.

[5] AspiringMinds, Aspiring Minds: AI powered talent evaluation, Windows Phone
Central, Ed., 22.05.2020.

[6] S. Gupta and V. Kamble, “Individual fairness in hindsight.,” J. Mach. Learn. Res.,
vol. 22, no. 144, pp. 1–35, 2021.

[7] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel, “Fairness through
awareness,” in ITCS ’12, 2011.

[8] CCPA, “TITLE 1.81.5. California Consumer Privacy Act of 2018 (Title 1.81.5
added by Stats. 2018, Ch. 55, Sec. 3.),”

[9] GDPR, “Regulation (EU) 2016/679 (General Data Protection Regulation),”

[10] S. Gupta, V. Kamble, and J. Salem, “Ai and ethics,” in Springer, TBD, ch. Temporal
Fairness in Online Decision-Making.

[11] J. Dastin, “Amazon scraps secret ai recruiting tool that showed bias against women,”
Reuters, Oct. 2018.

[12] S. Bansal, A. Srivastava, and A. Arora, “Topic modeling driven content based
jobs recommendation engine for recruitment industry,” Procedia computer science,
vol. 122, pp. 865–872, 2017.

[13] W. Baker, D. Kiewell, and G. Winkler, “Using big data to make better pricing
decisions,” McKinsey Analysis, 2014.

172



[14] J. Jagtiani and C. Lemieux, “The roles of alternative data and machine learning
in fintech lending: Evidence from the lendingclub consumer platform,” Financial
Management, vol. 48, no. 4, pp. 1009–1029, 2019.

[15] C. Rigano, “Using artificial intelligence to address criminal justice needs,” National
Institute of Justice Journal, vol. 280, pp. 1–10, 2019.

[16] A. Panesar, Machine learning and AI for healthcare. Springer, 2019.

[17] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning: Limita-
tions and Opportunities. fairmlbook.org, 2019, http://www.fairmlbook.org.

[18] A. Chouldechova and A. Roth, “The frontiers of fairness in machine learning,”
arXiv preprint arXiv:1810.08810, 2018.

[19] J. W. Fuchs and Q. R. Youmans, “Mitigating bias in the era of virtual residency
and fellowship interviews,” Journal of Graduate Medical Education, vol. 12, no. 6,
pp. 674–677, 2020.

[20] M. P. Kim, A. Ghorbani, and J. Zou, “Multiaccuracy: Black-box post-processing
for fairness in classification,” in Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, 2019, pp. 247–254.

[21] S. Ramraj, V. Sivakumar, et al., “Real-time resume classification system using
linkedin profile descriptions,” in 2020 International Conference on Computational
Intelligence for Smart Power System and Sustainable Energy (CISPSSE), IEEE,
2020, pp. 1–4.

[22] A. V. Den Boer, “Dynamic pricing and learning: Historical origins, current re-
search, and new directions,” Surveys in operations research and management sci-
ence, vol. 20, no. 1, pp. 1–18, 2015.

[23] T. Calders, F. Kamiran, and M. Pechenizkiy, “Building classifiers with indepen-
dency constraints,” in 2009 IEEE international conference on data mining work-
shops, IEEE, 2009, pp. 13–18.

[24] M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth, “Fairness in learning: Clas-
sic and contextual bandits,” Advances in neural information processing systems,
vol. 29, 2016.

[25] J. Sánchez-Monedero, L. Dencik, and L. Edwards, “What does it mean to “solve”
the problem of discrimination in hiring? social, technical and legal perspectives
from the uk on automated hiring systems,” in Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, ser. FAT* ’20, Barcelona, Spain:
Association for Computing Machinery, 2020, pp. 458–468, ISBN: 9781450369367.

173

http://www.fairmlbook.org


[26] K. L. Haws and W. O. Bearden, “Dynamic pricing and consumer fairness percep-
tions,” Journal of Consumer Research, vol. 33, no. 3, pp. 304–311, 2006.

