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Résumé. — We present the basics of the colored Jones polynomial and discuss the AJ conjecture which
relates the Jones polynomial and the A-polynomial of a knot.
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1. Introduction

In this note we give a survey of the theory of the colored Jones polynomials and the AJ conjecture
which relates the Jones polynomial and the A-polynomial.

The Jones polynomial was discovered in 1984. It came as a shocking surprise in low-dimensional
topology and has since stimulated many new developments. The Jones polynomial also opened new
connections between knot theory and many other branches of mathematics and theoretical physics, such
as Lie theory, number theory, and statistical physics. New algebraic structures are constructed in the
study of the Jones polynomials. Soon after the discovery of the Jones polynomial, many generalizations,
known as quantum invariants of knots and 3-manifolds, were discovered. In particular, for every simple
Lie algebra g and every finite-dimensional irreducible g-module, the theory assign to every knot in
the 3-space an invariant, which is a Laurent polynomial in the quantum parameter. The colored Jones
polynomial, which is an invariant of knots colored by integers, is among these generalizations ; it is the
invariant corresponding to the Lie algebra sl2(C) and its finite-dimensional irreducible modules.

The Jones polynomial of a knot and its generalizations are defined through a diagram of the knot,
an object essentially 2-dimensional. It is hard to understand the Jones polynomial in terms of classical
invariants like the fundamental group, which is intrinsic 3-dimensional. The best known relation between
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the colored Jones polynomial and the fundamental group is the Melvin-Morton conjecture (now a theo-
rem, see Subsection 4.6), which relates the colored Jones polynomial to the Alexander polynomial. The
famous volume conjecture would connect the colored Jones polynomial to the hyperbolic structure of
the knot complement. The Alexander polynomial is an abelian invariant of the knot complement, since
it can be defined using abelian representations of the knot group. A finer invariant, the two variable
A-polynomial, is defined using non-abelian representations of the knot group and its peripheral system.
The A-polynomial has been important in geometric topology. The AJ conjecture would relate the colored
Jones polynomial to the A-polynomial.

The goal of this note to give a friendly introduction to the colored Jones polynomial, to explain the
AJ conjecture, and to sketch a proof of the AJ conjecture for a class of knots which includes infinitely
many two-bridge knots and all pretzel knots (−2, 3, 6n± 1).

In Section 2 we define the Jones polynomial through the Kauffman bracket and give a proof (due to
Kauffman, Murasugi, and Thistlethwaite) of the Tait conjecture on the crossing number of alternating
links. In Section 3 we give an overview of quantum link invariants coming from quantum groups associated
to simple Lie algebras. Section 4 is devoted to properties of the colored Jones polynomial, the Melvin-
Morton conjecture, and the growth of the colored Jones polynomial. In Section 5 we show that for every
knot, the color Jones function satisfies a recurrence relation, and we define the recurrence polynomial. In
Section 6 we explain the Kauffman bracket skein module and its relation to character varieties. Section
7 is devoted to the AJ conjecture.

This note grew out of the lectures of a minicourse I gave at “Session de la SMF des Etats de la
Recherche : Topologie géométrique et quantique en dimension 3”. I would like to thank the organizers,
M. Boileau, C. Lescop, and L. Paolluzi, for inviting me to lecture at the conference, and the CNRS for
support.

2. The Jones polynomial

In this section we give the definition of the Jones polynomial via the Kauffman bracket, establish
its basic properties, and sketch a proof (due to Kauffman, Murasugi, and Thistlethwaite) of the Tait
conjecture on the crossing number of alternating links. The estimate of the degree bounds found in the
proof of the Tait conjecture will be used in later sections. All the results in this section are now classic,
and can be found for examples in textbooks [Li, Oh].

2.1. Knots and links in R3 ⊂ S3. — Fix the standard 3-dimensional space R3. An oriented link L
is a compact 1-dimensional oriented smooth submanifold of R3 ⊂ S3. A link of 1 component is called a
knot. By convention, the empty set is also considered a link.

A framed oriented link L is a link equipped with a smooth normal vector field V , which is a function
V : L→ R3, such that V (x) is not in the tangent space TxL for every x ∈ L.

Two (framed) oriented links are equivalent if one can be smoothly deformed into another in the class
of (framed) oriented links.

A (framed) oriented link is ordered if there is an order on the set of its components.
Usually we don’t distinguish between a link and its equivalence class. Un-oriented links, un-oriented

framed links and their equivalence classes are defined similarly.
A link invariant is a map

I : {equivalence classes of links} → S,

where S is a set.

Example 2.1. — For unoriented unframed links, the link group π1(L) := π1(R3 \L) is a link invariant.

2.2. Link diagram, blackboard framing. — One often studies an (oriented or unoriented) link L by
studying one of its diagrams on R2, which is a projection D of L onto R2 (in general position), together
with the “over/under” information at each crossing point. An (oriented) link diagram D of a link L
determines the equivalence class of the (oriented) link L. Link diagrams are considered up to isotopy of
the plane R2.
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A link diagram comes with the blackboard framing, in which the framing vectors are in the plane R2.
We say that a link diagram D is a blackboard diagram of a framed link L if the framed link determined
by D together with its blackboard framing is equivalent to L.

It is known that two unoriented link diagrams define the same equivalence class of unoriented unframed
links if and only if they are related by a sequence of Reidemeister moves RI, RII, and RIII (and isotopies
of the plane). The Reidemeister moves are listed in Figure 1 and 2. For framed unoriented link diagrams
one replaces RI by RIf . For oriented links one allows all possible orientations of the strands in the figures.
For details, see e.g [BZ, Oh].

Figure 1. Reidemeister move RI on the left and RIf on the right.

Figure 2. Reidemeister move RII on the left and RIII on the right.

Thus, the map associating an unoriented unframed link diagram to its link class descends to an
isomorphism of sets

{link diagrams}/(RI,RII,RIII)
∼=−→ {equiv. classes of links}.

If I is an invariant of unoriented link diagrams which is invariant under Reidemeister moves, then I
descends to an invariant of unoriented unframed links.

The mirror image of a (framed, oriented) link L, denoted by L!, is the image of L under a reflection in
a plane in R3. It is easy to see that the equivalence class of L! depends only on the equivalence class of
the original link L. If L has a (blackboard) framing D, then L! has as a link diagram the mirror image
of D, which is the result of switching all the crossings of D from over to under and vice versa.

2.3. Sign of a crossing, linking number, writhe. — Up to isotopies of the plane R2 there are two
types of crossings of oriented link diagrams, see Figure 3. The crossing on the left is called a positive

Figure 3. A positive crossing and a negative crossing

crossing, while the one on the right is called a negative crossing.
For a 2-component oriented link diagram D = D1 ∪D2, define

lk(D) =
1

2

∑
x

ε(x),

where the sum is over all the crossings between D1 and D2, and ε(x) is the sign of x.
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Exercise 2.2. — (a) Show that lk(D) does not change under oriented Reidemeister moves and hence
defines an invariant of 2-component oriented links, known as the linking number.

(b) Suppose L = L1 ∪ L2 be a 2-component oriented link. Define the Gauss map

γ : L1 × L2 → S2 = {z ∈ R3 | ||z|| = 1}, γ(x, y) =
x− y
||x− y||

.

Show that up to sign, lk(L1, L2) is equal to the degree of γ.

Let K be a framed unoriented knot in R2. Using the framing, one can push K off itself to get a parallel
of K, which is well-defined up to isotopy in R3 \K. An orientation of K induced an orientation of its
parallel K ′, and the linking number lk(K,K ′) can be defined. It is easy to see that lk(K,K ′) does not
depend on the choice of the orientation of K.

Exercise 2.3. — Suppose K is an unframed unoriented knot. Let fr(K) be the set of all framings of
K. Show that the map fr(K) → Z given by K → lk(K,K ′), where K ′ is a parallel of K determined by
the framing, is a bijection.

As a result, we can, and often, use integers to denote framings of a knot.
Suppose D is the blackboard diagram of a framed oriented link. Define the writhe of L by

w(L) :=
∑

x∈C(D)

ε(x),

where C(D) is the set of crossings of D.

Exercise 2.4. — (a) Show that w(L) is an invariant of framed oriented links.
(b) Show that w(L), when L is a framed knot, is the integer-valued framing of L, and does not depend

on the orientation of the knot.

2.4. Alexander polynomial : homological definition. — Suppose L is an m-component oriented
link, and X = S3 \L. A small loop encircling the j-th component is called a meridian of the component,
which is defined up to isotopy in the link complement. We choose the orientation of the meridians so
that the linking number of the j-th component and its meridian is +1.

From the Alexander duality, H1(X,Z) ∼= Zn, with generators being the meridians of the links. The
map H1(X,Z) → Z = ⟨t⟩, mapping each meridian to t, gives rise to a surjective map f : π1(X) → Z.
The corresponding covering X̃ → X has Z as the group of deck transformations. As a result, H1(X̃,Q)

is a Q[Z] ≡ Q[t±1]-module. Note that Q[t±1] is a principal ideal domain (PID), and H1(X̃,Q) is finitely
generated over Q[t±1] (prove this !). According to the theory of finitely generate modules over a PID, we
have

H1(X̃,Q) ∼=
k⊕

j=1

Q[t±1]/(fj),

where fj ∈ Q[t±1], fj |fj+1. Some of the fj might be 0. The Alexander polynomial ∆L(t) ∈ Q[t±1] of L

is defined to be
∏k

j=1 fk.

The Alexander polynomial is defined up to a unit in Q[t±1]. One can choose the unit normalization
such that ∆L(t) ∈ Z[t±1].

If L is a knot, one can choose a unit normalization of ∆ such that

∆L(t
−1) = ∆L(t)

and ∆L(1) = 1, see Subsection 3.2. In particular, for any knot, ∆L(t) ̸= 0. With this normalization, the
Alexander polynomial of a knot is unique.

Exercise 2.5. — Let H be the Hopf link, see Figure 6. Show that S3 \ H is homotopic to the 2-
dimensional torus T2. Show that ∆H(t) = 1 − t. On the other hand if L is the trivial two component
link, then S3 \ L is homotopic to a bouquet of 2 circles. It follows that ∆L(t) = 0.
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One can calculate the Alexander polynomial of an oriented link, beginning with a presentation of its
fundamental group as follows. Suppose

π1 = ⟨a1, . . . , ak+1 | r1, . . . , rk⟩
is a Wirtinger presentation (see e.g. [BZ]) of the link group π1 = π1(S

3 \ L). Then all aj are conjugate
to each other, and there is a group homomorphism

ab : π1 → Z = ⟨t⟩
given by ab(aj) = t for j = 1, . . . , k + 1. Let Y be the 2-dimensional CW-complex associated with
the above mentioned group presentation, i.e. Y has one zero-cell, k + 1 one-cells a1, . . . , ak+1, and k
two-cells b1, . . . bk, such that the boundary of bj , considered as an element of the free group generated

by {a1, . . . , ak+1}, is equal to rj . It is known that X = S3 \ L is homotopic to Y . Let
∂rj
∂rj

be the

Fox derivative. We consider ∂ri
∂rj

as an element of Z[π1]. Let A be the k × k matrix
(

∂rj
∂rj

)k
i,j=1

. By

calculating the homology of the covering of Y associated to the map ab : π1 → Z, one can prove that
∆K(t) = det(ab(A)).

2.5. Kauffman bracket. — One of the best ways to define the Jones polynomial is to use the Kauff-
man bracket, introduced by [Kau1].

There is a unique function

{unoriented link diagrams} → Z[t±1], D → ⟨D⟩
satisfying

⟨D⟩ = t⟨D+⟩+ t−1⟨D−⟩(1)

⟨D ⊔ U⟩ = −(t2 + t−2)⟨D⟩,(2)

where in the first identity, D,D+, D− are identical except in a disk in which they look like in Figure 4,
and in the second identity, the left hand side stands for the union of a diagram D and the trivial diagram

D D D+ -

Figure 4. The diagrams D, D+, and D−

U disjoint from D. Here D might be the empty link diagram. In particular, if U is the unknot diagram,
then

⟨U⟩ = −(t2 + t−2).

Lemma 2.6. — One has

−t3
⟨ ⟩

=
⟨ ⟩

= −t−3
⟨ ⟩

⟨ ⟩
=
⟨ ⟩

⟨ ⟩
=

⟨ ⟩

Exercise 2.7. — Prove the lemma.



6 THANG T. Q. LÊ

The lemma tells us that the Kauffman braket is invariant under the framed Reidemeister moves and
hence defines an invariant of framed unoriented link.

Corollary 2.8. — There exists a unique invariant

{oriented framed links} → Z[q±1/4], L→ VL ∈ Z[q±1/4]

such that

q1/4VL+ − q−1/4VL− = (q1/2 − q−1/2)VL0(3)

VL⊔U = [2]VL(4)

VL+1 = q3/4VL(5)

Here, in (3), the links L+, L−, L0 are identical everywhere except for a small ball in which they look like
in Figure 5. In (4), L ⊔U is the union of L and a trivial 0-framed knot U which is far away from L. In
(5), L+1 is the same as L, with the framing of one of the components increased by +1.

Figure 5. From left to right : the links L+, L− and L0 in Equation (3)

Here we used the notation [n] for the quantum integer (with t = −q1/4)

[n] :=
qn/2 − q−n/2

q1/2 − q−1/2
=
t2n − t−2n

t2 − t−2
.

Sketch of Proof. — By induction on the number of crossings one can show the uniqueness of VL, using
the relations (3), (4), and (5).

To show the existence, we will define VL as follows. Suppose L is an oriented framed link with black-
board diagram D. Then

VL(q) := (−1)#L⟨D⟩
∣∣∣
t=−q1/4

is an invariant of link diagrams which is invariant under the framed Reidemeister moves and defines an
invariant of L. It is not difficult to verify that VL satisfying the requirements of the corollary.

A simple normalization will give an invariant of unframed, oriented links. Let
◦
V L := q−(3/4)w(L)VL,

then
◦
V is an invariant of oriented unframed links satisfying

q
◦
V L+ − q

◦
V L− = (q1/2 − q−1/2)

◦
V L0(6)

◦
V L⊔U = [2]

◦
V L(7)

Remark 2.9. — The invariant
◦
V L is a version of the Jones polynomial [Jo].
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Figure 6. The Hopf link (on the left) and the right-handed trefoil

Figure 7. Milnor’s link

2.6. Examples. — If L is the Hopf link of Figure 6, then

VL = (t4 + t−4)[2] = (q + q−1)[2].

If L is the right handed trefoil with framing 3 (see Figure 6), then

VL = (−t−7 + t−3 + t5)[2].

Exercise 2.10. — (Kauffman) The Milnor link is given in Figure 7. In his famous paper on Milnor’s
mu invariants, Milnor challenged us to find more invariants to distinguish links. He gave this example :
at that time he did not know how to show that this link is not the trivial link. Calculate the Jones
polynomial of the Milnor link and show that it is not the trivial link.

We see that the Jones polynomial captures very “fine” topology of knots and links which we don’t
fully understand yet.

2.7. Properties of the Jones polynomial. —

Proposition 2.11. — (a) For every framed oriented link L one has

VL(q)
∣∣∣
q1/4=1

= 2#L.

In particular, VL ̸= 0.
(b) Suppose L! is the mirror image of L, then

VL!(q) = VL(q
−1).

(c) Suppose L is the connected sum of knots L1 and L2. Then

[2]VL = VL1VL2 .

(d) Suppose L′ is a Conway mutation of L, then

VL = VL′ .

(e) Suppose L has n components. Then
◦
V L(q) ∈ qn/2Z[q±1].

For the definition of the Conway mutation, see e.g. [Li].

Exercise 2.12. — Prove the proposition.
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It follows that if L is a knot and
◦
V L(q) ̸=

◦
V L(q

−1), then L is not amphichiral. For example, using the
Jones polynomial, one can easily show that the trefoil is not amphichiral.

