This week’s quiz: covers *Sections 5.1 and 5.2*

Midterm 3, on November 17th (next Friday)

- Exam covers: Sections 3.1, 3.2, 5.1, 5.2, 5.3 and 5.5
Section 5.3

Diagonalization
Many real-word (linear algebra problems):

- Start with a *given situation* \((v_0)\) and
- want to know *what happens after some time* (iterate a transformation):

\[
v_n = A v_{n-1} = \ldots = A^n v_0.
\]

- Ultimate question: *what happens in the long run* (find \(v_n\) as \(n \to \infty\))

Old Example

Recall our example about *rabbit populations*: using eigenvectors was easier than matrix multiplications, but …

- Taking *powers of diagonal* matrices is easy!
- Working with *diagonalizable matrices* is also easy.
Powers of Diagonal Matrices

If D is diagonal

Then D^n is also diagonal, the diagonal entries of D^n are the \textit{nth powers of the diagonal} entries of D.
Powers of Matrices that are Similar to Diagonal Ones

When is A not diagonal?

Example

Let $A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$. Compute A^n. Using that $A = PDP^{-1}$ where $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

From the first expression:

\[
A^2 = \\
A^3 = \\
\vdots \\
A^n = \\
\]

Plug in P and D:

\[
A^n =
\]
Diagonalizable Matrices

Definition
An \(n \times n \) matrix \(A \) is **diagonalizable** if it is similar to a diagonal matrix:

\[
A = PDP^{-1} \quad \text{for } D \text{ diagonal.}
\]

Important
If \(A = PDP^{-1} \) for \(D = \begin{pmatrix}
 d_{11} & 0 & \cdots & 0 \\
 0 & d_{22} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & d_{nn}
\end{pmatrix} \), then

\[
A^k = PD^kP^{-1} = P \begin{pmatrix}
 d_{11}^k & 0 & \cdots & 0 \\
 0 & d_{22}^k & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & d_{nn}^k
\end{pmatrix} P^{-1}.
\]

So diagonalizable matrices are *easy to raise to any power*.
The Diagonalization Theorem

An \(n \times n \) matrix \(A \) is diagonalizable if and only if \(A \) has \(n \) linearly independent eigenvectors.

In this case, \(A = PDP^{-1} \) for

\[
P = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}
\]

\[
D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}
\]

where \(v_1, v_2, \ldots, v_n \) are linearly independent eigenvectors, and \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the corresponding eigenvalues (in the same order).

Important

- If \(A \) has \(n \) distinct eigenvalues then \(A \) is diagonalizable.

- If \(A \) is diagonalizable matrix it need not have \(n \) distinct eigenvalues though.
Problem: Diagonalize \(A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} \).
Diagonalization
Example 2

Problem: Diagonalize \(A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \).
Diagonalization
Example 2, continued

Now let's compute the 2-eigenspace:

\[
(A - 2I)x = 0 \iff \begin{bmatrix}
2 - 3 & 0 \\
2 - 3 & 0 \\
1 & -1 -1
\end{bmatrix} x = 0
\]

\[
\text{rref} \begin{bmatrix}
1 & 0 \\
-3 & 1 \\
0 & 0 & 0
\end{bmatrix} x = 0
\]

The parametric form is \(x = 3z, y = 2z\), so an eigenvector with eigenvalue 2 is \(v_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}\).

Note that \(v_1, v_2\) form a basis for the 1-eigenspace, and \(v_3\) has a distinct eigenvalue. Thus, the eigenvectors \(v_1, v_2, v_3\) are linearly independent and the Diagonalization Theorem says

\[
A = PDP^{-1}
\]

In this case: there are 3 linearly independent eigenvectors and only 2 distinct eigenvalues.
Diagonalization
Procedure

How to **diagonalize a matrix** A:

1. **Find the eigenvalues** of A using the characteristic polynomial.
2. **Compute a basis** B_λ for each λ-eigenspace of A.
3. If there are fewer than n total vectors in the union of all of the eigenspace bases B_λ, then the matrix is not diagonalizable.
4. **Otherwise**, the n vectors v_1, v_2, \ldots, v_n in your eigenspace bases are linearly independent, and $A = PDP^{-1}$ for

 $$P = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$$

 and

 $$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

 where λ_i is the eigenvalue for v_i.
Problem: Show that \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) is not diagonalizable.

Conclusion:

- All eigenvectors of \(A \) are multiples of \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \).
- So \(A \) has only one linearly independent eigenvector.
- If \(A \) was diagonalizable, there would be \textit{two linearly independent eigenvectors}!
Poll

Which of the following matrices are diagonalizable, and why?

A. \[
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix}
\]

B. \[
\begin{pmatrix}
1 & 2 \\
0 & 2
\end{pmatrix}
\]

C. \[
\begin{pmatrix}
2 & 1 \\
0 & 2
\end{pmatrix}
\]

D. \[
\begin{pmatrix}
2 & 0 \\
0 & 2
\end{pmatrix}
\]

Matrix D is already diagonal!

Matrix B is diagonalizable because it has two distinct eigenvalues.