[27] N. A. Saxena, K. Huang, E. DeFilippis, G. Radanovic, D. C. Parkes, and Y. Liu,
“How do fairness definitions fare? testing public attitudes towards three algorith-
mic definitions of fairness in loan allocations,” Artificial Intelligence, vol. 283,
p. 103 238, 2020.

[28] D. Bertsimas, V. F. Farias, and N. Trichakis, “Fairness, efficiency, and flexibility in
organ allocation for kidney transplantation,” Operations Research, vol. 61, no. 1,
pp. 73–87, 2013.

[29] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates,
“Fa* ir: A fair top-k ranking algorithm,” in Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, 2017, pp. 1569–1578.

[30] V. Emelianov, N. Gast, K. P. Gummadi, and P. Loiseau, “On fair selection in the
presence of implicit variance,” in Proceedings of the 2020 ACM Conference on
Economics and Computation, 2020.

[31] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq, “Algorithmic deci-
sion making and the cost of fairness,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2017,
pp. 797–806.

[32] A. Chouldechova, “Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments,” Big data, vol. 5, no. 2, pp. 153–163, 2017.

[33] J. Kleinberg, “Inherent trade-offs in algorithmic fairness,” in Abstracts of the 2018
ACM International Conference on Measurement and Modeling of Computer Sys-
tems, 2018, pp. 40–40.

[34] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, “On fairness
and calibration,” in Advances in Neural Information Processing Systems, 2017,
pp. 5680–5689.

[35] J. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-offs in the fair
determination of risk scores,” in 8th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[36] H. Heidari and A. Krause, “Preventing disparate treatment in sequential decision
making,” in Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 2248–2254.

174



[37] Y. Bechavod, C. Jung, and S. Z. Wu, “Metric-free individual fairness in online
learning,” Advances in neural information processing systems, vol. 33, pp. 11 214–
11 225, 2020.

[38] E. B. Dynkin, The optimum choice of the instant for stopping markov process,
Soviet Mathmatics, Doklady 4, 1963.

[39] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. USA:
Cambridge Univ. Press, 1998, ISBN: 0521563925.

[40] S. Albers and L. Ladewig, “New results for the k-secretary problem,” Theoretical
Computer Science, vol. 863, pp. 102–119, 2021.

[41] E. Hazan and K. Y. Levy, “Bandit convex optimization: Towards tight bounds.,” in
NIPS, 2014, pp. 784–792.

[42] A. Daniely and Y. Mansour, “Competitive ratio versus regret minimization: Achiev-
ing the best of both worlds,” arXiv preprint arXiv:1904.03602, 2019.

[43] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge university press,
1995.

[44] A. Rakhlin, K. Sridharan, and A. Tewari, “Online learning: Random averages, com-
binatorial parameters, and learnability,” Advances in Neural Information Process-
ing Systems, vol. 23, 2010.

[45] M. Feldman, O. Svensson, and R. Zenklusen, “A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem,” in Proc. of the Twenty-sixth Annual
ACM-SIAM Symp. on Discrete Algorithms, ser. SODA ’15, San Diego, California:
Society for Industrial and Applied Mathematics, 2015, pp. 1189–1201.

[46] J. Soto, “Matroid secretary problem in the random-assignment model,” SIAM Jour-
nal on Computing, vol. 42, no. 1, pp. 178–211, 2013.

[47] N. Buchbinder, K. Jain, and M. Singh, “Secretary problems via linear program-
ming,” Mathematics of Operations Research, vol. 39, no. 1, pp. 190–206, 2014.

[48] E. Hazan et al., “Introduction to online convex optimization,” Foundations and
Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[49] R. Vershynin, High-dimensional probability: An introduction with applications in
data science. Cambridge university press, 2018, vol. 47.

[50] H. M. MacNeille, “Partially ordered sets,” Transactions of the American Mathe-
matical Society, vol. 42, no. 3, pp. 416–460, 1937.

