Computing Linear Systems on Metric Graphs

Bo Lin (UC Berkeley)

arXiv:1603.00547

June 7th, 2016
SIAM Conference on Discrete Mathematics
Background

- Hasse, Musiker and Yu (’12): Linear systems on tropical curves.
Outline

- Introduction
- $|D|$ as a cell complex
- $R(D)$ as a tropical semi-module
- Examples of canonical linear systems (motivated from tropical curves)
- Open problems
Metric graphs

Definition

A metric graph Γ is a connected undirected finite graph whose edges have lengths. It is determined by its graph-theoretic type (called skeleton) and the lengths of its edges (called metric).
Definition

A metric graph Γ is a connected undirected finite graph whose edges have lengths. It is determined by its graph-theoretic type (called skeleton) and the lengths of its edges (called metric).

Remark

We also denote by Γ the set of all vertices and interior points of the metric graph, if without any confusion.
Definition

A divisor \(D \) on \(\Gamma \) is a formal finite \(\mathbb{Z} \)-linear combination
\[
D = \sum_{x \in \Gamma} D(x) \cdot x \text{ of points of } \Gamma.
\]
The divisor is effective if \(D(x) \geq 0 \) for all \(x \in \Gamma \).
The degree of a divisor \(D \) is \(\sum_{x \in \Gamma} D(x) \).
The support of a divisor \(D \) on \(\Gamma \) is the set \(\{ x \in \Gamma | D(x) \neq 0 \} \), denoted as \(\text{supp}(D) \).
Rational functions

Definition

A tropical rational function \(f \) on \(\Gamma \) is a continuous function \(f : \Gamma \to \mathbb{R} \) that is piecewise-linear on each edge with finitely many pieces and integral slopes. The order \(\text{ord}_x(f) \) of \(f \) at a point \(x \in \Gamma \) is the sum of outgoing slopes at \(x \) towards all directions. Note that if \(x \) is an interior point of a linear piece of \(f \), then \(\text{ord}_x(f) = 0 \). The principal divisor associated to \(f \) is

\[
(f) = \sum_{x \in \Gamma} \text{ord}_x(f) \cdot x.
\]
Definition

For any divisor D on Γ, let $R(D)$ be the set of all rational functions f on Γ such that the divisor $D + (f)$ is effective, and $|D| = \{D + (f) | f \in R(D)\}$, the linear system of D.

Remark

Let $\mathbb{1}$ be the set of constant functions on Γ. There is a bijection between the rational functions in $R(D) / \mathbb{1}$ and the effective divisors in $|D|$. However, they have different combinatorial structures and we explore them in this work.
Definition

For any divisor D on Γ, let $R(D)$ be the set of all rational functions f on Γ such that the divisor $D + (f)$ is effective, and $|D| = \{D + (f) | f \in R(D)\}$, the linear system of D.

Remark

Let 1 be the set of constant functions on Γ. There is a bijection between the rational functions in $R(D)/1$ and the effective divisors in $|D|$. However, they have different combinatorial structures and we explore them in this work.
Example C_4

Let $\Gamma = (V, E)$ be a metric graph with skeleton C_4 and edges with equal lengths. Let $D = \sum_{v \in V} 2 \cdot v$. The following figures show a rational function $f \in R(D)$ on Γ and the corresponding effective divisor $D + (f)$.
Example C_4

Let $\Gamma = (V, E)$ be a metric graph with skeleton C_4 and edges with equal lengths. Let $D = \sum_{v \in V} 2 \cdot v$. The following figures show a rational function $f \in R(D)$ on Γ and the corresponding effective divisor $D + (f)$.

Figure: Γ

Figure: The divisor D
Figure: rational function f (blue) on the metric graph Γ (black)
Background and definitions
The cell complex $|D|$
Tropical convex set $R(D)$
Examples of canonical linear systems
Open Problems

Figure: The effective divisor $D + (f)$
For convenience we make a reasonable assumption on D.
For convenience we make a reasonable assumption on D.

