The Archimedean property of the real numbers states that for any two real numbers x and y, there exists some natural number n such that $|nx| > |y|$. In this talk I will present absolute values on fields without this property, satisfying instead the ultrametric inequality: $|x + y| \leq \max\{|x|, |y|\}$. I will introduce the p-adic absolute value for a Dedekind domain and its field of fractions and the particular case of the p-adic rationals, discovered by Kurt Hensel in 1897. I will show how to construct an algebraically closed field containing the p-adic rationals whose valuation is the set of all non-negative real numbers. In addition I will present Puiseux series over a field K, the union over all $n \in N$ of $K((T^{1/n}))$. The talk will conclude with a discussion of the Newton polygon and its connection to the roots of a power series.