175



[51] B. Schroeder, Ordered Sets, 1st. Birkhäuser Basel, 2003, ISBN: 978-1-4612-0053-
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[122] S. Yucer, S. Akçay, N. Al-Moubayed, and T. P. Breckon, “Exploring racial bias
within face recognition via per-subject adversarially-enabled data augmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops, 2020, pp. 18–19.

[123] L. Dixon, J. Li, J. Sorensen, N. Thain, and L. Vasserman, “Measuring and mitigat-
ing unintended bias in text classification,” in Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, 2018, pp. 67–73.

[124] S. D. Schlachter and J. R. Pieper, “Employee referral hiring in organizations: An
integrative conceptual review, model, and agenda for future research.,” Journal of
Applied Psychology, 2019.

[125] A. Hannák, C. Wagner, D. Garcia, A. Mislove, M. Strohmaier, and C. Wilson,
“Bias in online freelance marketplaces: Evidence from taskrabbit and fiverr,” in
Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing, 2017, pp. 1914–1933.

[126] A. B. Batastini, A. D. Bolaños, R. D. Morgan, and S. M. Mitchell, “Bias in hiring
applicants with mental illness and criminal justice involvement: A follow-up study
with employers,” Criminal Justice and Behavior, vol. 44, no. 6, pp. 777–795, 2017.

[127] V. Das Swain, K. Saha, M. D. Reddy, H. Rajvanshy, G. D. Abowd, and M. De
Choudhury, “Modeling organizational culture with workplace experiences shared
on glassdoor,” in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020, pp. 1–15.

[128] C. Hanks, “Technology and values: Essential readings,” in John Wiley & Sons,
2009, p. 7.

181



[129] M. Kearns and A. Roth, The Ethical Algorithm: The Science of Socially Aware
Algorithm Design, 1st. New York, NY: oxford University Press, 2020.

[130] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” Calif. L. Rev., vol. 104,
p. 671, 2016.

[131] A. Caliskan, J. J. Bryson, and A. Narayanan, “Semantics derived automatically
from language corpora contain human-like biases,” Science, vol. 356, no. 6334,
pp. 183–186, 2017.

[132] B. Edelman, M. Luca, and D. Svirsky, “Racial discrimination in the sharing econ-
omy: Evidence from a field experiment,” American Economic Journal: Applied
Economics, vol. 9, no. 2, pp. 1–22, 2017.

[133] M. Bogen and A. Rieke, “Help wanted: An examination of hiring algorithms, eq-
uity, and bias,” 2018.

[134] K. Lum and W. Isaac, “To predict and serve?” Significance, vol. 13, no. 5, pp. 14–
19, 2016.

[135] S. Barocas, “Data mining and the discourse on discrimination,” in Data Ethics
Workshop, Conference on Knowledge Discovery and Data Mining, 2014, pp. 1–
4.

[136] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning. fairml-
book.org, 2019, http://www.fairmlbook.org.

[137] R. N. Hanna and L. L. Linden, “Discrimination in grading,” American Economic
Journal: Economic Policy, vol. 4, pp. 146–68, Feb. 2012.

[138] Jobscan, Applicant tracking systems, Available at https://www.jobscan.co/applicant-
tracking-systems., Accessed Sept. 11, 2020.

[139] S. Dewan, “How businesses use your sats,” New York Times, Mar. 2014.

[140] Mckinsey’s online application faqs: Careers, Accessed January 17, 2022.

[141] A. Griswold, “Why major companies like amazon ask job candidates for their sat
scores,” Business Insider, Mar. 2014.

[142] E. Dixon-Roman, H. Everson, and J. Mcardle, “Race, poverty and sat scores: Mod-
eling the influences of family income on black and white high school students’ sat
performance,” Teachers College Record, vol. 115, May 2013.