Definition

A divisor D on Γ is vertex-supported if $\text{supp}(D) \subseteq V$.
For convenience we make a reasonable assumption on D.

Definition

A divisor D on Γ is vertex-supported if $\text{supp}(D) \subseteq V$.

From now the divisor D is always vertex-supported, unless specified. However, many divisors in $|D|$ are not vertex-supported.
Cells

We identify each open edge $e \in E$ with the interval $(0, M_e)$. Then each open cell of $|D|$ is characterized by the following data:

- a nonnegative integer d_v for each $v \in V$;
- an ordered partition $d_e = \sum_{i=1}^{r_e} d_{e,i}$ of positive integers for some $e \in E$;
- an integer m_e for each $e \in E$.

Then a divisor L belongs to this cell if and only if $L(v) = d_v$ for each $v \in V$;

For each $e \in E$, L on e is either expressed as $\sum_{i=1}^{r_e} d_{e,i} \cdot x_i$, where $0 < x_1 < x_2 < \ldots < x_{r_e} < M_e$, or zero.

Suppose $f \in R(D)$ such that $L = D + (f)$, then the outgoing slope of f at the point 0 is m_e for each $e \in E$.

Cells

We identify each open edge $e \in E$ with the interval $(0, M_e)$. Then each open cell of $|D|$ is characterized by the following data:

- a nonnegative integer d_v for each $v \in V$;
- an ordered partition $d_e = \sum_{i=1}^{r_e} d_{e,i}$ of positive integers for some $e \in E$;
- an integer m_e for each $e \in E$.

Then a divisor L belongs to this cell if and only if

- $L(v) = d_v$ for each $v \in V$;
- For each $e \in E$, L on e is either expressed as $\sum_{i=1}^{r_e} d_{e,i} \cdot x_i$, where $0 < x_1 < x_2 < \ldots < x_{r_e} < M_e$, or zero.
- Suppose $f \in R(D)$ such that $L = D + (f)$, then the outgoing slope of f at the point 0 is m_e for each $e \in E$.

Dimension of a cell

Given the data of a cell, we would like to know the dimension of the cell.
Given the data of a cell, we would like to know the dimension of the cell.

Proposition

(Haase-Musiker-Yu, 2012) Let D be a vertex-supported divisor on a metric graph Γ and V is the set of vertices in Γ. Let C be a cell in $|D|$ and divisor L is a representative of C. Let $I_L = \text{supp}(L) - V$. Then $\dim C$ is one less than the number of connected components in the graph $\Gamma - I_L$.
Anchor cells

In order to find all cells in $|D|$, we introduce the *anchor cells*, which serve as the landmarks in $|D|$.

Definition

A divisor L on Γ is an anchor divisor if for each edge of Γ there is at most one its interior point x with $L(x) > 0$. A cell C in $|D|$ is an anchor cell if all divisors in C are anchor divisors.
Anchor cells

In order to find all cells in $|D|$, we introduce the anchor cells, which serve as the landmarks in $|D|$.

Definition

A divisor L on Γ is an anchor divisor if for each edge of Γ there is at most one its interior point x with $L(x) > 0$. A cell C in $|D|$ is an anchor cell if all divisors in C are anchor divisors.

Lemma

If $f \in R(D)$ and $D + (f)$ is an anchor divisor, then f has at most 2 linear pieces on each edge of Γ.
Corollary

Let D be a vertex-supported divisor on a metric graph Γ. If C is an anchor cell and it is represented by a divisor $D + (f)$, then C is uniquely determined by the outgoing slopes of f at all vertices of Γ.
Corollary

Let D be a vertex-supported divisor on a metric graph Γ. If C is an anchor cell and it is represented by a divisor $D + (f)$, then C is uniquely determined by the outgoing slopes of f at all vertices of Γ.

Lemma (Haase-Musiker-Yu, 2012)

Let D be a divisor on a metric graph Γ and $f \in R(D)$. Then the slopes of all linear pieces of f are between $-\deg(D)$ and $\deg(D)$.
With the two results above we can prove the following proposition.