2.8. State sum of the Kauffman bracket. — Let D be a c-crossing link diagram. Denote by
C = C(D) the set of crossings.

At a crossing x ∈ C, the two strands of L divide a small neighborhood of x into four regions, two
of them are marked + and two are marked − as in the middle part of Figure 8. The rule is : if one

+

+

--

+

+

--

+

+

--+ -

Figure 8. Positive resolution on the left and negative resolution on the right

rotates the over-crossing strand counterclockwise slightly, it will be in the two plus regions. There are
two ways to resolve the singularity at x : the plus-resolution and the minus-resolution, see Figure 8. In
the plus resolution, the two plus regions become connected (forget the dashed line). Similarly, in the
minus resolution, the two minus regions become connected (forget the dashed line). In each resolution,
we use a dashed line to connect the two resulting (solid) arcs.

A state for D is a function s : C → {1,−1}. There are in total 2c states. For a state s let sD be the
diagram constructed from D by doing s(x)-resolution at every crossing x (without dashed lines). Then
sD consists of disjoint simple closed curves on R2. Let |sD| be the number of connected components of
sD, and ς(s) =

∑
c∈C s(c).

Exercise 2.13. — Show that one always has ς(s) ≡ c := |C| (mod 2), for any state s.

Let Gs denote the graph whose vertices are connected components of sD and whose edges are the
dashed arcs constructed above. Thus, Gs has |sD| vertices and c = |C| edges.

For a state s define

(8) ⟨s⟩ = tς(s)(−t2 − t−2)|sD|.

From the definition of the Kauffman bracket, one has

(9) ⟨D⟩ =
∑
s

⟨s⟩.

2.9. Maximal degree and minimal degree. — For a non-zero polynomial f ∈ Z[t±1] let deg+(f)
and deg−(f) be respectively the maximal degree and the minimal degree of non-zero monomials of f .
The difference br(f) := deg+(f)− deg−(f) is called the breadth of the Laurent polynomial f .

For non-zero f, g ∈ Z[t±1], one has

deg+(fg) = deg+(f) + deg+(g), deg−(fg) = deg−(f) + deg−(g),(10)

br(fg) = br(f) + br(g)(11)

deg+(f + g) ≤ max(deg+(f),deg+(g), if f + g ̸= 0.(12)

We will try to find a state s0 of D such that deg+(⟨s0⟩) > deg+(⟨s⟩) for any state s other than s0.
Then Identity (9) shows that deg+(⟨D⟩) = deg+(⟨s0⟩).
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2.10. Partial order on states and monotonicity of deg+, deg−. — Fix an unoriented link diagram
D with the set of crossing C. Recall that a state is a function s : C → {−1, 1}. For two states s and s′,
we say s ≥ s′ if s(x) ≥ s′(x) for every x ∈ C. This defines a partial order on the set of all states. The
maximal state s+ is the one which takes value 1 at every x ∈ C. Similarly, the minimal state s− is the
one which takes value −1 at every x ∈ C.

We say that s′ is one step below s if s′ = s everywhere except for one crossing x ∈ C where s′(x) = −1
and s(x) = 1.

Lemma 2.14. — (a) Suppose s ≥ s′. Then deg+(s) ≥ deg+(s
′).

(b) Suppose s′ is one step below s and |sD| > |s′D|. Then deg+(s) > deg+(s
′).

Démonstration. — It is enough to consider the case when s′ is one step below s. Then ς(s′) = ς(s)− 2,
and |s′D| is either |sD| − 1 or |sD| + 1. Hence, from (8), one has deg+(s) ≥ deg+(s

′). Moreover, if, in
addition, |sD| > |s′D|, then deg+(s) > deg+(s

′).

2.11. Adequate diagrams and breadth of Jones polynomial. — Since s+ is the maximal state,
from Lemma 2.14(a) we have

(13) deg+(s+) ≥ deg+(s) for any state s.

We want the strict inequality here. Lemma 2.14 shows that if |s+D| > |sD| for any state s which is one
step below s+, then deg+(s+) > deg+(s) for any state s other than s+.

Definition 1. — A link diagram D is plus-adequate if |s+D| > |sD| for any state s one step below s+.
A link diagram D is minus-adequate if |s−D| > |sD| for any state s one step above s−. If both conditions
hold, then D is called adequate.

A link is plus-adequate (respectively minus-adequate, adequate) if it has a plus-adequate (respectively
minus-adequate, adequate) diagram.

One can quickly recognize if a link diagram is adequate using part (c) or (d) of the following exercise.

Exercise 2.15. — Suppose D is a link diagram. Show that the following are equivalent.
(a) D is plus-adequate.
(b) The mirror image of D is minus adequate.
(c) At every crossing of D, the two arcs resulted in the positive resolution do not belong to the same

connected component of s+D.
(d) The graph Gs+ does not have any loop-edge.

We have seen that if D is plus-adequate, then deg+(s+) is strictly greater than deg+(s) for any state
s other than s+. It follows from (9) that if D is plus-adequate, then

deg+(⟨D⟩) = deg+(s+D).

Similarly, if D is minus-adequate, then

deg−(⟨D⟩) = deg+(s−D).

The following is essentially due to Kauffman.

Theorem 2.16. — Let D be a c-crossing link diagram. Then
(a) deg+(⟨D⟩) ≤ c+ 2|s+D|, with equality if D is plus-adequate.
(b) deg−(⟨D⟩) ≥ −c− 2|s−D|, with equality if D is minus-adequate.

Démonstration. — (a) Using (9) and (13), we have

deg+(⟨D⟩) ≤ deg+(⟨s+⟩) = c+ |s+D|,

where the last identity follows from Formula (8), with ς(s+) = c.
(b) The proof is similar. Alternatively, if one applies the result of (a) to the mirror image of D, then

one gets (b).
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Suppose L is a plus-adequate framed unoriented link and D is a plus-adequate blackboard diagram of
L. Then ⟨D⟩ is an invariant of L. It follows that c(D) + 2|s+D| is an invariant of plus-adequate framed
unoriented links. This means, any two blackboard adequate link diagrams of L have the same c+ 2|s+|.
To get c alone as an invariant of plus-adequate framed unoriented links, one can use parallels of links as
follows.

For a link diagram D let Dn be the link diagram obtained from D by replacing each of its component
by n of the component’s parallels.

Lemma 2.17. — Suppose D is a plus-adequate link diagram. Then Dn is also plus-adequate, with
c(Dn) = n2c(D) and |s+(Dn)| = n|s+(D)|.

The proof is easy and is left as an exercise.

Corollary 2.18. — If L is a plus-adequate framed unoriented link and D is any adequate diagram of
L. Then c(D) and |s+(D)| are invariants of L.

Démonstration. — From Theorem 2.16 and Lemma 2.17 we have that c(D)n2 +2|s+D|n is an invariant
of L. Hence, c(D) and |s+(D)| are invariants of L.

Corollary 2.19. — (a) Suppose L is an adequate framed unoriented link. Choose an adequate blackboard
diagram D of L. Then c(D), |s+D|, and |s−D| are invariants of L.

(b) Suppose L is an adequate unframed unoriented link. Choose an adequate blackboard diagram D of
L. Then c(D) is an invariant of L.

Démonstration. — (a) follows from Corollary 2.17.
(b) From Theorem 2.16, we have

br(⟨D⟩) = 2c(D) + 2(|s+D|+ 2|s−D|).
Since Dn is an adequate link diagram (of Ln), we have

(14) br(⟨Dn⟩) = 2c(D)n2 + 2(|s+D|+ 2|s−D|)n.
Suppose D′ is another adequate diagram of L. Then (D′)n is an adequate diagram of L. Let Ln be

the framed link with blackboard diagram Dn and L′n the framed link with blackboard diagram (D′)n.
The left hand side of (14) is an invariant of Ln.

Then both Ln and L′n have the same underlying unframed link Ln, which means they differ only by
framings on components. It follows that br(VLn) = br(VL′

n
). Hence

2c(D)n2 + 2(|s+D|+ 2|s−D|)n = 2c(D′)n2 + 2(|s+D′|+ 2|s−D′|)n
for every n. This implies c(D) = c′(D) and |s+D|+ |s−D| = |s+D′|+ |s−D′|.

Warning : There are knots which are both plus-adequate and minus-adequate, but not adequate.
The reason is that the plus-adequacy and minus-adequacy might be realized by different diagrams.

2.12. Alternating links. — A link diagram is called alternating if along any component, the
over/under nature of crossings is alternate. A link diagram D is reduced if it does not have a removable
crossing, i.e. a crossing x for which there is an embedded disk in R2 whose boundary intersects D at
exactly 2 points, both are near the x and belong to different strands, see Figure 9.

Disk

Figure 9. Removable crossing
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Lemma 2.20. — If an alternating link diagram D is reduced, then D is adequate.

Démonstration. — Exercise.

As a consequence, we have the following result.

Corollary 2.21. — Suppose L is a an alternating unframed unoriented link. Then any two reduced
diagrams of L have the same number of crossings.

Exercise 2.22. — (a) Suppose D is a connected link diagram with c crossings. Then |s+D|+ |s−D| ≤
c+ 2, with equality if D is alternating.

(b) Suppose L is an alternating link and D,D′ are diagrams of L, with D reduced alternating. Show
that c(D) ≤ c(D′).

Thus, if L is a link possessing an alternating diagram, then any two reduced alternating diagrams of
L have the same number c of crossings, and this number c is minimum among all crossing numbers of
diagram of L. With a little more effort one can also show that any non-alternating diagram of L has
more than c crossings.

Exercise 2.23. — Suppose D is a connected non-trivial link diagram. Then the complement of D in
S2 consists of polygons. Each corner of every polygon is marked by + or −, see Figure 8. Show that D
is alternative if and only if the markings of all the corners of each region are the same.

3. Braid groups and link invariants

In this section we give an overview of quantum link invariants associated to a simple Lie algebra.
We will define invariants of oriented links using the Markov theorem and Yang-Baxter operators. As
examples we show how the Alexander polynomial and the Jones polynomial can be obtained through
braids. We also survey main properties of quantum link invariants and discuss the case when the color
of a knot is an infinite-dimensional module.

3.1. Braid groups and links. — A braid in n-strands is a compact 1-dimensional proper submanifold
of R2× 1 consists of n strands such that its boundary is the set {1, 2, . . . , n}×{0}×{0, 1} and such that
no strand has critical points with respect to the vertical coordinate. Braids are considered up to isotopy
of R2 × 1 preserving the boundary and the vertical coordinate.

The set of all braids in n strands is denoted by Bn, which is a group where the product β1β2 of two
braids is their concatenation, obtained by placing β1 atop β2. Let

B =
∞⊔

n=1

Bn,

be the set of all braids. One can define a tensor product in B as follows. Suppose β ∈ Bn and β′ ∈ Bm.
Let β ⊗ β′ be the braid obtained by placing β′ to the right of β.

The group B2 is isomorphic to Z and generated by

(15) σ = .

Let σi ∈ Bn be defined by
σi = 1⊗i−1 ⊗ σ ⊗ 1⊗n−i−1.

It is known that the group Bn has a presentation

Bn = ⟨σ1, . . . , σn−1 | σiσj = σjσi if |i− j| > 1, σiσi+1σi = σi+1σiσi+1⟩.

The closure β̂ of a braid β is the oriented link obtained from β by connecting upper and lower ends
of β as in Figure 10, where the orientation is chosen so that on each strand of the braid it is pointing
downward. Alexander shows that every oriented link is the closure of some braid. Markov shows that

β̂ = β̂′ if and only if β and β′ are related by a finite number of the Markov moves (i)–(ii) :
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braid

...

...

...

Figure 10. Oriented links as closures of braids

(i) ββ′ ←→ β′β for any β, β′ ∈ Bn, and
(ii) β ←→ βσ±1n for β ∈ Bn.
For details, see e.g. [KT].
In other words, the closing operator descends to a bijective map( ∞⊔

n=1

Bn

)
/{Markov’s moves}

∼=−→ {oriented links}.

This means, if we can find a function f : B =
⊔∞

n=1 Bn → S which is invariant under the Markov
moves, then f descends to an invariant of oriented links. Although Markov’s theorem was known a
long time ago (1938), the first non-trivial example of a link invariant constructed this way is the Jones
polynomial (1984).

For a braid β ∈ Bn, the link group of β̂ can be calculated as follows. By interpreting Bn as the
mapping class group of an n-punctured disk, one obtains an action of Bn on the free group Fn on n
generators a1, . . . , an, see e.g. [KT]. The action is given by

σi(ak) =


akak+1a

−1
k if k = i,

ak−1 if k = i+ 1,

ak otherwise.

The fundamental group of β̂ has the presentation

(16) π1 = ⟨a1, . . . , an | ai = β(ai), i = 2, . . . , n⟩.

Exercise 3.1. — Check that the group π1 defined as above for braids is invariant under the Markov
moves.

3.2. Burau representation, Alexander polynomial, and spanning trees. — A function on Bn

is invariant under the first Markov move if and only if it is a class function, i.e. a function constant on
conjugacy classes. For example, if ϕ : Bn → GLk(C) is representation, then f(β) = det(ϕ(β)) is a class
function.

The best known representation of the braid group is the Burau representation ϕ : Bn → GLn(Z[t±1])
given by

ϕ(σj) = Ij−1 ⊕
(
1− t t
1 0

)
⊕ In−j−1,

where Ik is the k × k identity matrix.

Exercise 3.2. — (a) Check that the above formula gives a well-defined representation of the braid
group.

(b) For β ∈ Bn let Φ(β) be the n× n matrix with entries in Z[π1(β̂)] defined by

(17) Φ(β) =

(
p

(
∂β(ai)

∂aj

))n

i,j=1

,
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where Bn acts on the free group Fn = ⟨a1, . . . , an⟩ as decribed in the previous section, ∂β(ai)
∂aj

is the Fox

derivative, and p : Fn → π(β̂) is the natural projection map. Show that

ϕ(β) = ab(Φ(β)),

where ab : π1(β̂))→ Z = ⟨t⟩ is the homomorphism defined by ab(ai) = t for i = 1, . . . , n.

Let w : Bn → Z, known as the writhe, be the group homomorphism given by w(σi) = 1 for every
i = 1, 2, . . . , n− 1.

Theorem 3.3. — The function ∇ : B→ Z[t±1/2] given by

∇(β) = t
1
2 (n−w(β)−1) det(In − ϕ(β))′ for β ∈ Bn,

where (In− ρ(β))′ is the (n− 1)× (n− 1) matrix obtained by removing the first row and the first column

from In−ρ(β), is invariant under the Markov moves and hence defines an invariant ∇(β̂) of the oriented

link β̂.
The invariant ∇(L) satisfies the following skein relation

∇(U) = 1(18)

∇(L+)−∇(L−) = (t−1/2 − t1/2)∇(L0),(19)

where U is the trivial knots, and L+, L−, L0 are any three links identical everywhere except in a ball
where they look like in Figure 5.

The invariant ∇(L) is equal to the Alexander polynomial ∆(L), which is defined only up to ±tm,m ∈ Z.

Sketch of Proof. — Let vr be the 1×nmatrix, (1, t, t2, . . . , tn−1) and vc be the n×1 matrix, (1, 1, . . . , 1)T .
We consider vr as a row vector and vc as a column vector. By checking with the generators σi one sees
that vr and vc are respectively a left eigenvector and a right eigenvector of ρ(β) for every β ∈ Bn, where
the eigenvalue in both cases is 1. In other words,

vr ρ(β) = vr, ρ(β) vc = vc.