182

http://www.fairmlbook.org
https://www.jobscan.co/applicant-tracking-systems
https://www.jobscan.co/applicant-tracking-systems


[143] Y. Faenza, S. Gupta, and X. Zhang, Impact of bias on school admissions and tar-
geted interventions, 2020. arXiv: 2004.10846 [cs.CY].

[144] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamil-
ton, and D. Roth, “A comparative study of fairness-enhancing interventions in ma-
chine learning,” in Proceedings of the conference on fairness, accountability, and
transparency, 2019, pp. 329–338.

[145] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Fairness-aware classifier with
prejudice remover regularizer,” in Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, Springer, 2012, pp. 35–50.

[146] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representa-
tions,” in International Conference on Machine Learning, 2013, pp. 325–333.

[147] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,”
in Advances in neural information processing systems, 2016, pp. 3315–3323.

[148] F. Kamiran, T. Calders, and M. Pechenizkiy, “Discrimination aware decision tree
learning,” in 2010 IEEE International Conference on Data Mining, IEEE, 2010,
pp. 869–874.

[149] M. De-Arteaga et al., “Bias in bios: A case study of semantic representation bias in
a high-stakes setting,” in Proceedings of the Conference on Fairness, Accountabil-
ity, and Transparency, 2019, pp. 120–128.

[150] J. Salem and S. Gupta, “Closing the gap: Group-aware parallelization for online se-
lection of candidates with biased evaluations,” in International Conference on Web
and Internet Economics (WINE), Springer, 2020. Under major revision at Manage-
ment Science, 2021.

[151] J. Wang and N. Shah, “Your 2 is my 1, your 3 is my 9: Handling arbitrary miscali-
brations in ratings,” in AAMAS Conference proceedings, 2019.

[152] J. Wang, I. Stelmakh, Y. Wei, and N. B. Shah, “Debiasing evaluations that are
biased by evaluations,” arXiv preprint arXiv:2012.00714, 2020.

[153] A. Wold and C. Wennerås, “Nepotism and sexism in peer review,” Nature, vol. 387,
no. 6631, pp. 341–343, 1997.

[154] A. Blum and K. Stangl, “Recovering from biased data: Can fairness constraints im-
prove accuracy?” In Symposium on Foundations of Responsible Computing (FORC),
vol. 1, 2020.

183

https://arxiv.org/abs/2004.10846


[155] M. J. Fischer and D. S. Massey, “The effects of affirmative action in higher educa-
tion,” Social Science Research, vol. 36, no. 2, pp. 531–549, 2007.

[156] M. E. Heilman, C. J. Block, and P. Stathatos, “The affirmative action stigma of
incompetence: Effects of performance information ambiguity,” Academy of Man-
agement Journal, vol. 40, no. 3, pp. 603–625, 1997.

[157] FTC Report, Big data: a tool for inclusion or exclusion? Federal Trade Commis-
sion, January 2016.

[158] § 2000e-2(k)(1)(A). 42 U.S.C.

[159] C. A. Sullivan, “Disparate impact: Looking past the desert palace mirage,” William
& Mary Law Review, 2005.

[160] W. Miao and J. L. Gastwirth, “Properties of statistical tests appropriate for the anal-
ysis of data in disparate impact cases,” Law, Probability and Risk, vol. 12, no. 1,
pp. 37–61, 2013.

[161] M. G. Sobol and C. J. Ellard, “Measures of employment discrimination: A statis-
tical alternative to the four-fifths rule,” Industrial Relations Law Journal, pp. 381–
399, 1988.

[162] Bostock v. Clayton County, 590 U.S. . 2020.

[163] N. Totenberg. “Supreme court delivers major victory to lgbtq employees.” (2020).

[164] M. Kempner, “Georgia’s big businesses reveal staff — and management — diver-
sit,” The Atlanta Constitution Journal, Oct. 2021.

[165] Griggs v. Duke Power Co., 401 U.S. 424, 432. 1971.