Proposition

Let D be a vertex-supported divisor on a metric graph Γ. Then there are finitely many anchor cells in $|D|$.
Finiteness

With the two results above we can prove the following proposition.

Proposition

Let D be a vertex-supported divisor on a metric graph Γ. Then there are finitely many anchor cells in $|D|$.

Proof.

Every anchor cell C in $|D|$ is represented by a divisor $D + (f)$, where $f \in R(D)/1$. Since C is uniquely determined by the outgoing slopes of f at all vertices of Γ, there are $2|E|$ slopes to assign. In addition, all these slopes belong to the interval $[-d, d]$ where $d = \deg(D)$ and they are integers. So there are finitely many choices for each of them, and thus for all of them.
Algorithm

Our algorithm to find all cells of $|D|$ consists of two steps:

1. Find all anchor cells of $|D|$ using linear programming algorithm.

2. Associate every cell to a unique anchor cell. For each anchor cell, find all cells associated to it.
Given Γ and D, there are two approaches using linear programming to find all anchor cells in $|D|$.
Given Γ and D, there are two approaches using linear programming to find all anchor cells in $|D|$. Since if divisor $D + (f) \in |D|$ represents an anchor cell, then the cell is uniquely determined by the outgoing slopes of f at all vertices. Then we search all $(2 \deg(D) + 1)^{2|E|}$ choices of those slopes. For each choice, there exists an anchor cell if and only if a system of linear equations and inequalities is feasible.
LP approach - search among all configuration of $D + (f)$

Note that if $D + (f)$ is an anchor divisor in $|D|$, then the support of this divisor has at most one intersection point with each edge of Γ. Then this divisor corresponds to a configuration of $\deg(D)$ unordered chips into $|V| + |E|$ bins (could be empty). There are $\binom{|V| + |E| + \deg(D) - 1}{\deg(D) - 1}$ such configurations.
Note that if $D + (f)$ is an anchor divisor in $|D|$, then the support of this divisor has at most one intersection point with each edge of Γ. Then this divisor corresponds to a configuration of $\deg(D)$ unordered chips into $|V| + |E|$ bins (could be empty). There are $(|V| + |E| + \deg(D) - 1)/\deg(D) - 1)$ such configurations.

For each configuration, we introduce the following $|V| + 2|E|$ variables: the value of f at each vertex in V and the outgoing slopes of f at both endpoints of all edges in E. Then we have a system of linear equations and inequalities. There is a corresponding anchor cell if and only if the system has a solution where all slopes are integers.
Association

For any cell C of $|D|$, choose a divisor L in it to represent. If L is already anchor, then C is associated to itself; otherwise for every edge that has more than one interior point with chip in L, we can apply a local chip-firing to combine all these chips to the same point in a unique way. After applying these chip-firings, we end up with an anchor divisor L' in an anchor cell C', and the d_v and m_e are unchanged. We associate C to C'.
Example C_4 continued

Example

The left divisor represents a 3-dimensional cell and it is associated to a 2-dimensional anchor cell, which is represented by the anchor divisor on the right.

Figure: The left divisor is associated to the right one
The following theorem provides a combinatorial formula to compute the f-vector (f_0, f_1, \ldots, f_d) of $|D|$ given all of its anchor cells. Here f_i is the number of i-dimensional cells in $|D|$.

Theorem (Lin, 2016)

Let D be a vertex-supported divisor on a metric graph Γ. If C_1, C_2, \ldots, C_m are all anchor cells in $|D|$, and for $1 \leq i \leq m$, C_i is d_i-dimensional and is represented by the divisor A_i and $c_i = \sum_{x \in \Gamma-V} A_i(x)$, e_i is the number of edges in Γ that contain an interior point y with $A_i(y) > 0$, and the f-vector of $|D|$ is (f_0, f_1, \ldots, f_d), then

$$
\sum_{k=0}^d f_k x^k = \sum_{i=1}^m x^{d_i} (1 + x)^{c_i - e_i}.
$$
Proof.