As a consequence, letting B = In − ϕ(β), one has
(*) vr is a left null-vector of B, i.e. vr B = 0. Similarly, vc is a right null-vector of B.
Let Cij = Cij(B) be the (i, j)-cofactor of B, which is (−1)i+j det(B(ij)), where B(ij) is the (n− 1)×

(n − 1) submatrix of B obtained by removing the i-th row and the j-th column. Property (*) implies
that all the cofactors are the same up to a power of t. More precisely,

(20) Cij = tn−jC1,1.

(Prove this !)
The “positive” characteristic polynomial of B = B(β),

det(λ+B) =
n∑

j=0

fjλ
j ,

is a class function. We have

f1 =
∑
j

Cjj =

∑
j

tn−j

C1,1.

It follows that C1,1 is a class function. Hence ∇(β) = t(n−w(β)−1)/2C1,1 is a class function.
By comparing Cnn(β) and Cn+1,n+1(βσ

±1
n ) for β ∈ Bn and using (20) it is easy to show that ∇ is

also invariant under the second Markov moves and hence defines an oriented link invariant.
Suppose L+, L−, L0 are as in the theorem. Then there is a braid β ∈ Bn such that

L+ = σ̂1β, L− = σ̂−11 β, L0 = β̂.

A calculation of ∇ for the braids σ1β, σ
−1
1 β, β will show that ∇ satisfy the skein relation (19). Identity

(18) follows from an easy calculation with the trivial braid in B1.
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One can show that ∇(β̂) is equal to the Alexander polynomial along the following line. The fun-

damental group of π1(β̂) has presentation (16). The CW-complex C of the universal covering of the
2-dimensional CW-complex associated to the above presentation of π1 has the form

(21) C =
(
0→ (Z[π1])n−1

∂2−→ (Z[π1])n
∂1−→ Z[π1]→ 0

)
.

where

∂1 =

a1 − 1
. . .

an − 1

 ,

and ∂2 is the (n− 1)× n matrix obtained from (I −Φ(β)) by removing the first row. Here Φ(β) is given
by (17).

The homology H1 of the abelian covering corresponding ab : π1 → Z is the H1(Cab), where Cab :=
C ⊗Z[π1] Z[Z]. Because ab(Φ(β)) = ϕ(β), one can show that the order of H1(Cab), which is the Alexander

polynomial of β̂, is equal to ∇(β). This proves ∇L = ∆L.

The polynomial ∇L(t) is defined without ambiguity, unlike the original Alexander polynomial, which
is defined up to a factor ±tm,m ∈ Z.

Exercise 3.4. — Show that for every knot K one has ∇K(1) = 1. If L has at least two components,
then ∇L(1) = 0.

Exercise 3.5. — Using the skein relation (19) show that for an oriented link L with m components,

φ(∇L) = (−1)m−1∇L,

where φ is the algebra involution of Z[t±1/2] given by φ(t1/2) = t−1/2.

If one uses the homological definition of the Alexander polynomial, the above symmetry can be
established using the duality of Reidemeister torsions.

It is amusing to compare the above definition of the Alexander polynomial with Kirchhoff’s formula of
the number of spanning trees of a graph. Suppose Γ is a connected graph, i.e. a connected 1-dimensional
finite CW-complex. For simplicity assume that Γ is k-regular, i.e. the degree of every vertex of Γ is k.
Let A be the adjacency matrix of Γ. The matrix kI − A, known as the Laplacian of the graph, has the
property that the row vector (1, 1, . . . , 1) and the column vector (1, 1, . . . , 1)T are respectively a left and
a right null-vector. All the co-factors of kI − A are same, and the common value of these co-factors,
according to Kirchhoff’s formula, is the number of spanning trees of Γ.

It would be interesting to find an interpretation of the Alexander polynomial in terms of spanning trees,
with the Burau matrix being the “adjacency matrix”. Warning : the Burau matrix is not symmetric in
the usual sense, but it is “unitary”, see [KT].

If we do not abelianize the matrix Φ(β), then we can get the volume of the link complement as follows.
Remove any one row and one column of Φ(β) to get an (n−1)×(n−1) matrix Φ(β)′ with entries in Z[π1].
As for any matrix with entries in C[π], there is defined the Fuglede-Kadison determinant detπ1(I−Φ(β)′),
see e.g. [LS]. From a result of Lück and Schick [LS] one can show that detπ(I − Φ(β)′) = Vol(β̂)/6π

if β̂ is a non-split link. Here Vol(β̂) is the sum of the hyperbolic volume of the hyperbolic pieces of the

JSJ decomposition of S3 \ β̂. Thus, one could probably also try to find an interpretation of the volume

Vol(β̂) in terms of number of spanning trees of graphs.

3.3. Yang-Baxter operator and link invariants. — The way Jones discovered his famous poly-
nomial is, while studying subfactors of Von Neumann factors of type II1, he found a representation of
braid groups which can be used to define a link invariant via Markov’s theorem. Let us now describe this
approach, in a form which is slightly different from the original one of Jones’.

Suppose we have for each n a representation ρ : Bn → V ⊗n, where V is V is a vector space, say over
C. We say that ρ is local if ρ(β ⊗ β′) = ρ(β) ⊗ ρ(β′). A local representation is thus totally determined
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by R = ρ(σ), where σ ∈ B2 is the braid in (15). From the defining relations of the braid group one sees
that an invertible operator R : V ⊗ V → V ⊗ V defines a local representation if and only if

(22) R1R2R1 = R2R1R2,

where R1, R2 are automorphisms of V ⊗3 defined by

R1 = R⊗ id, R2 = id⊗R.

An invertible R : V ⊗ V → V ⊗ V satisfying (22) is called a Yang-Baxter (YB) operator. We denote the
local representation defined by a YB operator R by ρR.

Of course we always have tr(ρ(ββ′)) = tr(ρ(β′β)). That is, β → tr(ρ(β)) is invariant under the first
Markov move. But how to deal with the second Markov move β ∼ βσ±n , which relates an element in Bn

and an element in Bn+1 ? The locality nature of the representations allows us to reduce this problem to
a local problem, and one solution is suggested by Turaev [Tu1] as follows.

An enhanced YB operator consists of a YB operator R and an invertible operator η : V → V such
that R(η ⊗ η) = (η ⊗ η)R and

R(η ⊗ η) = (η ⊗ η)R(23)

tr2((idV ⊗η)R±1) = idV ,(24)

where tr2(f), for and endomorphism f : V ⊗2 → V ⊗2, is the trace with respect to the second component,
with the result being an endomorphism of V .

Fix an enhanced YB operator (R, η). For an endomorphism f : V ⊗n → V ⊗n define its quantum trace
by

trq(f) = tr(η⊗n f).

The fact that η⊗η commutes with R ensures that β → trq(ρR(β)), for β ∈ Bn, is still a class function,
i.e. invariant under the 1st Markov move. It is not difficult to show that (24) implies that trq(ρR(β)) is
invariant under the second Markov move. Thus, we the following.

Theorem 3.6 (Turaev). — Suppose (R, η) is an enhanced Yang-Baxter operator. Then the map β →
trq(ρR(β)), defined on B = ⊔∞n=1Bn, is invariant under the Markov moves and hence defines an invariant
of oriented links.

3.4. Jones polynomial from enhanced YB operator. — We give here the first non-trivial example
of an enhanced YB operator, which gives the Jones polynomial. Let V = C2 with an ordered basis {e0, e1}.
We use e0⊗ e0, e0⊗ e1, e1⊗ e1 as an ordered basis of V ⊗ V . Define R : V ⊗ V → V ⊗ V and η : V → V ,
given in the mentioned bases by

R =


q−1/2 0 0 0
0 0 q−1 0
0 q−1 q−1/2 − q−3/2 0
0 0 0 q−1/2

 , η =

(
q1/2 0
0 q−1/2

)
.

Both R and η depend on a parameter q1/2. We can consider q1/2 as a non-zero complex number, or as
a formal variable. The reader is invited to check that the pair (R, η) form an enhanced YB operator.
Hence, if β ∈ Bn, then

trq(ρ(β)) = tr(η⊗nρ(β)) ∈ Z[q±1/2]
is an invariant of the oriented link β̂, denoted by Wβ̂ for the moment.

Let us show that WL is equal to the unframed version
o

V L of the Jones polynomial. First we see that
for the unknot U ,

WU = [2] =
o

V U .

The YB operator above, although a 4×4 matrix, has a quadratic minimal polynomial. More precisely,

qR− q−1R−1 = (q1/2 − q−1/2) id .
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From here, we see that WL satisfies the skein relation

qWL+
−WL− = (q1/2 − q−1/2)WL0

which is the same relation (6) which
o

V L satisfies. It follows that WL =
o

V L.
In general, the invariant coming from an enhanced YB operator (R, η) will satisfy a k-term skein

relation, where k − 1 is the degree of the minimal polynomial of R.

3.5. General quantum link invariant coming from semi-simple Lie algebras. — Works of
Drinfeld, Jimbo, and others (see e.g. [CP], with our q equal to the q of [CP]), show that for every simple
Lie algebra g, every irreducible finite-dimensional g-module V , there is an enhanced YB operator (R, η)
acting on a certain vector space Vq over Q(q1/d), which is considered a q-deformation of V . Here d is twice

the determinant of the Cartan matrix of g, and the dimension of Vq over Q(q1/d) is equal to the dimension

of V over C. Actually, there is a quantized enveloping algebra Uq(g), a Hopf algebra over Q(q1/d) which
can be considered as a quantum deformation of g, such that Vq is an irreducible Uq(g)-module. Direct
sums of Vq’s are called Uq(g)-modules of type 1. Finite-dimensional irreducible Uq(g)-modules of type 1
are parameterized by dominant weights of g.

The YB operator R commutes with the action of Uq(g), i.e. R : V ⊗2q → V ⊗2q is a Uq(g)-morphism. It
follows that ρ(β) is a Uq(g)-morphism for every β ∈ Bn.

As Uq(g) is a Hopf algebra, if V, V ′ are Uq(g)-module, then there is a natural Uq(g)-module structure
on V ⊗ V ′, defined by the co-product of Uq(g).

The action of η on every Uq(g)-module is given by an element in Uq(g), also denoted by η, and this
element is group-like in the sense that its co-product is η⊗ η. It follows that the action of η on ⊗n

i=1(Vi)
is given by η⊗n. The YB operator R also comes from a universal YB element, defined in a certain
completion of Uq(g)⊗ Uq(g).

For any Q(q1/d)-module homomorphism f : V → V , define its quantum trace by

trq(f) = tr(fη).

When f = id : V → V , the quantum trace of f , trq(id), is called the quantum dimension of V .
As mentioned, for every irreducible finite-dimensional g-module V , there is an enhanced YB operator

(R, η) acting on Vq. Hence we can define invariants of oriented links by

JL(V ) := trq(ρ(β)) ∈ Q(q1/d),

where L = β̂, and β ∈ Bn is a braid.
When g = sl2 and V = C2, the defining 2-dimensional representation of sl2(C), enhanced YB pair

(R, η) are described in the previous section, and its link invariant if the Jones polynomial.
Suppose now g = sln and V = Cn, which is considered as an sln-module in the obvious way. The

corresponding link invariant is denoted by Jsln
L . In this case the YB operator R, although a matrix of

size n2 × n2, satisfies a quadratic polynomial. In fact,

qn/2R− q−nR−1/2 = (q1/2 − q−1/2) id .
It follows that the corresponding unframed oriented link invariant satisfies the skein relation

qn/2Jsln
L+
− q−n/2Jsln

L−
= (q1/2 − q−1/2)Jsln

L0
,

where L+, L−, L0 are identical everywhere except for a small balls in which they are as in Figure 5. By
combining all the above invariants, setting qn to be a new parameter, one gets the two variable HOMFLY-
PT polynomial of links. The invariants associated to soN and their fundamental representations can be
used to define the Kauffman polynomial [Kau2]. For details, see [Tu1].

3.6. Different colors. — The above invariant is an invariant of pairs (L, V ), where L is an unframed
oriented links and V is an irreducible finite-dimensional g-module V . We call the pair (L, V ) a colored
link, with V the color of each component of L.

With a little more effort, the theory of ribbon category extends the above invariant to the case when
each individual component of L has its own color, which is a finite-dimensional g-module. The theory
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also gives operator invariants of tangles. Orientation and framing are important here. Let us summarize
the outcome of this theory, focusing only on string links. For details, see e.g. [Tu4, Oh, CP].

An n-component string link β is a compact 1-dimensional proper submanifold of R2 × 1 consists of
n strands such that the boundary of the i-th strand is the set {i} × {0} × {0, 1}. Two string links are
considered equivalent if one can be smoothly deformed into the other in the class of string links. The
set of all n-component string links form a monoid, where the product TT ′ is obtained by placing T atop
T ′. For two string links, not necessarily of the same number of components, we also define the tensor
product T ⊗ T , which is obtained by placing T2 to the right of T1.

A framed string link is a string link equipped with a smooth normal vector field such that at every
boundary point the normal vector is (0, 1, 0). One defines equivalence classes and the monoids of framed
string links similarly.

We will consider each string link as oriented, with the convention that the orientation of is chosen so

that on each strand it is pointing downward near the boundary points. The closure β̂ of a framed string
link β is the framed oriented link obtained from β by connecting upper and lower ends of β as in the
braid case, see Figure 10. Here the framing on the closing part is always standard, i. e. the normal vector
of the framing here is always equal to (0, 1, 0).

Suppose T is a framed string link with n components, and V1, . . . , Vn are finite-dimensional Uq(g)-
modules of type 1, not necessarily irreducible. According to the theory of ribbon category associated to
the quantum group Uq(g), there is defined a Uq(g)-morphism

JT :

n⊗
j=1

Vj →
n⊗

j=1

Vj ,

such that

JTT ′ = JTJT ′ , JT⊗T ′ = JT ⊗ JT ′ .

Actually, the machinery of quantum group defines JT as an element of a certain completion ̂Uq(g)⊗n

of Uq(g)
⊗n. The completion ̂Uq(g)⊗n acts on any finite-dimensional Uq(g)

⊗n-modules of type 1. This

JT ∈ ̂Uq(g)⊗n is called the universal invariant of T , see e.g. [Oh, Ha2]. Besides, JT commutes with
the images of the co-product, which explains why the action of JT on ⊗n

j=1Vj is a Uq(g)-morphism. In

particular, if T is a 1-component string link, then JT is a central element in Ûq(g).
If the framed oriented link L is the closure of T , then

JL(V1, . . . , Vn) = trV1⊗···⊗Vn
q (JT ) := tr(JT η

⊗n, V1 ⊗ · · · ⊗ Vn)

is an invariant of the framed oriented link L whose j-th component is colored with Vj .
This invariant has the following properties
(0) Trivial color : Removing a link component colored by the trivial representation does not affect the

value of the invariant.
(i) Integrality : For each framed oriented link L and colors V1, . . . , Vn, there is a ∈ Z such that

JL(V1, . . . , Vm) ∈ qa/dZ[q±1], see [Le1].
(ii) Additivity : if V = V ′ ⊕ V ′′ then JL(V, . . . ) = JL(V

′, . . . ) + JL(V
′′, . . . ).

(iii) tensor product formula : If V = V ′ ⊗ V ′′, then

JL(V, . . . ) = JL(2)(V ′, V ′′, . . . ),

where L(2) is obtained from L by replacing the 1st component by two of its parallels (using the framing).
(iv) Orientation reversing formula : If L′ is the same L with the orientation of the 1st component

reversed, and V ∗ is the dual of V , then

JL′(V, . . . ) = JL(V
∗, . . . ).

Thus, for Lie algebra for which V ∼= V ∗, for example, g = sl2(C) or g is any simple Lie algebra of the
B series, then the invariant is insensitive to the orientation of the components.
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Suppose V is an irreducible Uq(g)-module of type 1 and T is a 1-component string link. i.e. a long

knot. By Schur’s lemma, JT : V → V is a scalar operator, i.e. JT = J ′T id, where J ′T ∈ Q(q1/d) is a scalar.
It follows that

JT̂ (V ) = trVq (JT ) = J ′T dimq(V ).