[166] Griggs v. Duke Power Co., 401 U.S. 424, 431. 1971.

[167] Ricci v. DeStefano, 557 U.S. 557, 632. 2009.

[168] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 627. 1987.

[169] M. MacCarthy, “Standards of fairness for disparate impact assessment of big data
algorithms,” Cumberland L. Rev., vol. 48, p. 102, 2017.

[170] K. A. Houser, “Can ai solve the diversity problem in the tech industry? mitigating
noise and bias in employment decision-making,” Stanford Tech. L. Rev., vol. 22,
p. 290, 2019.

184



[171] P. Kim, “Auditing algorithms for discrimination,” U. Pa. L. Rev. Online, vol. 166,
p. 189, 2017.

[172] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 631. 1987.

[173] Ricci v. DeStefano, 557 U.S. 557. 2009.

[174] P. Kim, “Data-driven discrimination at work,” Wm. & Mary L. Rev., vol. 58, p. 8657,
2017.

[175] Ricci v. DeStefano, 557 U.S. 557, 580-581. 2009.

[176] Ricci v. DeStefano, 557 U.S. 557, 583. 2009.

[177] Ricci v. DeStefano, 557 U.S. 557, 564. 2009.

[178] Ricci v. DeStefano, 557 U.S. 557, 565. 2009.

[179] Ricci v. DeStefano, 557 U.S. 557, 567. 2009.

[180] Ricci v. DeStefano, 557 U.S. 557, 585. 2009.

[181] R. Primus, “The future of disparate impact,” Mich. L. Rev., vol. 108, p. 1341, 2010.

[182] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 636-637.
1987.

[183] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 638. 1987.

[184] Regents of University of California v. Bakke, 438 U.S. 265, 317. 1978.

[185] Brunet v. City of Columbus, Ohio, 58 F.3d 251, 255 (6th Cir.) 1995.

[186] Guardians Ass’n of New York City v. Civil Serv, 630 F.2d 79 (2d Cir.) 1980.

[187] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 623-624.
1987.

[188] Kirkland v. N.Y. State Dep’t of Correctional Serv., 711 F.2d 1117, 1133 (2d Cir.)
1983.

[189] Bradley v. City of Lynn, 403 F. Supp. 2d 161. 2005.

[190] Boston Police Superior Officers Fed’n v. City of Boston, 147 F.3d 13. 1998.

185



[191] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 640-641.
1987.

[192] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 639. 1987.

[193] Johnson v. Transportation Agency, Santa Clara Cty., 480 U.S. 616, 635. 1987.

[194] S. Corbett-Davies and S. Goel, “The measure and mismeasure of fairness: A critical
review of fair machine learning,” arXiv preprint arXiv:1808.00023, 2018.

186



BIOGRAPHY

Jad Salem is an overly caffeinated mathematician, cooking enthusiast, and crossword lover.

After studying mathematics in college and graduate school, Jad became interested in theo-

retical and practical aspects of fair decision-making.

187


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction
	2 | Background and Notation
	Fairness in offline decision-making
	Frameworks for online decision-making
	Secretary algorithms and analysis
	Convex optimization
	Partial orders

	3 | Partial Orders and Uncertainty
	Background and Main Results
	Problem Formulation: Bias, Fairness, and the Secretary Problem
	A lower bound
	LP-Based Algorithms
	Random Partition Algorithms
	Adaptive Thresholding
	Algorithms for the Special Case of Group Bias
	Experimental Case Study (Simulation)
	Discussion: Managerial Considerations and Open Questions

	4 | Constrained Online Learning
	Memory and Online Decision-Making
	Motivating Example: Multi-Segment Pricing
	Convex Optimization with Bandit Feedback under CFTD
	Discussion: Unfairness and Perceptions thereof
	Open Questions

	5 | Algorithms and the Law
	Hiring
	Pricing and Privacy

	6 | Conclusion
	References
	Biography