Matrices A and C are not diagonalizable: All eigenvectors are multiples of \[
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\].
Definition
Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Theorem
Let λ be an eigenvalue of a square matrix A. Then
\[1 \leq (\text{the geometric multiplicity of } \lambda) \leq (\text{the algebraic multiplicity of } \lambda). \]

- **Note:** If λ is an eigenvalue, then the λ-eigenspace has dimension at least 1.
- **...but it might be smaller than what the characteristic polynomial suggests.** The intuition/visualisation is beyond the scope of this course.
Non-Distinct Eigenvalues

(Good) examples

From *previous exercises* we know:

Example

The matrix

\[
A = \begin{pmatrix}
4 & -3 & 0 \\
2 & -1 & 0 \\
1 & -1 & 1
\end{pmatrix}
\]

has characteristic polynomial

\[
f(\lambda) = -(\lambda - 1)^2(\lambda - 2).
\]

The matrix

\[
B = \begin{pmatrix}
1 & 2 \\
-1 & 4
\end{pmatrix}
\]

has characteristic polynomial

\[
f(\lambda) = (1 - \lambda)(4 - \lambda) + 2 = (\lambda - 2)(\lambda - 3).
\]

<table>
<thead>
<tr>
<th>Matrix A</th>
<th>Geom. M.</th>
<th>Alg. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 1$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$\lambda = 2$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix B</th>
<th>Geom. M.</th>
<th>Alg. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 2$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda = 3$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, *both matrices are diagonalizable*.
Non-Distinct Eigenvalues

(Bad) example

Example

The matrix \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) has characteristic polynomial \(f(\lambda) = (\lambda - 1)^2 \).

We showed before that the 1-eigenspace has dimension 1 and \(A \) was not diagonalizable.

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Geometric</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda = 1)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The Diagonalization Theorem (Alternate Form)

Let \(A \) be an \(n \times n \) matrix. The following are equivalent:

1. \(A \) is diagonalizable.
2. The sum of the geometric multiplicities of the eigenvalues of \(A \) equals \(n \).
3. The sum of all algebraic multiplicities is \(n \). And for each eigenvalue, the geometric and algebraic multiplicity are equal.
Applications to Difference Equations

Let \(D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \).

Start with a vector \(v_0 \), and let \(v_1 = Dv_0 \), \(v_2 = Dv_1 \), \ldots, \(v_n = D^n v_0 \).

Question: What happens to the \(v_i \)'s for different starting vectors \(v_0 \)?

- the \(x \)-coordinate equals the initial coordinate,
- the \(y \)-coordinate gets halved every time.
\[D \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b/2 \end{pmatrix} \]

So all vectors get “collapsed into the x-axis”, which is the 1-eigenspace.
Applications to Difference Equations

More complicated example

Let \(A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix} \).

\(\text{Start with a vector } \mathbf{v}_0, \text{ and let } \mathbf{v}_1 = A\mathbf{v}_0, \mathbf{v}_2 = A\mathbf{v}_1, \ldots, \mathbf{v}_n = A^n\mathbf{v}_0. \)

Question: What happens to the \(\mathbf{v}_i \)'s for different starting vectors \(\mathbf{v}_0 \)?

\textbf{Matrix Powers:} This is a diagonalization question. \textbf{Bottom line: } A = PDP^{-1} \text{ for }

\[P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}. \]

Hence \(\mathbf{v}_n = PD^nP^{-1}\mathbf{v}_0. \)
$A^n = PD^nP^{-1}$ acts on the usual coordinates of v_0 in the same way that D^n acts on the B-coordinates, where $B = \{w_1, w_2\}$.

So all vectors get "collapsed into the 1-eigenspace".
Why is the Diagonalization Theorem true?

Suppose $A = PDP^{-1}$, where D is diagonal with diagonal entries $\lambda_1, \lambda_2, ..., \lambda_n$. Let $v_1, v_2, ..., v_n$ be the columns of P. They are linearly independent because P is invertible. So $Pe_i = v_i$, hence $P^{-1}v_i = e_i$.

$Av_i = PDP^{-1}v_i = PDe_i = P(\lambda_i e_i) = \lambda_i Pe_i = \lambda_i v_i$.

Hence v_i is an eigenvector of A with eigenvalue λ_i. So the columns of P form n linearly independent eigenvectors of A, and the diagonal entries of D are the eigenvalues.

A has n linearly independent eigenvectors implies A is diagonalizable: Suppose A has n linearly independent eigenvectors $v_1, v_2, ..., v_n$, with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Let P be the invertible matrix with columns $v_1, v_2, ..., v_n$. Let $D = P^{-1}AP$.

$De_i = P^{-1}AP e_i = P^{-1}Av_i = P^{-1}(\lambda_i v_i) = \lambda_i P^{-1}v_i = \lambda_i e_i$.

Hence D is diagonal, with diagonal entries $\lambda_1, \lambda_2, ..., \lambda_n$. Solving $D = P^{-1}AP$ for A gives $A = PDP^{-1}$.

\[A = PDP^{-1} \]