Suppose T1, T2 are 1-component string links, with Ki = T̂i and K = T̂1T2. Then

JK(V ) = trVq (JT1T2) = trVq (JT1JT2) = trVq (J
′
T1
J ′T2

id) = J ′T1
J ′T2

dimq(V ).

Hence, we have the following.

Proposition 3.7. — Suppose K1,K2 are framed oriented knots and K is the connected sum of K1 and
K2. Assume V is an irreducible g-module, then

(25) JK(V ) = JK1(V )JK2(V )/ dimq(V ).

Suppose V is a highest weight Uq(g)-module (see e.g. [CP]), and T is a 1-component string link. The
universal invariant JT is an element of certain extension Uh(g), which is a topological Q[[h]]-algebra

(see [CP]), and acts on certain extension V̂ of V , which is a Q[[h]]-module. Here Z[q±1/d] ↪→ Q[[h]] via

q1/d = exp(h/d). The fact that V is highest weight implies that JT acts on V̂ by a scalar operator,
i.e. there is a scalar J ′T (V ) ∈ Q[[h]] ⊃ Z[q±1/d], such that JT = J ′T (V ) id. One can consider J ′T (V ) as
invariant of the long knot T colored by the highest weight module V .

If V, V ′ are highest weight Uq(g)-modules and either V ⊂ V ′ or V is a quotient of V ′, then clearly
J ′T (V ) = J ′T (V

′).
For every dominant weight λ of g there is a finite-dimensional irreducible Uq(g)-module of type 1 Vλ of

highest weight λ. For every weight λ, there is a highest weight moduleWλ, called the Verma module with
highest weight λ. If λ is a dominant weight, then Vλ is a quotient of Wλ. As a result, J ′T (Vλ) = J ′T (Wλ).

The Weyl group W of g acts on the weight lattice. As usual, we say λ ∼ λ′ if λ + ρ and λ′ + ρ are
in the same orbit of the Weyl group. Here ρ is the half sum of all positive roots. If λ is dominant and
λ′ ∼ λ, then Wλ′ ⊂Wλ, hence J

′
T (Wλ) = J ′T (Wλ′).

4. Colored Jones polynomial

In this section we discuss main properties of the colored Jones polynomial, the Melvin-Morton conjec-
ture, the volume conjecture, and the Habiro expansion.

4.1. Quantum link invariants of the Lie algebra sl2(C). — Like the ring of representations of
sl2, the ring of representations of Uq(sl2) is simple : for each positive integer n, there is a unique (up
to Uq(sl2)-isomorphisms) irreducible n-dimensional Uq(sl2)-module of type 1, denoted by Vn. The 2-
dimensional representation V2 is called the basic representation. For a framed oriented link L with m
components, we write

JL(n1, . . . , nm) = JL(Vn1 , . . . , Vnm) ∈ Z±1/4,
where the right hand side is the invariant of the framed oriented links whose components are colored by
Vn1 , . . . , Vnm , explained in Subsection 3.6.

In the ring of Uq(sl2)-modules, one has

Vn ⊕ Vn−2 ∼= Vn−1 ⊗ V2.
Then above identity, the tensor product formula and the additivity described in Subsection 3.6 show

that we have the following recurrence relation

(26) JL(k1, n,k2) = JL(2)(k1, n− 1, 2,k2)− JL(k1, n− 2,k2),

where L(2) is the obtained from L by doubling the component colored by n, using the framing.
The recurrence (26) allows one to calculate the colored Jones polynomial without the theory of quan-

tum group as follows. If all the components a framed oriented link have color 1, then the invariant is 1.
If all the colors are 2, the value is the framed Jones polynomial VL, which can be calculated using the
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Kauffman bracket polynomial. If a color is n ≥ 3, then (26) reduces the calculation of the invariant to
the case when the colors are less than n, at the expense of going to more complicated links.

Although the above recurrence allows us to define the colored Jones polynomial without the theory
of quantum groups, many properties of the colored Jones polynomial cannot be understood without
quantum group theory.

The recurrence relation shows that for a framed oriented knot K, the two sequence of invariants

JK(n), n ∈ Z≥1
JK(n−1)(2) = VK(n−1) , n ∈ Z≥1

are equivalent in the sense that one is expressible in terms of the another by a lower triangular matrix
with 1 on the diagonal. The entries of the matrix do not depend on the knots. However, in general, JK(n)
has nicer properties.

4.2. Chebyshev polynomials and negative colors. — The Chebyshev polynomials Tn(z), Sn(z)
are defined inductively by

T0 = 2, T1(z) = z, Tn(z) = zTn−1(z)− Tn−2(z)
S0 = 1, S1(z) = z, Sn(z) = zSn−1(z)− Sn−2(z).

One can also extend the definition of Sn, Tn to n ∈ Z, using the same recursion formula. Then

S−1−n = −S−1+n, T−n = Tn(27)

Tn = Sn − Sn−2.

The Tn’s are known as Chebyshev’s polynomials of type 1, and Sn’s are known as Chebyshev’s polyno-
mials of type 2.

Exercise 4.1. — Show that if z = q1/2 + q−1/2 = [2], then

Tn(z) = qn/2 + q−n/2

Sn−1(z) = [n] =
qn/2 − q−n/2

q1/2 − q−1/2
.

Suppose K is a framed oriented knot. For a non-negative integer n let Kn be the framed knot obtained
by replacing the K with n of its parallels. For a polynomial p(z) =

∑
j ajz

j ∈ Z[z] and a framed knot K
define

Vp(K) =
∑
j

ajVKj .

Then the recurrence formula (26) shows that

(28) JK(n) = VSn−1(K),

which can be used as the definition of the colored Jones polynomial. The case of framed links can be
done similarly.

Exercise 4.2. — Show that
JU (n) = [n],

JH(n,m) = [nm],

where U is the unknot and H is the Hopf link.

Equation (28) can be used to define JK(n) even for n ≤ 0, since Sn(z) is defined for any n ∈ Z. From
(27) we have

JK(−n) = −JK(n), JK(0) = 0.

This definition is not artificial as it seems, and can be explained in the framed work of quantum invariants
associate to sl2(C) as follows. Let T be a 1 component string link such that T̂ = K. Then JT is a central

element of the h-adic version Ûh(sl2) of the quantum group. For each integer n ∈ Z, there is a Verma
module Wn whose highest weight is (n− 1)ϖ, where ϖ is the fundamental weight of sl2. Then JT acts
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on Wn by a scalar operator J ′T (n) id, where J
′
T (n) ∈ Q[[h]], see Subsection 3.6. When n ≥ 1, Vn is a

quotient of Wn. Hence, with K = T̂ , the closure knot of T ,

JK(n) = J ′T dimq(Vn) = J ′T (n)[n].

The Weyl symmetry says that W−n ⊂Wn. Hence we have

J ′T (−n) = J ′T (n).

Thus, although a priori, J ′T (n) ∈ Q[[h]], we always have J ′T (n) ∈ Z[q±1] if |n| ̸= 0. (Here q = exp(h).)
If one define JT̂ (n) = J ′T (n)[n], then JT̂ (−n) = −JT̂ (n).
The color n = 0 is special. While JT̂ (0) = 0, the value of J ′T (0) is more complicated. In fact, in general,

J ′T (0) ̸∈ Z[q±1]. In [HL, Ha3], it was shown that J ′T (0) belongs to the Habiro ring and is equal to the
Kashaev invariant, see below.

4.3. Properties of the colored Jones polynomial. — Let K be a framed oriented knot. Since the

value of the unknot with color n is [n] = qn/2−q−n/2

qn/2−q−n/2 , another normalization of of JK(n) is often used (for

n ̸= 0) :

J ′K(n) :=
JK(n)

[n]
.

Thus, if K = T̂ , where T is a framed 1-component string link, then J ′K = J ′T , defined in the previous
section.

Proposition 4.3. — Suppose K,K ′ are framed oriented knots.
(1) If K has 0 framing, then J ′K(n) ∈ Z[q±1] = Z[t±4].
(2) J ′K!(n; q) = J ′K(n; q−1), were K! is the mirror image of K.

(3) JK(n; q) = J←−
K
(n; q), where

←−
K is the same knot K with reverse orientation.

(4) J ′K#K′(n; q) = J ′K(n; q) JK′(n; q), where K#K ′ is the connected sum of K and K ′.

(5) If K ′ is obtained from K by increasing the framing by 1,

JK′(n) = q(n
2−1)/4JK(n).

Part (4) is a special case of (25).

Exercise 4.4. — Prove parts (1), (2), (3), and, using (4), prove also (5) of the proposition.

Remark 4.5. — Property (4), showing that J ′K behaves well under connected sum, explains why VSn(K)

is more interesting than VKn . In the framework of Kauffman’s bracket theory, properties (4) and (5) can
be proved using the Jones-Wenzl idempotent, see e.g. [Li].

Recall that w(K) is the writhe, or the integer value framing, of framed knots. Let

◦
JK(n; q) = q−w(K)(n2−1)/4JK(n).

From Proposition 4.3(5),
◦
J is an invariant of unframed un-oriented knots.

As noted before, the colored Jones polynomial of framed oriented links does not actually depend on
the orientation of the components. Hence, it is an invariant of framed unoriented links.

4.4. Examples. — In general, it is difficult to have a compact formula of JK(n), as a function of q
and n. Here we give examples of a few known compact formulas. Recall the J ′K(n) = JK(n)/[n] ∈ Z[q].

If K is the right handed trefoil with framing 0, then

J ′K(n) = q1−n
∞∑
k=0

q−kn(q1−n; q)k(29)

=

∞∑
k=0

q−k(k+3)/2
k∏

j=1

(qn + q−n − qj − q−j).(30)
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Formula (29), see [HL], is valid when n > 0. When n > 0, the sum is actually finite and gives a
Laurent polynomial, since if k ≥ n, the k-th summand is 0. Formula (30), see [Ha1], is valid for any
0 ̸= n ∈ Z, since with n ̸= 0, the right hand side of (30) is a finite sum (the k-th summand is 0 whenever
k ≥ |n|). An exercise is to show that the two formulas give the same answer when n > 0.

When n < 0, the right hand side of (29), while not being a finite sum, can be shown to be an element
of the Habiro ring, and in the Habiro ring, it is equal to the element defined by Formula (30). The Habiro
ring [Ha3] is defined by

Ẑ[q] = lim←−
n

Z[q]/ ((q; q)n) , where (q; q)n =

n∏
j=1

(1− qj).

When n = 0, both formulas are infinite sums and equal in the Habiro ring, and give the Kashaev
invariant of the knot.

If K is the figure 8 knot with 0 framing (see [Ha1])

(31) J ′K(n) =

∞∑
k=0

k∏
j=1

(qn + q−n − qj − q−j).

See[Mas] for a proof of these formulas using skein theory approach.

4.5. Breadth of colored Jones polynomial of adequate links. —

Proposition 4.6 ([Le2]). — a) Suppose K is a framed oriented knot with a blackboard diagram D
having c crossings. Then for n ≥ 1,

d+(JK(n)) ≤ c(n− 1)2 + 2(n− 1)s+(D),

d−(JK(n)) ≥ −c(n− 1)2 − 2(n− 1)s−(D).

Equalities hold if D is adequate.
b) If K is adequate, then the breadth of JK(n) grows as a quadratic function in n. If K is a non-trivial

alternating knot with c crossings, and n ≥ 1. Then

br(JK(n)) = 2c(n− 1)2 + 2(n− 1)(c+ 2).

Démonstration. — a) The n-parallel Dn of D will have cn2 double points. In addition, it is easy to see
that s±(D

n) = ns±(D). Hence, Theorem 2.16 says

d+⟨Dn⟩ ≤ f(n) := cn2 + 2n|s+|.
Note that f(n) is a strictly increasing function, f(n + 1) > f(n). Recall that Sn(K) = Dn +

terms of lower degrees in D. It follows that

d+⟨Sn−1(D)⟩ ≤ f(n− 1) = c(n− 1)2 + 2(n− 1)s+.

The proof for d− is similar.
b) Suppose K is alternating, with a reduced alternating diagram D. Let K ′ be the framed oriented

knot defined by D with blackboard framing. Then K ′ is the same as K with possibly different framing.
Hence, their colored Jones polynomials have the same breadth.

For an alternating diagram one has s+ + s− = c+ 2. By Lemma 2.17 and Theorem 2.16,

d+⟨Dn⟩ = cn2 + 2ns+,

d−⟨Dn⟩ = −cn2 − 2ns−.

It follows that d+(D
n) > d+(D

n−1) and d−(D
n) < d−(D

n−1). We have that

Sn(K) = Dn + terms of lower degrees in K,

hence d±(⟨Sn(K)⟩) = d±(⟨Dn⟩), and
brJK(n) = br(Sn−1(D)) = d+⟨Dn−1⟩ − d−⟨Dn−1⟩ = 2c(n− 1)2 + 2(n− 1)(c+ 2).
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The case when K is adequate is left as an exercise.

Exercise 4.7. — Suppose K is an alternating knot with a reduced alternating diagram D which has
c+ positive crossings. Show that c+ is an invariant of K.

By [Mur, Tu3], for an alternating knot, s+ − c+ = signature(K) + 1, where signature(K) is the
signature of the knot.

4.6. Melvin-Morton conjecture. — We explain here the first important connection between the
colored Jones polynomial and the fundamental group.

Fix a 0-framed knot K. The colored Jones polynomial J ′K can be considered as a function on two
variables : q and n, where the integer n ∈ Z is the color. We will look at various limits of J ′K(n) as
n→∞.

Suppose u ∈ C is a complex number, with eu = z, or u = log z. For a fixed z, various values of u
satisfying eu = z differ by a multiple of 2πi.

In this section we consider u near 0. In the next section we consider u near 2πi. In both case, z = eu

is near 1.
For each positive integer n, the function

FK,n(u) := J ′K(n, q = exp(u/n))

is an analytic function in u ∈ C.
Here is the strong Melvin-Morton conjecture, proved in [GL2].

Theorem 4.8. — [GL2] For every knot K there is a open set SK ⊂ C containing 0 such that

lim
n→∞

FK,n(u) =
1

∇K(eu)

uniformly on any compact in SK . Here ∇K(t) is the Alexander polynomial of the knot K defined as in
Subsection 3.2. In other words, ∇K is the Alexander polynomial normalized so that ∇K(t) = ∇K(t−1)
and ∇K(1) = 1.

This Alexander polynomial ∇K is defined in Subsection 3.2.
The original Melvin-Morton conjecture [MM] (proved by Bar-Natan and Garoufalidis [BG]) says the

Maclaurin series of J ′K(n, q = exp(u/n)) converges coefficient-wise to the Maclaurin series of 1
∇K(eu) .

The (already proved) Melvin-Morton conjecture provides the first connection between the colored
Jones polynomial and the fundamental group, as the Alexander polynomial is an abelian invariant of the
fundamental group of knots.

4.7. Volume conjecture. — The volume conjecture [Kas, MuM] suggests there is a deep connection
between the colored Jones polynomial and the hyperbolic geometry of the knot complement. We will
again look at a certain limit of the colored Jones polynomial.

For the volume conjecture, one looks at u near 2πi. The value

KK(exp(2πi/n)) := FK,n(2πi) = J ′K(n; q = exp(2πi/n))

is called the Kashaev invariant of K at q = exp(2πi/n.

Conjecture 1 (Volume Conjecture). — For any knot K,

lim
n→∞

log |J ′K(n; q = exp(2πi/n))|
n

=
Vol(K)

2π
.