If there are k chips at an interior point of an edge for an anchor divisor A_i, then there are 2^{k-1} ways to partition the k chips along the edge, and the contribution to the dimension is one less than the number of parts.
Sketch of proof

Proof.

If there are k chips at an interior point of an edge for an anchor divisor A_i, then there are 2^{k-1} ways to partition the k chips along the edge, and the contribution to the dimension is one less than the number of parts.

Remark

The right divisor in the previous example associates $2^2 + 2^2 + 3^3 - 3 = 16$ cells. Among them there are 1, 4, 6, 4, 1 cells of dimension 2, 3, 4, 5, 6 respectively.
We can define the sum of rational functions in $R(D)$ in a natural way $(f + g)(x) = f(x) + g(x)$ for $x \in \Gamma$. Then the new function $f + g$ is still a tropical rational function on Γ, but it may not belong to $R(D)$.
Tropical convexity

Definition

For rational functions f, g on Γ, we can define their (tropical) sum as

$$(f + g)(x) = \max(f(x), g(x))$$

for all $x \in \Gamma$. Similarly the scalar multiplication of f with a scalar c is the sum of f with the constant function that always takes value c.

Lemma (Haase-Musiker-Yu, 2012) Let D be any divisor on a metric graph Γ. The space $R(D)$ is a tropical semi-module (convex set), i.e. it is closed under tropical addition and tropical scalar multiplication.
Tropical convexity

Definition

For rational functions f, g on Γ, we can define their (tropical) sum as

$$(f + g)(x) = \max(f(x), g(x))$$

for all $x \in \Gamma$. Similarly the scalar multiplication of f with a scalar c is the sum of f with the constant function that always takes value c.

Lemma

(Haase-Musiker-Yu, 2012) Let D be any divisor on a metric graph Γ. The space $R(D)$ is a tropical semi-module (convex set), i.e. it is closed under tropical addition and tropical scalar multiplication.
Extremal generators

Definition

A function $f \in R(D)$ is called extremal if for any $g_1, g_2 \in R(D)$, $f = g_1 \oplus g_2 \Rightarrow f = g_1$ or $f = g_2$.
Extremal generators

Definition

A function \(f \in R(D) \) is called extremal if for any \(g_1, g_2 \in R(D) \),
\[
f = g_1 \oplus g_2 \Rightarrow f = g_1 \text{ or } f = g_2.
\]

Proposition (Haase-Musiker-Yu, 2012)

The tropical semi-module \(R(D) \) is generated by the extremal generators.
Chip-firing

Definition

For a metric graph Γ, its subgraph is a compact subset with a finite number of components. Fix an effective divisor L on Γ. We say a subgraph Γ' of Γ can fire for L if for each boundary point x of $\Gamma' \cap \overline{\Gamma - \Gamma'}$ the number of edges pointing out of Γ' is no greater than $L(x)$.

Remark

If Γ' can fire for L, then there exists a rational function $f \in R(L)$ such that the divisor $L + (f)$ is obtained from L by moving one chip along each edge pointing out of Γ' by a small distance.
Definition

For a metric graph Γ, its subgraph is a compact subset with a finite number of components. Fix an effective divisor L on Γ. We say a subgraph Γ' of Γ can fire for L if for each boundary point x of $\Gamma' \cap \overline{\Gamma - \Gamma'}$ the number of edges pointing out of Γ' is no greater than $L(x)$.

Remark

If Γ' can fire for L, then there exist a rational function $f \in R(L)$, such that the divisor $L + (f)$ is obtained from L by moving one chip along each edge pointing out of Γ' by a small distance.
We use the procedure of *chip-firing* to get a simple criterion of extremal generators.
We use the procedure of *chip-firing* to get a simple criterion of extremal generators.

