Lecture 7: Cofiber sequences are fiber sequences

1/23/15

1 Cofiber sequences and the Puppe sequence

If \(f : X \to Y \) is a map of CW complexes, recall that the reduced mapping cone is the space \(Y \cup f\, CX = (Y \coprod X \wedge [0, 1]) / \sim \), where \((x, 1) \sim f(x)\). If we vary \(f \) by a homotopy, \(Y \cup f\, CX \) changes by a homotopy equivalence.

We may likewise form the reduced mapping cone of a map \(f : X \to Y \) in the stable homotopy category. \(f \) is represented by a function of spectra \(f : X' \to Y \), where \(X' \) is a cofinal subspectrum of \(X \). By replacing \(f \) by a homotopic map, we may assume that \(f'_n : X'_n \to Y_n \) is a cellular map. Then \(Y \cup f\, CX \) is the spectrum whose \(n \)th space is \(Y_n \cup f'_n\, CX'_n \) and whose structure maps are induced from those of \(X \) and \(Y \). This is well-defined up to isomorphism, because varying \(f \) by a homotopy does not change the isomorphism class of \(Y \cup f\, CX \).

If \(i : A \to X \) is the inclusion of a closed subspectrum, then define \(X/A \) be the spectrum whose \(n \)th space is \(X_n/A_n \) and whose structure maps are those induced from the structure maps of \(X \). The evident map \(X \cup i\, CA \to X/A \) is an isomorphism in the stable homotopy category because on the level of spaces we have homotopy equivalences which therefore induce isomorphism on \(\pi_* \).

Definition 1.1. A cofiber sequence is any sequence equivalent to a sequence of the form \(X \xrightarrow{f} Y \xrightarrow{i} Y \cup f\, CX \)

Proposition 1.2. ([A, III Prop 3.9]) For each \(Z \), the sequence \([Y \cup f\, CX, Z] \to [Y, Z] \to [X, Z] \) is exact.

Proof. Since the composite \(X \to Y \cup f\, CX \) is null, we have that the image of \([Y \cup f\, CX, Z] \to [Y, Z] \) is indeed in the kernel of \([Y, Z] \to [X, Z] \). Suppose \(g : Y' \to Z \) is a function such that \(Y' \) is a cofinal subspectrum of \(Y \) and such that the associated morphism is null in \([X, Z] \). We wish to construct a pmap \(Y \cup f\, CX \to Z \) extending the pmap \(g : Y \to Z \). To do this, choose a cofinal
subspecrum X' of X such that gf is defined as a function on X' and such that there is a function $H : X' \wedge [0,1]_+ \to Z$ giving a homotopy between gf and the constant map. We checked that we may choose a cofinal subspectrum Y'' of Y containing the image of X'. H and g determine a function $Y'' \cup_f CX' \to Z$. □

Any map can be extended to a cofiber sequence. In particular, we can extend cofiber sequences to the right

$$X \xrightarrow{f} Y \xrightarrow{i} Y \cup_f CX \to (Y \cup_f CX) \cup_i CY \to$$

Since $(Y \cup_f CX) \cup_i CY \cong \Sigma X$, we get that

$$X \xrightarrow{f} Y \xrightarrow{i} Y \cup_f CX \to \Sigma X \to \Sigma Y \to \Sigma (Y \cup_f CX) \to \Sigma \Sigma X \quad (1)$$

has all three term sequences cofiber sequences.

Note that desuspensions and suspensions of cofiber sequences are cofiber sequences. Applying Σ^{-1} to the cofiber sequence $Y \cup_f CX \to \Sigma X \to \Sigma Y$, we have that $\Sigma^{-1} Y \cup_f CX \to X \to Y$ is a cofiber sequence. Thus we may continue (1) to the left.

Corollary 1.3. If $X \to Y \to Z$ is a cofiber sequence in the stable homotopy category, then for any W, the sequence

$$\ldots \to [X, W]_{n+1} \to [Z, W]_n \to [Y, W]_n \to [X, W]_n \to \ldots$$

is exact.

Proof. The sequence

$$\ldots \to [\Sigma^{n+1} X, W] \to [\Sigma^n Z, W] \to [\Sigma^n Y, W] \to [\Sigma^n X, W] \to \ldots$$

is exact by the above chain of cofiber sequences and Proposition 1.2. Since we have identified desuspension with a shift, suspension may also be identified with a shift. Thus $[\Sigma^n Y, W] = [Y, W]_n$. □

2 Fiber sequences are cofiber sequences

Proposition 2.1. If $X \xrightarrow{f} Y \xrightarrow{i} Z$ is a cofiber sequence in the stable homotopy category, then for any W, the sequence

$$\ldots \to [W, X]_n \to [W, Y]_n \to [W, Z]_n \to [W, X]_{n-1} \to \ldots$$

is exact.
Proof. As above, it suffices to show that

\[[W, X] \to [W, Y] \to [W, Z] \]

is exact. Since the composite \(X \to Z \) is null, we have that the composite \([W, X] \to [W, Z] \) is 0. Let \(g : W \to Y \) be a pmap such that \(ig \) is nullhomotopic. The choice of a null-homotopy gives the morphism \(h : CW \to Z \) from cone on \(W \) to \(Z \). We then obtain \(j \) and \(k \) in the commutative diagram

\[
\begin{array}{cccccc}
X & \xrightarrow{f} & Y & \xrightarrow{i} & Z & \xrightarrow{\Sigma f} & \Sigma Y \\
\downarrow{g} & & \downarrow{h} & & \downarrow{j} & & \downarrow{\Sigma g} \\
W & \xrightarrow{\omega} & W & \xrightarrow{\Sigma \omega} & CW & \xrightarrow{\Sigma \omega} & \Sigma W
\end{array}
\]

Since suspension is an equivalence, we have that the image of \(\Sigma^{-1} j \) under \([W, X] \to [W, Y] \) is \(g \).

One could define a fiber sequence to be \(X \to Y \to Z \) such that the composite \(X \to Z \) was the constant map and such that the sequence satisfies the conclusion of Proposition 2.1. Dually, one could also define a cofiber sequence to be \(X \to Y \to Z \) such that \(X \to Z \) is null and satisfying the conclusion of 1.3. This is the same as the above (exercise: use a natural map and the 5 lemma to show it induces an isomorphism on \(\pi_\ast \)). Proposition 2.1 can therefore be stated by saying that fiber sequences and cofiber sequences are the same in the stable homotopy category.

References