Here Vol(K) is the hyperbolic volume of the knot complement, defined as in Subsection 3.2.
So far the volume conjecture has been verified only for a few hyperbolic knots. For more on the volume

conjecture, see [Kas, MuM, Muk].
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4.8. Habiro’s expansion of the colored Jones polynomial. — Habiro [Ha3], using quantum
group theory, showed that for every zero-framed knotK and non-negative integer k, there exists CK(m) ∈
Z[q±1] such that

(32) J ′K(n) =
∞∑

m=0

CK(m)
m∏
j=1

(qn + q−n − qj − q−j).

The existence and uniqueness of CK(m) ∈ Q(q) satisfying (32) is easy to prove. The real content of
Habiro’s result is that CK(m) are Laurent polynomials with integer coefficients, and formula expressing
CK(m) in terms of JK(n). So far, there is no known proof of Habiro’s result using Kauffman’s bracket
theory.

The existence of CK(k) and (32) have found applications in many works, see [Ha3, GL2]. We will
have one application in the next section.

When n = 0, the right hand side of (32) is an element of the Habiro ring, and hence can be evaluated
at any root of unity. It is an easy exercise to show that KK(exp(2πi/n)) := J ′K(n; q = exp(2πi/n)) is
equal to J ′K(0; q = exp(2πi/n)). Thus, the Kashaev invariant of K can be conveniently described by the
function J ′K(0), which can be evaluated when q is a root of unity.

4.9. Colored Jones polynomial at roots of 1. — In the volume conjecture, we look at the value
of J ′K(n; q) at q a root of unity.

The colored Jones polynomial enjoy the following symmetry.

Proposition 4.9. — For every zero-framed knot K and every root ξ of unity of order r,

J ′K(n) = J ′K(r − n) = J ′K(r + n),

when evaluated at q = ξ.

This type of symmetry was first discovered by Kirby and Melvin [KM] for sl2 quantum invariants.
For general Lie algebra see [Le1] and references therein.

Exercise 4.10. — Use expression (32) to prove Proposition 4.9.

For example, the stronger volume conjecture

lim
n,m→∞,n/m→1

log |J ′K(n; q = exp(2πi/m))|
n

=
Vol(K)

2π
,

where the single limit is replace by a double limit, is wrong. This is because if m = n+ 1, then

J ′K(n; q = exp(2πi/(n+ 1))) = J ′K(1; q = exp(2πi/(n+ 1))) = 1,

and the limit would be 0.
This is very different from the case when u is near 0, considered in the strong Melvin-Morton conjec-

ture. There, due to the uniform convergence, similar double limits exist.

5. Recurrence relation : holonomicity

In this section we sketch a proof of the fact that for every knot K, the sequence of Jones polynomials
JK(n), n ∈ Z, satisfies a recurrence relation. Results of this section are taken from [GL1, Le2].

We will use the notation R = C[t], and q = t4. Also N is the set of non-negative integers.
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5.1. Recurrence relation with polynomial coefficients. — The Fibonacci sequence is an example
of a sequence satisfying a recurrence relation with constant coefficients :

Fn = Fn−1 + Fn−2, n ≥ 2

We will need two initial values in order to determine Fn. For example, F1 = 1, F2 = 1.
And here is an example of a recurrence relation with polynomial coefficients :

(n− 4)Fn = (n3 − 4n2 − 1)Fn−1 + (n2 − 3n− 2)Fn−2.

In general, two initial values are not enough, but 4 initial values, F1 = 1, F2 = 1, F3 = 2, F4 =
√
2, are

enough to determine the whole sequence.

5.2. q-holonomicity, one variable. — We will consider q-analogs of recurrence relations with poly-
nomial coefficients.

Suppose V is a Z[t±1]-modude. The set Map(Z, V ) of all functions from Z to V is also a Z[t±1]-module.
There are two operators L,M acting on Map(Z, V ) :

(Lf)(n) := f(n+ 1)

(Mf)(n) := t2nf(n).

Their inverses L−1,M−1 exist. One has LM = t2ML. The algebra

T := Z[t±1]⟨L±1,M±1⟩/(LM = t2ML)

is called the quantum torus. We have seen that T acts on Map(Z, V ), or Map(Z, V ) is a left T -module.
Let T+ ⊂ T be the Z[t±1]-submodule spanned by all monomials of the form LkMp with k, p ≥ 0.

Then T+ is known as the quantum plane. It is easy to see that the set {MaLb | a, b ∈ Z} is a Z[t±1]-basis
of T . Similarly, the set {MaLb | a, b ∈ N} is a Z[t±1]-basis of T+.

Definition 2. — A function f ∈ Map(Z, V ) is called q-holonomic if there is 0 ̸= α ∈ T such that
α(f) = 0. Similarly, a function f ∈ Map(N, V ) is q-holonomic if there is 0 ̸= α ∈ T+ such that α(f) = 0.

In general, the set Af := {α ∈ T | α(f) = 0} is called the annihilator ideal of f , which is a left ideal
of T . Thus, f is q-holonomic if and only its annihilator ideal is not 0.

We will show that for every knot K, the function JK : Z→R = C[t±1] is q-holonomic.
An important property of q-holomorphic function is the following. If f is q-holonomic, then f is totally

determined by a finite set of initial values and a non-zero recurrence relation α ∈ Af . This means, there
exists n,m ∈ Z, depending on α, such that if α(f) = α(g) = 0 and f(j) = g(j) for n ≤ j ≤ m, then
f = g.

The set of possible images of a fixed f under T is T · f = T /Af . Hence, if f is not q-holomorphic,
then T · f ∼= T is much bigger than T · g = T /Ag for some q-holonomic g.

Exercise 5.1. — Show that each of functions n→ t2n and n→ t4n
2

is q-holonomic. However, n→ t8n
3

is not q-holonomic.
Show that the function

H(n) =

{
1 if n ≥ 0

0 otherwise.

is q-homonomic.
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5.3. q-holonomicity, many variables. — To show that JK : Z → R = C[t±1] is q-holonomic, we
decompose JK into pieces, show that each piece is q-holonomic, and the way we assemble pieces together
preserves q-holonomicity. For this purpose, we need q-holonomicity of many variables.

For a function f : Zr → V , with r ≥ 2 the definition of q-holonomicity is more complicated. The
function must satisfy sufficiently many recurrence relations in order to be q-holonomic. But how many
recurrence relations would be enough ?

Let

Tr = Z[t±1]⟨L±11 , . . . , L±1r , L±11 , . . . , L±1r ⟩/(LiMi = t2MiLi, LiMj =MjLi for i ̸= j).

The algebra Tr acts on Map(Zr, V ), where V is any Z[t±1]-module, by

(Lif)(n1, . . . , ni, . . . , nr) = f(n1, . . . , ni + 1, . . . , nr)

(Mif)(n1, . . . , nr) = t2nif(n1, . . . , nr).

Let Tr,+ be the subalgebra of Tr generated by non-negative powers of Mj , Lj .
Suppose f ̸= 0. From f , by actions of Tr,+, we get other functions, all of which are (Tr,+) · f . In

general, the more recurrence relations f satisfies, the smaller (Tr,+) · f is.
Informally, f is q-holonomic if the (Tr,+) · f is as small as possible, in some complexity measure. A

precise definition is the following. Berstein’s inequality tells us that the dimension of (Tr,+) · f is always
≥ r, and one says f is q-holonomic if f = 0 or the dimension of (Tr,+) · f is exactly r.

The dimension of (Tr,+) · f can be defined as follows. Let (Tr,+)≤N be the R-span of all monomials in
Mj , Lk with total degree ≤ N . An analog of Hilbert’s theorem for this non-commutative setting holds
true : The C(t)-dimension of (Tr,+)≤N · f is a polynomial in N , for big enough N . The degree of this
polynomial is called the dimension of T+ · f .

Another way to define the dimension : Suppose W is a non-zero Tr-module. Its co-dimension and
dimension are defined by

codim(W ) = min{j ∈ N | ExtjTr (W, Tr) ̸= 0}, dim(N) = 2r − codim(W ).

Then Berstein inequality (proved by Sabbah [Sab] in the q-case) says that if W ̸= 0 is finitely
generated, then dim(W ) ≥ r. A Tr-module W is q-holonomic if either W = 0 or dim(W ) = r. A function
f ∈ Map(Zr, V ) is q-hononomic if the module Tr · f is q-holonomic.

Exercise 5.2. — Show that when r = 1, this definition of q-holonomicity is equivalent to the one given
in Subsection 5.2.

One can define in a similar fashion q-holomorphic functions with domain Nn, using only non-negative
powers of Lj ,Mk.

5.4. Examples of q–holonomic functions. — Here are a few examples of q–holonomic functions.
In fact, we will encounter only sums, products, extensions, specializations, diagonals, and multisums of
these functions. We use q = t4.

Recall that for n ∈ N,

(x; q)n :=
n∏

j=1

(1− xqj−1).

For n, k ∈ Z, let

F (n, k) :=

{
(qn; q−1)k, if k ≥ 0

0 if k < 0

G(n, k) :=

{
(qn;q−1)k
(qk;q−1)k

if k ≥ 0

0 if k < 0
.

Then both f and g, as well as the delta function δn,k, are q–holonomic. Note that g(n, k) is the q-binomial
coefficient and f(n, k) is the q-combination number.

Exercise 5.3. — Prove that F,G, and δn,k are q-holonomic.
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5.5. Properties of q-holonomic functions. —

– Sums and products of q–holonomic functions are q–holonomic.
– Specializations and extensions of q–holonomic functions are q–holonomic. In other words, if
f(n1, . . . , nm) is q–holonomic, then so are the functions

g(n2, . . . , nm) :=f(a, n2, . . . , nm) for fixed a

and h(n1, . . . , nm, nm+1) :=f(n1, . . . , nm).

– Linear substitution. If f(n1, . . . , nm) is q–holonomic, then so is the function, g(n′1, . . . , n
′
m′), where

each n′j is a Z-linear function of ni.
– In particular, diagonals of q–holonomic functions are q–holonomic. That is, if f(n1, . . . , nm) is
q–holonomic, then so is the function

g(n2, . . . , nm) := f(n2, n2, n3, . . . , nm).

– Multisums of q–holonomic functions are q–holonomic. In other words, if f(n1, . . . , nm) is q–
holonomic, the so are the functions g and h, defined by

g(a, b, n2, . . . , nm) :=
b∑

n1=a

f(n1, n2, . . . , nm)

h(a, n2, . . . , nm) :=
∞∑

n1=a

f(n1, n2, . . . , nm)

(assuming that the latter sum is finite for each a).

5.6. The colored Jones polynomial is q-holonomic. — The quantum group definition of the
colored Jones polynomial, discussed in Subsection 3.6 leads to the following formula for the colored
Jones of a knot.

Let Vn be the n-dimensional irreducible Uq(sl2) used to define the colored Jones polynomial with color
n. We have the YB operator R : Vn ⊗ Vn → Vn ⊗ Vn and η : Vn → Vn.

Explicit formulas for R and η are known. There is an ordered basis {e0, e1, . . . , en} of Vn+1 such that

R±1(ea ⊗ eb) =
∑

R±1(n; a, b, c, d) ec ⊗ ed, η(ea) = η(n; a)ea,

where

R(n; a, bc, d) = q(n+nd+nb−ab−dc)/2 F (c, c− b)G(n− a, d− a)δa+b,c+d(33)

R±1(n; a, bc, d) = (−1)b−cq(−n−nb−nd+bd+ac−b+c)/2 F (a, a− d)G(n− c, b− c)δa+b,c+d(34)

η(n; a) = q(2a−n)/2.(35)

Here F,G are functions given in Subsection 5.4.
A basis of (Vn+1)

⊗k is {e(m) |m ∈ {0, 1, . . . , n}k, where
e(m) = em1 ⊗ em2 ⊗ · · · ⊗ emk

for m = (m1, . . . ,mk) ∈ {0, 1, . . . , n}k}.
Using this basis, any linear operator Ω : (Vn+1)

⊗k → (Vn+1)
⊗k is describes by its matrix elements

Ω(n;m;m′) ∈ Q(q1/d), where

Ω(e(m)) =
∑

m′∈{0,...,n}k
Ω(n;m,m′).

Fix a positive integer k. Suppose for each non-negative integer n we have a Q(q1/d)-linear operator
Ω : (Vn+1)

⊗k → (Vn+1)
⊗k. We say that Ω is q-holonomic (in the chosen basis) if the matrix element

Ω(n;m;m′) is q-holonomic in all variables, i.e. there is a q-holonomic function F : N2k+1 → Q(q) such
that Ω(n;m;m′) = F (n,m,m′) whenever m,m′ ∈ {0, . . . , n}k.

From the properties of q-holomorphic functions listed in Subsection 5.5, one can easily show that if
Ω1,Ω2 : (Vn+1)

⊗k → (Vn+1)
⊗k are q-holonomic, then Ω1Ω2 is also q-holonomic. Also, if Ω1 : (Vn+1)

⊗k1 →
(Vn+1)

⊗k1 and Ω2 : (Vn+1)
⊗k2 → (Vn+1)

⊗k2 are q-holonomic, then Ω1 ⊗ Ω2 is also q-holonomic.
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The right hand side of (33) can be defined for any (n, a, b, c, d) ∈ Z5, and is q-holomorphic functions
from Z5 to Z[q±1], see Subsection 5.5. In other words, R : (Vn+1)

⊗2 → (Vn+1)
⊗2 is q-holonomic. Similarly,

(34) and (35) show that R−1 and η are q-holonomic.
It follows that ρ(β) is q-holonomic for every braid β ∈ Bk. Similarly, η⊗k is q-holonomic. Because

taking trace preserves the q-holonomicity (again by properties listed in Subsection 5.5),

JK(n+ 1) = trVn+1
q (ρ(β)) = tr(ρ(β) η⊗k, (Vn+1)

⊗k)

is q-holonomic in n ∈ N.
With a little more effort one can extend the statement to include negative colors, and get the following.

Theorem 5.4. — For every framed oriented knot K, the function JK : Zn → Z[t±1] is q-holonomic.

Let AK be the recurrence ideal of JK : Z→R, which is non-zero by Theorem 5.4.

5.7. An example. — For the right-handed trefoil with 0 framing, one has

JK(n) =
t2−2n

1− t−4
n−1∑
k=0

t−4nk
k∏

i=0

(1− t4i−4n).

The function JK satisfies αJK = 0, where

(36) α = (t4M10 −M6)L2 − (t2M10 + t−18 − t−10M6 − t−14M4)L+ (t−16 − t−4M4).

Together with the initial conditions JK(0) = 0, JK(1) = 1, this recurrence relation determines JK(n)
uniquely.

5.8. Generator of the recurrence ideal. — For a field F , the ring F [x±1] of Laurent polynomials
in x with coefficients in F is a principal ideal domain (PID), but the ring F [x±1, y±1] is not a PID.
For this reason, T is not a left PID, i.e. not every left ideal of T is generated by a single element, since
T /(1+t) = C[L±1,M±1]. Note, however, if we adjoin to F [x±1, y±1] the inverses of all non-zero elements
in F [x±1], then we get a PID, since the new ring is F(x)[y±1].

The annihilator ideal αK is a left ideal of T . In general, αK is not generated by one element. Even
for the trivial knot, the recurrence ideal αK is not principal.

Garoufalidis [Ga2] noticed that by adding to T all the inverses of non-zero polynomials inM one gets

a principal ideal domain T̃ . Formally T̃ can be defined as follows. Let R(M) be the fractional field of the

polynomial ring R[M ]. Let T̃ be the set of all Laurent polynomials in the variable L with coefficients in
R(M) :

T̃ = {
∑
k∈Z

ak(M)Lk | ak(M) ∈ R(M), ak = 0 almost everywhere},

and define the product in T̃ by a(M)Lk · b(M)Ll = a(M) b(t2kM)Lk+l.