Lemma (Haase-Musiker-Yu, 2012)

Let D be any divisor on a metric graph Γ. Then $f \in R(D)$ is extremal if and only if there are not two proper subgraphs Γ_1 and Γ_2 of Γ such that they cover Γ and both can fire on $D + (f)$.
A non-extremal function

Let Γ has skeleton $K_{3,3}$ and D be the canonical divisor $K = \sum_{v \in V} v$.

Figure: A divisor $K + (f)$ with non-extremal $f \in R(K)$ and the two subgraphs (red) that can fire. The corresponding rational functions take value 1 on the red parts and 0 on the black parts and are linear with slope 1 from red parts to black parts.
Proposition (Haase-Musiker-Yu, 2012)

Let D be a vertex-supported divisor on a metric graph Γ and $f \in R(D)$ is extremal, then $D + (f)$ is a vertex of the cell complex $|D|$.
Proposition (Haase-Musiker-Yu, 2012)

Let D be a vertex-supported divisor on a metric graph Γ and $f \in R(D)$ is extremal, then $D + (f)$ is a vertex of the cell complex $|D|$.

Remark

Then we can search for extremal generators among the vertices of $|D|$ by the criterion of chip-firing.
In this section we fix the skeleton of a metric graph Γ and let the metric vary in \mathbb{R}_+^{E}. We also choose D as the canonical divisor

$$K = \sum_{v \in V} (d(v) - 2) \cdot v.$$

It turns out that different metrics give different cell complex structures.
We fix K_4 as the skeleton of Γ and $D = K$. The f-vector is (f_0, f_1, \ldots, f_d).
We fix K_4 as the skeleton of Γ and $D = K$. The f-vector is (f_0, f_1, \ldots, f_d).

<table>
<thead>
<tr>
<th>Metric</th>
<th>Anchor Cells</th>
<th>Extremal Generators</th>
<th>f-vector</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 1, 1, 1, 1, 1)$</td>
<td>30</td>
<td>7</td>
<td>$(14, 28, 15)$</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>$(1, 1, 2, 2, 1, 1)$</td>
<td>42</td>
<td>11</td>
<td>$(26, 52, 31, 4)$</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>$(2, 2, 2, 2, 2, 3)$</td>
<td>36</td>
<td>9</td>
<td>$(20, 40, 23, 2)$</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>$(4, 9, 7, 8, 6, 10)$</td>
<td>50</td>
<td>15</td>
<td>$(34, 60, 27)$</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Table: Structure of $|K|$ and R_K for different metrics on K_4
We fix $K_{3,3}$ as the skeleton of Γ and $D = K$. The f-vector is (f_0, f_1, \ldots, f_d).
We fix $K_{3,3}$ as the skeleton of Γ and $D = K$. The f-vector is (f_0, f_1, \ldots, f_d).

<table>
<thead>
<tr>
<th>Metric</th>
<th>Anchor Cells</th>
<th>Extremal Generators</th>
<th>f-vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 91 96</td>
<td>94 4 92</td>
<td>93 95 5</td>
<td>730</td>
</tr>
<tr>
<td>2 1 1</td>
<td>1 2 1</td>
<td>1 1 2</td>
<td>460</td>
</tr>
<tr>
<td>All-equal</td>
<td>370</td>
<td>33</td>
<td>(130, 483, 630, 348, 81, 9)</td>
</tr>
</tbody>
</table>

Table: Structure of $R_{M,k}$ and $|K|$ for different metrics on $K_{3,3}$
In combinatorics

- Given all the cells in $|D|$, find the face lattice of $|D|$.
- Fix the skeleton of Γ and D, find non-trivial upper and lower bounds of the number of anchor cells (or cells, vertices) in $|D|$ and of the number of extremal generators in $R(D)$.
- Find all the possible combinatorial types of d-dimensional polytopes that can occur as cells in a linear system $|D|$. This is already very interesting when $d = 3$.
In tropical geometry

- Analyze the canonical embedding of $R(D)$ into \mathbb{TP}^{m-1}, where m is the number of extremal generators in $R(D)$.
- Find the linear dependence of the extremal generators in $R(D)$ (an analogue of Petri’s Theorem).
Some references

Thanks!