Then it is known that every left ideal in T̃ is principal, and T embeds as a subring of T̃ . The extension
ÃK := T̃ AK of AK in T̃ is then generated by a single polynomial

αK(t;M,L) =
d∑

i=0

αK,i(t;M)Li ∈ T+,

where the degree in L is assumed to be minimal and all the coefficients αK,i(t;M) ∈ Z[t±1,M ] are
assumed to be co-prime. That αK can be chosen to have integer coefficients follows from the fact that
JK(n) ∈ Z[t±1]. One can easily shows that αK(t;M,L) annihilates JK(n), except for a finite number
of values of n. Note that αK(t;M,L) is defined up to a factor ±taM b, a, b ∈ Z. We will call αK the
recurrence polynomial of K. For example, the polynomial α in the previous subsection is the recurrence
polynomial of the right-handed trefoil.
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Lemma 5.5. — Suppose K ′ is obtained from K by increasing the framing by k ∈ Z, and αK =∑d
j=0 aj(M, t)Lj is the recurrence polynomial for K. Then

α′K :=
d∑

j=0

(−t)−kj
2

M−jkaj(M, t)

is the recurrence polynomial for K ′.

Démonstration. — The recurrence polynomial of a knot can be characterize as the polynomial in ÃK∩T+
with smallest L-degree.

By Proposition 4.3,

JK′(n) = (−t)k(n
2−1)JK(n).

From here one can easily show that α′K ∈ ÃK′ . The map αK → α′K preserves the L-degree, and is
invertible. Hence, α′K must be the recurrence polynomial of K ′.

By virtue of the lemma, we only need to investigate αK with K having framing 0.

Proposition 5.6. — Suppose K is a 0-framed knot. Then αK can be chosen so that it has only even
powers in t and even powers in M , i.e.

αK ∈ T ev := Z[t±2]⟨M±2, L±1⟩/(LM2 = t4M2L).

Sketch of proof. — If K has 0-framing, then JK(n) ∈ Z[t±2]. Hence, one can choose αK so that it
contains only even powers of t.

One has JK(n) = [n]J ′K(n) and J ′K(n) ∈ Z[t±4], see Proposition 4.3. Besides, [n] = (t2n− t−2n)/(t2−
t−2) ∈ t2(n−1)Z[t±4]. From here one can easily show that αK can be chosen so that αK ∈ T ev.

From now on we will assume K has framing 0, and αK ∈ T ev.

5.9. Effect of Weyl symmetry. — Let φ : T → T be the R-algebra involution defined by

φ(MaLb) =M−aL−b.

(Check that φ is a well-defined algebra involution of T !)

Proposition 5.7. — The annihilator ideal AK is invariant under φ.

Exercise 5.8. — Prove the proposition, using the fact that JK(−n) = −JK(n).

The symmetry of αK under the involution φ is important for us. Since AK is invariant under φ, we
want to understand if one can find a generator of ÃK which is an eigenvector of the involution φ. In
general, this does not hold true. However, if one adjoint L1/2 to T , then such a generator exists. Recall
that αK is defined up to ±taM b, a, b ∈ Z.

Proposition 5.9. — Suppose αK has L-degree d. There is a normalization of αK by ±taM b, a, b ∈ Z
such that L−d/2αK is φ-symmetric or φ-anti-symmetric, i.e.

φ(L−d/2αK) = ±L−d/2αK .

Here we adjoint L±1/2 to T , such that L1/2M = tML1/2.

We don’t need the proposition in the future, and leave the proof as an exercise for the reader.
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5.10. Degree 1 recurrence relation. — It turns out that if JK has a recurrence relation of degree
1, then the breadth of JK(n) can grow at most linearly with n. In the following statement we use the
Weyl symmetry in an essential way.

Proposition 5.10. — Suppose the annihilator polynomial αK has L-degree 1, where K is a 0-framed
knot. Then there is a constant C such that for any n ≥ 1,

br(JK(n)) ≤ Cn.
Consequently, if K is an alternating non-trivial knot, or K is a non-trivial adequate knot, then αK has
L-degree ≥ 2.

Sketch of Proof. — Assume αK = P (t;M)L + P0(t;M), where P, P0 ∈ Z[t±2,M±2]. Since φ(αK) =
P (t;M−1)L−1 + P0(t;M

−1) is also in the recurrence ideal, it is divisible by αK .
One can show that, after normalizing both P, P0 by a same power of M , one has

P0(t;M) = ±P (t; t−2M−1).
The equation αKJK = 0 can now be rewritten as

JK(n+ 1) = ∓P (t; t
−2−2n)

P (t; t2n)
JK(n).

Thus

br(JK(n+ 1)) = br(JK(n)) + br(P (t; t−2−2n))− br(P (t; t2n)).

It is easy to see that for n big enough, the difference of the breadths br(P (t; t−2−2n))−br(P (t; t2n)) is
a constant depending only on the polynomial P (t;M), but not on n. From the above equation it follows
that the breadth of JK(n), for n big enough, is a linear function on n.

Corollary 5.11. — Suppose K is an adequate knot. Then recurrence polynomial αK has L-degree at
least 2.

Démonstration. — Since the breadth of JK(n) has quadratic growth by Proposition 4.6, the corollary
follows from Proposition 5.10.

5.11. Linear factor L− 1. — In the following statement, we use the Melvin-Morton conjecture, see
Subsection 4.6.

Proposition 5.12. — Suppose K is a 0-framed knot. At t = ±1, the recurrence polynomial αK is

divisible by L− 1. In other words,
αK |t=−1
L− 1

∈ Z[M,L].

Sketch of Proof. — Suppose αK =
∑d

j=0 aj(t,M)Lj . One has

d∑
j=0

aj(t, t
2n)JK(n+ j) = 0.

Since JK(n) = [n]J ′K(n), we have

d∑
j=0

aj(t, t
2n) (t2n+2j − t−2n−2j)J ′K(n+ j) = 0.

Setting t = eu/4n for small enough |u| and taking the limit as n→∞, using Theorem 4.8, we have

d∑
j=0

aj(1, e
u/2) (eu/2 − e−u/2) 1

∇(eu/2)
= 0.

It follows that
∑d

j=0 aj(1, e
u/2) = 0 for small |u|. Hence, αK |t2=1,M=z,L=1 = 0, which is equivalent to

the lemma.
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6. Kauffman bracket skein modules

In this section we discuss the Kauffman bracket skein module which was introduced by Przytycki [Pr]
and Turaev [Tu2]. Bracket skein modules have closed connections to character varieties and the colored
Jones polynomial, and will serve as a bridge between the A-polynomial and colored Jones polynomial,
as first noticed in [FGL].

Recall that we use R = C[t±1].

6.1. Skein modules. — A framed link in an oriented 3-manifold Y is a disjoint union of embedded
circles, equipped with a non-zero normal vector field. We will considered here only unoriented framed
links. Framed links are considered up to isotopy. In all figures we will draw framed links, or part of them,
by lines as usual, with the convention that the framing is blackboard. Let L be the free R-module with
basis the set of isotopy classes of framed links in the manifold Y , including the empty link. Let Rel be
the smallest submodule containing all expressions of the form

− t − t−1(37)

⃝+ (t2 + t−2)∅,(38)

where the links in each expression are identical except in a small ball in which they look like depicted.
The quotient S(Y ) := L/Rel is called the Kauffman bracket skein module, or just skein module, of Y .

Remark 6.1. — The fact that Y is oriented is very important. This is because if we do a reflection
in the plane of the page, the last two terms of (37) do not change, but the first term switches its
over/under crossing. The reflection changes the orientation of the small ball mentioned above and would
be prohibited if an orientation is fixed. Without orientation, in the skein module one would have

=

In general, there is no natural algebra structure on S(Y ). There are, however, two important cases
when S(Y ) has a natural algebra structure. We describe here the first case, and will discuss the second
one later in Subsection 6.8.

When Y = Σ× [0, 1], the cylinder over an oriented surface Σ, we also use the notation S(Σ) for S(Y ).
In this case S(Σ) has an algebra structure induced by the operation of gluing one cylinder on top of the
other, i.e. ℓℓ′ is the result of placing ℓ atop ℓ′. If K ⊂ Σ is an embedded closed curve, i.e. a knot in Σ,
then Kn is the n copies of parallel of K. In general, S(Σ) is not commutative.

More generally, if Σ is a part of the boundary of an oriented 3-manifold, then the operation of gluing
the cylinder over Σ to Y induces a left S(Σ)-module structure on S(M).

It may happen that Σ1 ̸∼= Σ2 but Σ1 × [0, 1] ∼= Σ2 × [0, 1]. Then S(Σ1) ∼= S(Σ2) as R-modules, but in
general, S(Σ) ̸∼= S(Σ2) as R-algebras.

We have the following description of a basis of S(Σ.

Proposition 6.2 ( [CP]). — Suppose Σ is an oriented surface. As an R-module, S(Σ) is free with
basis the set of all isotopy classes of links embedded in Σ without trivial components.

Exercise 6.3. — Suppose f : Y1 ↪→ Y2 is an embedding. Show that L→ f(L) gives rise to a well-define
R-module map f∗ : S(Y1)→ S(Y2).

Similarly, if f : Σ ↪→ T is an embedding of an oriented surface Σ into an oriented 3-manifold, then
L→ f(L) gives rise to a well-define R-module map f∗ : S(Σ)→ S(Y ).

6.2. Important examples. —

Example 6.4 (Y = R3, S3, or 3-ball). — When Y is the 3-space R3 or the 3-sphere S3, the skein
module S(Y ) is free over R of rank one, and is spanned by the empty link. As an exercise, show that
if ℓ is a framed link in R3, then its value in the skein module S(R3) is ⟨ℓ⟩ times the empty link, where
⟨ℓ⟩ ∈ R is the Kauffman bracket of ℓ.
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From this result, one could think of S(Y ) as the space of all Kauffman bracket type polynomial of
framed links in Y .

If Σ is a 2-dimensional disk, then Σ× [0, 1] is 3-dimensional disk, and then S(Σ) ∼= R as R-algebras.

Example 6.5 (The annulus). — Let A be an annulus. Let z be the core of A, i.e. the only non-trivial
loop embedded in A. From Proposition 6.2, S(A) is the free R-modules with basis {zn, n ∈ N}. It follows
that as an R-algebra, S(A) = R[z].

Instead of the R-basis {1, z, z2, . . .}, two other bases are often useful. Namely, each of {Tn(z) | n ∈ N}
and {Sn(z) | n ∈ N} is a R-basis of S(ST ). Here Tn, Sn are the Chebyshev polynomials defined in section
4.2.

A framed knot K in R3 gives rise to an embedding f : A ↪→ R3, which is defined up to isotopy. Then
colored Jones polynomial is

JK(n) = (−1)n−1f∗(Sn−1(z)), n ∈ Z.

Example 6.6 (The torus). — Let T2 = R2/Z2 be the torus with a fixed pair (µ, λ) of oriented simple
closed curves intersecting at exactly one point. For co-prime integers k and l, let λk,l be an simple closed
curve on the torus homologically equal to kµ + lλ. We will consider λk,l as an unoriented curve. Then
λk,l = λ−k,−l. Proposition 6.2 shows that S(T2) is the free R-module with basis the set of all λk,l and
their parallels, and the trivial link.

Bullock and Przytycki [BP] showed that S(T2) is generated over R by 3 elements µ, λ, and λ1,1,
subject to some explicit relations. If one adds the inverse of (1 − t4) to the ground ring R, then S(T2)
is generated by just two elements µ, λ.

Let us now relate the R-algebra S(T2) to the quantum torus

T = R⟨M±1, L±1⟩/(LM − t2ML).

Let φ : T → T be the involution defined by φ(MkLl) := M−kL−l. Frohman and Gelca [FG] showed
that there is a unique algebra homomorphism Υ : S(T2)→ T such that

Υ(µ) = −(M +M−1), Υ(λ) = −(L+ L−1),

and Υ maps S(T2) isomorphically onto the symmetric part T φ.
More explicitly,

Υ(λk,l) := (−1)k+ltkl(MkLl +M−kL−l).

The fact that S(T2) and T φ are isomorphic algebras was also proved by Sallenave [Sal].
In the consequence, we will often identify S(T2) with T φ using the map Υ.

Example 6.7 (Two-punctured disk and punctured torus). — Let F0,3 be the disk with two
points removed, and F1,1 be the torus with one point removed.

Then F0,3 × [0, 1] ∼= F1,1 × [0, 1]. Hence S(F0,3) and S(F1,1) are isomorphic as R-modules. However,
as R-algebras, they are different. In fact, while S(F0,3) is commutative, S(F1,1) is not.

Exercise 6.8. — Using the R-basis of S(F0,3) consisting of embedded links in F0,3 without trivial
components to show that S(F0,3) is the commutative polynomial algebra R[x, x′, y], where x, x′ are
small loops in F0,3 surrounding the punctured points, and y is a loop in F0,3 parallel to the boundary of
the disk.

The skein algebra of the punctured torus F1,1 is a quantization (non-commutative) algebra of the Lie
algebra so3 and has the following presentation [BP] :

S(F1,1) = R⟨x0, x1, x2⟩/(txixi+1 − t−1xi+1xi = (t2 − t−2)xi+2),

where the indices are taken modulo 3.
Many results and proofs in the skein theory reduce to calculations involving skein algebras of F0,3 and

F1,1, see e.g. [BW, Le3].
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6.3. The peripheral and orthogonal ideals. — Suppose K is an oriented knot in S3. Let N(K)
be a tubular neighborhood of K in S3, and X the closure of S3 \N(K). Then ∂(N(K)) = ∂(X) ∼= T2.
There is a standard choice of an oriented meridian µ and an oriented longitude λ on T2 such that the
linking number between the longitude and K is zero and the linking number between the knot and the
meridian is 1. We use this pair (µ, λ) to define the map Υ as in Example 6.6, identifying S(T2) with T φ.

The torus T2 = ∂(N(K)) is the common boundary of N(K) and X. We can consider S(X) as a left
S(T2)-module and S(N(K)) as a right S(T2)-module. There is a R-bilinear form
(39) ⟨·, ·⟩ : S(N(K))⊗S(T2) S(X) → S(S3) ≡ R

given by ⟨ℓ′, ℓ′′⟩ := ⟨ℓ′∪ℓ′′⟩, where ℓ′ and ℓ′′ are links in respectively N(K) and X. Note that if ℓ ∈ S(T2),
then

⟨ℓ′ · ℓ, ℓ′′⟩ = ⟨ℓ′, ℓ · ℓ′′⟩.
Let us define the S(T2)-linear map

Θ : S(T2)→ S(X), Θ(ℓ) := ℓ · ∅.
In other words, Θ : S(T2)→ S(X) is the homomorphism induced from the inclusion T2 ↪→ X.

The kernel P := kerΘ is called the quantum peripheral ideal, first introduced in [FGL]. In [FGL, Ge],
it was proved that every element in P gives rise to a recurrence relation for the colored Jones polynomial.
We will present a refinement of this result here.

The orthogonal ideal O in [FGL] is defined as Θ−1(S(N(K))⊥), where S(N(K))⊥ is the orthogonal
complement of S(N(K)) with respect to the bilinear form (39). In other words,

O := {ℓ ∈ S(∂X) | ⟨ℓ′,Θ(ℓ)⟩ = 0 for every ℓ′ ∈ S(N(K))}.
It is clear that O is a left ideal of S(∂X) ≡ T φ. In [FGL], O was called the formal ideal. Since
P = Θ−1({0}) and O = Θ−1(S(N(K))⊥), one has

(40) P ⊂ O.

Conjecture 2. — For every knot, one has P = O.

According to [Le2], if the conjecture holds, then the colored Jones polynomial distinguish the unknot
from other knots.

Exercise 6.9. — Calculate P,O,A for the unknot.

6.4. Recurrence relations from orthogonal ideal. — As mentioned above, the skein algebra of
the torus S(T2) can be identified with T φ via the R-algebra isomorphism Υ sending µ, λ and λ1,1 to
respectively −(M +M−1),−(L+ L−1) and t(ML+M−1L−1). We will use this identification.

Fix a knot K. We use A to denote AK , the recurrence ideal of the knot K. The following proposition
says that under the above identification, every element in the orthogonal ideal, a fortiori every element
in the quantum peripheral ideal, is a recurrence relation for the colored Jones polynomial.

Proposition 6.10. — For every knot one has

P ⊂ O ⊂ A.
Actually,

(41) O = A ∩ T φ.

To prove the above proposition, we first prove the following.

Proposition 6.11 (see [LT1]). — For any skein element ℓ ∈ S(T2) and any n ∈ Z one has

(−1)n−1⟨Sn−1(K),Θ(ℓ)⟩ = ℓ · JK(n)(42)

Here on the left hand side, ℓ is an element of S(∂X), and on the right hand side ℓ is an element of
T φ ⊂ T , which acts on Map(Z,Z[t±1]).
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Démonstration. — From the recurrence relation for the Chebyshev polynomial, we have

(43) ⟨Sn−1(K) · λ, ∅⟩ = ⟨Sn(K) + Sn−2(K), ∅⟩

The following identities can be proved using the Jones-Wenzl idempotent (see e.g. [Li, Oh])

⟨Sn−1(K) · µ, ∅⟩ = (−t2n − t−2n)⟨Sn−1(K), ∅⟩(44)

⟨Sn−1(K) · λ1,1, ∅⟩ = −⟨t2n+1Sn(K) + t−2n+1Sn−2(K), ∅⟩.(45)

Alternatively, a dedicated reader can prove Identities (44) and (45) in tandem using induction on n.
(One has to begin with n = 0, then move to n > 0 and n < 0 using the recurrence relation of the
Chebyshev polynomial.)

By definition JK(n) = (−1)n−1⟨Sn−1(λ), ∅⟩ and

(MJK)(n) = t2nJK(n), (LJK)(n) = JK(n+ 1).

Hence, Identities (43)–(45) can be rewritten as

(−1)n−1⟨Sn−1(K), Θ(λ)⟩ = −(L+ L−1)JK(n) = λ · JK(n)

(−1)n−1⟨Sn−1(K), Θ(µ)⟩ = −(M +M−1)JK(n) = µ · JK(n)

(−1)n−1⟨Sn−1(K), Θ(λ1,1)⟩ = t(ML+M−1L−1)JK(n) = λ1,1 · JK(n),

which means the proposition holds true for ℓ = λ, µ, or λ1,1. Since S(T2) is generated by µ, λ and λ1,1,
we conclude that the proposition holds for all ℓ ∈ S(T2).

Proof of Proposition 6.10. — We already have P ⊂ O, see (40). We now show O ⊂ A. Suppose ℓ ∈ O.
Then the left hand side of (42) is 0. The right hand side of (42) is 0 means that ℓ ∈ A. Thus, O ⊂ A.

Next we show that O = AK ∩ T φ.
Since {Sn(K) | n ∈ Z} spans the skein module S(N(K)), Proposition 6.11 implies that

O = {ℓ ∈ S(∂X) | ⟨ℓ′,Θ(ℓ)⟩ = 0 for all ℓ′ ∈ S(N(K))}
= {ℓ ∈ S(∂X) | ⟨Sn(K),Θ(ℓ)⟩ = 0 for all integers n}
= {ℓ ∈ S(∂X) = T φ | ℓ · JK(n) = 0 for all integers n}
= {ℓ ∈ S(∂X) = T φ | ℓ ∈ A}
= A ∩ T φ.

Remark 6.12. — Equation (41) was obtained in [Ga1] by another method. We present here a more
geometric proof, using properties of the action of the longitude and the meridian on the Chebyshev
polynomials.

By Proposition 6.10, every element of the quantum peripheral ideal P = kerΘ gives a recurrence
relation for the colored Jones polynomial. Hence, one could prove Theorem 5.4 about the existence of
recurrence relations for the colored Jones polynomials if one can show that P ̸= 0 for any knot.

Conjecture 3. — For any knot K, the quantum peripheral ideal P ̸= 0.

The conjecture would give a skein theoretic proof of Theorem 5.4. We have the following simpler
result.

Proposition 6.13. — Suppose for a knot K the skein module S(X) has finite rank over the ring R[M+
M−1]. Then P ̸= 0.

Démonstration. — As a module over R[M +M−1] = R[M±1]φ, a Noetherian commutative ring, the
quantum torus T has infinite rank, i.e. it cannot be spanned by a finite number of elements. Hence, if
S(X) has finite rank over R[M +M−1], then P = ker(Θ : T → S(X)) cannot be 0. In this case K has
a non-trivial recursion relation coming from P.
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6.5. The character variety of a group. — Now we change the course and discuss relations between
skein modules and character varieties. Let us first recall the SL2(C)-character variety of a group. For
details, see [CS, BH, LM].

For an algebraic set Y we will use the notation C[Y ] to denote the ring of regular functions on Y .
Then C[Y ] is a C-algebra, which is finitely-generated and reduced, i.e. its nil-radical is 0. Conversely,
every finitely-generated reduced C-algebra is the ring of regular functions of certain algebraic set. For
details, see e.g. [Sh].

Suppose G is a finitely presented group. The set Hom(G,SL2(C)) of all representations of G into
SL2(C) is an algebraic set defined over C, on which SL2(C) acts by conjugation. Here is a description
of Hom(G,SL2(C)) as an algebraic set. Suppose G has a presentation

G = ⟨a1, . . . , an | r1, . . . , rm⟩,

where each rl is a monomial in positive powers of generators aj . Such a presentation always exits.
Consider 4n variables (Ak)ij with k = 1, . . . , n, and i, j = 1, 2. Let I(G) be the ideals in the rings of
C-polynomials in the 4n variables (Ak)ij generated by the following 4m+ n polynomials

detAk − 1, k = 1, . . . , n

(Rl)ij − δij , l = 1, . . . ,m, i, j = 1, 2,

where Ak is the 2× 2 matrix with entries (Ak)ij and Rl is the 2× 2 matrix Rl = rl(A1, . . . , An).
Then Hom(G,SL2(C)) is the zero set of I(G). The ideal of all polynomials in C[(Ak)ij ] vanishing on

Hom(G,SL2(C)) is the radical
√
I(G) of I(G). Hence, we have

C[Hom(G,SL2(C))] = Rep(G)/
√
I(G).

The ring

Rep(G) = C[(Ak)ij ]/I(G)

is known as the universal representation ring of G, see below. It is known that Rep(G) does not depend
on particular presentations of G.

The universal representation ring Rep(G) = C[(Ak)ij ]/I(G) is reduced if and only the ideal I(G) is

radical, i.e.
√
I(G) = I(G). If I(G) is radical, or the same as Rep(G) is reduced, then the ring of regular

functions C[Hom(G,SL2(C))] of Hom(G,SL2(C)) is Rep(G).
The set-theoretic quotient of Hom(G,SL2(C)) by the conjugate action of SL2(C) does not have good

topological properties, because in general the orbits are not closed (in the Zariski topology or in the
C-topology). A better quotient χ(G), called the algebro-geometric quotient with a surjection

p : Hom(G,SL2(C)) � χ(G),

has the structure of an algebraic set, and p is a regular map. Two representations have the same image
under p if and only if they have the same character. This means p descends to a bijection between the
set of all SL2(C)-characters of G and χ(G). For this reason χ(G) is usually called the character variety
of G. The reader should be careful with this terminology, as χ(G) might have many components and is
not an affine variety as defined in most textbooks in algebraic geometry.

Formally one can define χ(G) as follows. As SL2(C) acts on Hom(G,SL2(C)), it acts on
C[Hom(G,SL2(C))]. The subring C[Hom(G,SL2(C))]SL2(C) of SL2(C)-invariant elements is finitely-
generated, according to Hilbert’s theorem on finiteness of invariants. Besides, C[Hom(G,SL2(C))]SL2(C),
as a subring of C[Hom(G,SL2(C))], is reduced. Hence, C[Hom(G,SL2(C))]SL2(C) is the ring of regular
functions of an algebraic set, which is χ(G).

For a manifold Y we use χ(Y ) also to denote χ(π1(Y )).
The character variety has played an important role in geometric topology.

Exercise 6.14. — Let Z = ⟨a⟩. Show that the map Hom(Z, SL2(C)) → C, ρ → tr(ρ(a)) descends to
an isomorphism between χ(Z) and C.

The next example is important for us.
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Example 6.15. — Suppose G = Z2, the free abelian group with two generators µ, λ. There is an
isomorphism between χ(G) and (C∗)2/τ , where (C∗)2 is the set of non-zero complex number pairs
(L,M) and τ is the involution τ(M,L) := (M−1, L−1), as follows : Suppose x is the character of
ρ ∈ Hom(Z2, SL2(C)). Then ρ is conjugate to a representation ρ′ where ρ′(γ) is upper diagonal for every
γ ∈ Z. Let M and L be the upper left entry of the matrices ρ′(µ) and ρ(λ) respectively. Then the map
x→ (M,L), from χ(Z2) to (C∗)2/τ , is well-defined and is an isomorphism of algebraic sets.

Exercise 6.16. — Show that C[(C∗)2/τ ] = tφ, the φ-invariant subspace of t := C[L±1,M±1], where
φ(MkLl) =M−kL−l.

Exercise 6.17. — Find the character variety of Zn.

For details of the next two examples, see [LM].

Example 6.18. — Suppose G = ⟨a, b⟩, the free group on 2 generators a, b. The map χ(G)→ C3, given
by x→ (tr(ρ(a)), tr(ρ(b)), tr(ρ(ab))), where ρ is a representation with character x, is an isomorphism.

Example 6.19. — Let Fn = ⟨a1, . . . , an⟩, the free group on n generators. It is clear that Hom(Fn, SL2(C)) ∼=
(SL2(C))n, which has dimension 3n (over C). Since the dimension of SL2(C) is 3, one can show that
the dimension of χ(Fn) is 3n− 3.

As an affine algebraic set, there is an embedding χ(Fn) ↪→ Ck for some k. In fact, there are k
elements g1, . . . gk of Fn such that their traces generate the ring of characters of Fn, i.e. for every
element g ∈ Fn there exists a polynomial Pg ∈ C[x1, . . . , xk] such that for y ∈ χ(Fn), one has y(g) =
Pg(y(g1), · · · , y(gk)). The map

y → (y(g1), · · · , y(gk)) ∈ Ck

is an embedding of χ(Fn) into Ck.

6.6. Functorial properties. — Suppose f : G → H is a group homomorphism. Then f induced a
regular map Hom(H,SL2(C))→ Hom(G,SL2(C)) which descends to a regular map

f∗ : χ(H)→ χ(G).

One can easily show that the assignment G→ χ(G) is a contravariant functor, i.e. id∗ = id and(fg)∗ =
g∗f∗.

Taking the dual, we get a covariant function G→ C[χ(G)], with f∗ : C[χ(G)]→ C[χ(H)].

6.7. The universal character ring. — Suppose G is a group, A is C-algebra, and ρ : G→ SL2(A)
is a representation. Any C-algebra homomorphism f : A → A′ induces an algebra homomorphism
f# : SL2(A)→ SL2(A

′) and
f# ◦ ρ : G→ SL2(A

′)

is called the representation derived from ρ via f .
For every finitely presented group G there is a commutative C-algebra Rep(G), called the universal

representation algebra, and the universal representation

Ψ : G→ SL2(Rep(G))

such that for every C-algebra A and every representation ρ : G → SL2(A), there is a unique C-algebra
homomorphism f : Rep(G)→ A such that ρ is derived from Ψ via f . For details, see [LM, Si].

The ring Rep(G), described in the previous section, is actually the universal representation of G. The
universal representation is the obvious one, Ψ(ai) = Ai.

Exercise 6.20. — Prove the above statements.

The group SL2 acts by conjugation on Rep(G), and the subring Rep(G)SL2(C) of fixed points is called
the universal character ring of G.

The universal character can also be described in a more explicit way as follows. Suppose G has a
presentation

G = ⟨a1, . . . , an | r1, . . . , rm⟩.
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By Example 6.19, there are a finite number of elements g1, · · · , gk in the free group Fn = ⟨a1, . . . , an⟩
such that for every element g ∈ Fn there exists a polynomial Pg ∈ C[x1, . . . , xk] with the property
y(g) = Pg(y(g1), · · · , y(gk)) for any character y ∈ χ(Fn).

The universal character ring of G is isomorphic the quotient of the ring C[x1, · · · , xk] by the ideal
generated by all expressions of the form Pg−Pg′ , where g and g′ are any two elements of Fn which have
the same image in G.

6.8. Skein modules at ±1 and character variety. — For a non-zero complex number ξ let Sξ(Y )
be the skein module of Y at t = ξ, i.e.

Sξ(Y ) = S(Y )/(t− ξ) = S(Y )⊗R C,

where C is considered as a R-module by setting t→ ξ. Then Sξ(Y ) is a vector space over C.
When ξ is a root of unity, Sξ(Y ) plays important role in quantum topology. For example, the SU(2)

topological quantum field theory theory can be constructed using Sξ(Y ).
The cases ξ = ±1 are more special, because S±1(Y ) have a natural commutative algebra structure

where the product of two links in S±(Y ) is their disjoint union.

Exercise 6.21. — Show that when ξ = ±1, this product is well-defined.

Suppose Y is a compact oriented 3-manifold. Using a triangulation of Y one can show that S−1(Y )

is a finitely-generated C-algebra. Let
√
0 be the nil-radical of S−1(Y ). Then S−1(Y )/

√
0 is a reduced

finitely generated C-algebra. Hence, S−1(Y )/
√
0 is isomorphic to the ring of regular functions of a certain

algebraic set.
An important result [Bul, PS] in the theory of skein modules is that S−1(Y ) is naturally isomorphic

to the universal character ring of π1(Y ), and S−1(Y )/
√
0 is naturally isomorphic to the character ring

C[χ(Y )], or the ring of regular functions of the character variety of π1(Y ).

The isomorphism between f : S−1(Y )/
√
0→ C[χ(Y )] is defines as follows. As the set of framed knots

in Y generate S−1(Y ) as an algebra, it is enough to define f(K) for every framed knot K ∈ Y . Suppose
x ∈ χ(Y ), considered as a class function on π1(Y ). Then f(K) ∈ C[χ(Y )] is the regular function on χ(Y )
given by

f(K)(x) = −x(K),

where on the right hand side we consider K as an element in π1(Y ), which is well-defined up to conju-
gation.

In many cases S−1(Y ) is reduced, i.e. its nilradical is zero, and hence S−1(Y ) is exactly the ring of
regular functions on the SL2-character variety of π1(Y ). For example, this is the case when Y is the
complement of the torus knots (see [Mar]), when Y is the complement of a two-bridge knot/link (see
[Le2, PS, LT1]), or when Y is the complement of the (−2, 3, 2n+1)-pretzel knot for any integer n (see
[LT2]). We have the following conjecture.

Conjecture 4. — For every knot K in S3, the universal SL2-character ring of S3 \K is reduced. In
other words, the skein algebra S−1(S3 \K) is reduced.

The algebra S1(Y ) is isomorphic to S−1(Y ), and hence is isomorphic to the universal character ring.
Barrett [Bar] shows that every spin structure of Y defines an algebra isomorphism from S1(Y ) to S−1(Y ).
However, it seems there is no natural algebra isomorphism between S1(Y ) and S−1(Y ), as there is no
natural spin structure on 3-manifolds.

6.9. Skein modules at roots of 1. — Suppose ξ ∈ C is a root of unity of order 2N , where N is an
odd number.

There is a unique action of S−1(Y ) on Sξ(Y ) such that if ℓ, ℓ′ are disjoint framed links in Y , then

ℓ · ℓ′ = TN (ℓ) ∪ ℓ′,

where TN is the N -th Chebyshev polynomial of type 1, defined in Subsection 4.2. On the left hand side
ℓ is considered as an element of S−1(Y ), ℓ′ is considered as an element of Sξ(Y ). On the right hand side
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both ℓ, ℓ′ are considered as elements of Sξ(Y ). In [Le3], it was proved that this gives rise to an action of
S−1(Y ) on Sξ(Y ), which is an extension of results of [BW] for skein algebras of surfaces.

7. AJ conjecture

Here we discuss the AJ conjecture and sketch a proof of it for a class of two-bridge knots and pretzel
knots. Most of the results here are taken from [Le2, LT2].

7.1. The A-polynomial. — Suppose K is a knot in S3, and N(K) is a tubular neighborhood of
K. Let X be the closure of S3 \N(K). The boundary of X is a torus whose fundamental group is free
abelian of rank two. An orientation of K will define a unique pair of an oriented meridian and an oriented
longitude such that the linking number between the longitude and the knot is zero, as in Subsection 6.3.
The pair provides an identification of χ(∂X) and (C∗)2/τ , see Example 6.15.

Exercise 7.1. — Show that the above identification does not depend on the orientation of the knot K.

The inclusion ∂X ↪→ X induces the restriction map

(46) ϑ : χ(X) 7−→ χ(∂X) ≡ (C∗)2/τ

Let Z be the image of ρ and Ẑ ⊂ (C∗)2 the lift of Z under the projection (C∗)2 → (C∗)2/τ . The Zariski

closure of Ẑ ⊂ (C∗)2 ⊂ C2 in C2 is an algebraic set consisting of components of dimension 0 or 1. The
union of all the one-dimension components is defined by a reduced polynomial AK ∈ Z[M,L], whose
coefficients are co-prime. Here AK is reduced means AK does not have repeated factor. Note that AK is
defined up to ±1. We call AK the A-polynomial of K. It is known that AK is always divisible by L− 1.
The A-polynomial in this paper is actually equal to L− 1 times the A-polynomial defined in [CCGLS].

The A-polynomial is an important geometric invariant. The slops of the Newton polygon of AK are
boundary slopes of the knot. The A-polynomial distinguishes the unknot from other knots, see [DG, BZ].

For a hyperbolic knot [Th], the character of a discrete faithful SL2-representation is always a smooth
point of the character variety, see e.g. [Po]. A component of the character variety containing the character
of a discrete faithful representation is called a geometric component. By a result of Thurston, the complex
dimension of each geometric component is 1. For knots in S3 there are at most 4 geometric components,
see e.g. [Du]. There is no known example of knots with more than one geometric components.

An important result of Dunfield [Du] that we will use is that the map ϑ in (46), when restricted to a
geometric component, is a birational equivalence onto its image.

7.2. AJ conjecture. —

Definition 3. — Suppose f, g ∈ t = C[M±1, L±1]. Then
(a) f is M -essentially equal to g if there are non-zero a, b ∈ C[M±1] such that af = bg.
(b) f is M -essentially divisible by g if there is a non-zero a ∈ C[M±1] such that af is divisible by g.

Suppose K is an unframed knot in S3. Let αK be the recurrence polynomial of the colored Jones
function JK(0) : Z→ Z[t±1], where K(0) is the knot K with framing 0. By Proposition 5.6, αK has only
even powers in t and even powers in M .

Garoufalidis [Ga2] formulated the following conjecture (see also [FGL, Ge]).

Conjecture 5. — (AJ conjecture) For every knot K, αK |t=±1 is M -essentially equal to the A-
polynomial.

The AJ conjecture gives a very deep relation between the colored Jones polynomial and the funda-
mental group. Some authors also call the recurrence polynomial αK the quantum A-polynomial.

Example 7.2. — For the right-handed trefoil, αK is given by (36). One has

αK |t=−1= (M4 − 1)(L− 1)(LM6 + 1) = (M4 − 1)AK(L,M),

and the conjecture holds for the trefoil.
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The A-polynomial is difficult to calculate, the recurrence polynomial is even more difficult to calculate.
There are only a few simple knots for which the AJ conjecture can be verified by direct calculation. For
torus knots, the AJ conjecture was verified in [Hi, Tr] using explicit formulas of the colored Jones
polynomials. What we propose here is a more conceptual proof of the AJ conjecture for another class of
knots for which no explicit formulas of the colored Jones polynomial are known.

7.3. Results. — Suppose K is a knot in R3 ⊂ S3. As usual X is the closure of S3 \ N(K), where
N(K) is a tubular neighborhood of K. Then S(X) is a left S(∂X)-module. We already know that
S(∂X) = S(T2) = T φ, where T = R⟨L±1,M±1⟩/(LM = t2ML) is the quantum torus and φ is the
algebra involution of T given by φ(MaLb) =M−aL−b.

LetM = R[M±1] ⊂ T . ThenMφ = R[M +M−1] ⊂ T φ. Since S(X) is a T φ-module, it is a module
overMφ.

Theorem 7.3 (See [LT2]). — Suppose K is a knot satisfying all the following conditions :
(i) K is hyperbolic,
(ii) the SL2-character variety of π1(S

3 \K) consists of two irreducible components (one abelian and
one non-abelian),

(iii) the universal SL2-character ring of π1(S
3 \K) is reduced,

(iv) the skein module S(X) is finitely generated overMφ, and
(v) the recurrence polynomial of K has L-degree greater than 1.

Then the AJ conjecture holds true for K.

Note that if K is adequate, then (v) holds. If K is non-torus alternating, then (i) and (v) hold. On
the other hand, if K is torus, then it is known that the AJ conjecture holds [Hi, Tr].

Actually, the conclusion of the theorem still holds true if conditions (iii) and (iv) are replaced by
weaker conditions, see below.

Theorem 7.4 (See [LT2]). — The following knots satisfy all the conditions (i)–(v) of Theorem 7.3
and hence the AJ conjecture holds true for them.

(a) All pretzel knots of type (−2, 3, 6n± 1), n ∈ Z.
(b) All two-bridge knots for which the SL2-character variety has exactly two irreducible components ;

these include

– all double twist knots of the form J (k, l) (see Figure 11) with k ̸= l
– all two-bridge knots b(p,m) with m = 3, and
– all two-bridge knots b(p,m) with p prime and gcd(p−12 , m−12 ) = 1.

Here we use the notation b(p,m) for two bridge knots from [BZ]. The fact that the character varieties
of pretzel knots (−2, 3, 6n± 1) and double twist knots have exactly 2 components was proved in [MPL]
and in [Mat].

Actually, (b) can be strengthen as follows : if the non-abelian character variety of a two-bridge knot
K is irreducible over Z, then the AJ conjecture holds for K (joint work with X. Zhang).

Remark 7.5. — Besides the infinitely many cases of two-bridge knots listed in Theorem 7.4, explicit
calculations seem to confirm that “most two-bridge knots” satisfy the conditions of Theorem 7.3 and
hence AJ conjecture holds for them. In fact, among 155 b(p,m) with p < 45, only 9 hyperbolic knots
b(15, 11), b(21, 13), b(27, 5), b(27, 17), b(27, 19), b(33, 5), b(33, 13), b(33, 23), and b(35, 29) do not satisfy
the condition (ii) of Theorem 7.3. Thus, the AJ conjecture holds for all two-bridge knots b(p,m) with
p < 45 except for these 9 knots. Using explicit formula, Garoufalidis and Koutchan [GK] showed that
the AJ conjecture holds for b(15, 11).

In the rest of the section we explain main ideas of the proof of Theorem 7.3.
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l

k

Figure 11. The double twist knot J (k, l). Here k and l denote the numbers of half twists
in the boxes. Positive (resp. negative) numbers correspond to right-handed (resp. left-handed)
twists .

7.4. A sibling of the A-polynomial. — It is instructive to see the dual picture in the construction
of the A-polynomial.

Recall that C[(C∗)2/τ ] = tφ, the φ-invariant subspace of t = C[L±1,M±1], where φ(MkLl) =
M−kL−l.

The map ϑ in Subsection 7.1 has a dual, which is an algebra homomorphism

θ : C[χ(∂X)] ≡ tφ −→ C[χ(X)].

We will call the kernel p of θ the classical peripheral ideal, which is is an ideal of tφ. We have the exact
sequence

(47) 0→ p→ tφ
θ−→ C[χ(X)].

The ring t = C[M±1, L±1] embeds naturally into the principal ideal domain t̃ := C(M)[L±1], where

C(M) is the fractional field of C[M ]. We have tφ ⊂ t ⊂ t̃. The ideal extension p̃ := t̃ p of p in t̃ is thus
generated by a single polynomial BK ∈ Z[M,L] which has co-prime coefficients and is defined up to a
factor ±Mk with k ∈ Z. Again BK can be chosen to have integer coefficients because everything can be
defined over Z. We will call BK the B-polynomial of K.

Exercise 7.6. — Show that that the polynomial BK is M -essentially divisible by AK . Moreover, their
zero sets {BK = 0} and {AK = 0} are equal, up to some lines parallel to the L-axis in the L,M -plane.

7.5. Relation between the A-polynomial and B-polynomial. —

Lemma 7.7. — The field C(M) is a flat C[M±1]φ-algebra, and t̃ = tφ ⊗C[M±1]φ C(M).

Démonstration. — The extension from C[M±1]φ to C(M) can be done in two steps : The first one is from
C[M±1]φ to C[M±1] (note that C[M±1] is free over C[M±1]φ since C[M±1] = C[M±1]φ⊕MC[M±1]φ) ;
the second step is from C[M±1] to its field of fractions C(M). Each step is a flat extension, hence C(M)
is flat over C[M±1]φ.

It follows that the extension (tφ ↪→ t)⊗ C(M) is still an injection, i.e.

ψ : tφ ⊗C[M±1]φ C(M)→ t⊗C[M±1] C(M) = t̃, ψ(x⊗ y) = xy,

is injective. Let us show that ψ is surjective. For every n ∈ Z,

Ln = ψ

(
(MLn +M−1L−n)⊗ 1

M −M−1
− (Ln + L−n)⊗ M−1

M −M−1

)
.

Since {Ln | n ∈ Z} generates t̃ = C(M)[L±1], ψ is surjective. Thus ψ is an isomorphism.
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Consider the exact sequence (47). The ring C[χ(X)] has a tφ-module structure via the algebra homo-
morphism θ : C[χ(∂X)] ≡ tφ → C[χ(X)], hence a C[M±1]φ-module structure since C[M±1]φ is a subring

of tφ. By Lemma 7.7, t̃ = tφ ⊗C[M±1]φ C(M). It follows that p̃ = p⊗C[M±1]φ C(M). Hence by taking the

tensor product over C[M±1]φ of the exact sequence (47) with C(M), we get the exact sequence

(48) 0→ p̃→ t̃
θ̃−→ ˜C[χ(X)],

where ˜C[χ(X)] := C[χ(X)]⊗C[M±1]φ C(M).

Proposition 7.8. — The B-polynomial BK does not have repeated factors.

Exercise 7.9. — Using the fact that C[χ(X)] is a reduced C-algebra, show that ˜C[χ(X)] is also reduced.
From here prove the proposition.

Combining the proposition and the result of Exercise 7.6, we get the following, which describe the
relation between the A-polynomial and the B-polynomial of a knot.

Corollary 7.10. — For every knot K, the polynomials AK and BK are M -essentially the same.

Since BK does not have any non-trivial factor in Z[M±1], we have

BK =
AK

M -factor of AK
.

Here the M -factor of AK is the maximal factor of AK belonging to Z[M±1].

7.6. Idea of proof of Theorem 7.3. — We will write S for S(X). Then s = S−1(X) = S/(1 + t) is
the universal character ring of π1(X). We have the following commutative diagram

(49)

T φ Θ−−−−→ S

ε1

y ε2

y
tφ

θ−−−−→ s

Here, the vertical maps are the the natural projections V → V/(t+ 1), for V = T φ and V = S.
LetM be the localization ofM = C[t±1,M±1] at (1 + t), i.e.

M =

{
f

g
| f, g ∈ C[t±1,M±1], g|t=−1 ̸= 0

}
.

ThenM is a local ring, and every ideal ofM is one of ((1 + t)k), k ∈ N. It is not difficult to show that
M is flat overMφ. Similarly, C(M) is flat over C[M±1]φ, see Lemma 7.7.

Let T = T φ ⊗Mφ M and S = S ⊗Mφ M. Similarly, let t = tφ ⊗C[M±1]φ C(M) and s = s ⊗C[M±1]φ

C(M,L). Then one can show that

T =M[L±1]

t = C(M)[L±1] = t̃.

From the Diagram (49), one has

(50)

T Θ−−−−→ S

ε

y ε

y
t

θ−−−−→ s

Assume that
(iii’) the ring s is reduced.
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This condition is weaker than condition (iii) of Theorem 7.3. Then

(51) s = C[χ(X)]⊗tφ t.

According to condition (ii), the character variety of X has two components, one abelian and one non-
abelian. Since K is hyperbolic, the non-abelian is the geometric component and it is the only irreducible
component of the character variety containing the character of the discrete faithful SL2 representation.
By a result of Dunfield [Du], the map from the geometric component onto the character variety of the
boundary torus is a birational map on its image. From here and the condition (51) one can show that θ
is surjective.

Now assume that
(iv’) S is finitely generated overM.
This condition is weaker than (iv). Then Nakayama’s lemma and Diagram (50) show that Θ is sur-

jective.
We have now the following commutative diagram with exact rows :

0 −−−−→ P ι−−−−→ T Θ−−−−→ S −−−−→ 0

h

y ε1

y ε2

y
0 −−−−→ p −−−−→ t

θ−−−−→ s −−−−→ 0

Here P := ker(Θ), p := ker(θ), and h is the restriction of ε1 on P. One can show that h is surjective.
BecauseM is flat overMφ and C(M) is flat over C[M +M−1],

P := ker(Θ) = P ⊗Mφ M
p := ker(θ) = p⊗C[M+M−1] C(M).

Since h is surjective, and BK is the generator of p, there exists β ∈ P such that β|t=−1 = h(β) = BK .
Since β ∈ P, one has αK |β. Thus, we have

(52) (1− L) | ε(αK) | ε(β) = BK ,

where the fact that (1 − L) | ε(αK) is Proposition 5.12. Since the character variety has exactly 2
component,

BK
(M)
= AK = (1− L)A′K ,

where the first equality means BA is M -essentially equal to AK . The condition (ii) implies A′K is irre-
ducible.

It follows that either ε(αK) = (1 − L), or ε(αK)
(M)
= (1 − L)A′K = AK . The first possibility can

be excluded using condition (v). Hence, ε(αK)
(M)
= AK . This completes the proof of Theorem 7.3. For

details, see [LT2].
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[Le3] T. Lê, On Kauffman bracket skein modules at root of unity, Algebr. Geom. Topol., to appear. See also
preprint arXiv :1312.3705.

[Li] W. B. R. Lickorish, An Introduction to Knot Theory, Springer, GTM 175, 1997.



COLORED JONES POLYNOMIAL 43

[LM] A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the
AMS 336 (1985).

[LT1] T. Le and A. Tran, The Kauffman bracket skein module of two-bridge links, Proc. Amer. Math. Soc.
142 (2014), 1045–1056.

[LT2] T. Le and A. Tran, On the AJ conjecture for knots, preprint arXiv :1111.5258.

[LS] W. Lück and T. Schick, L2-torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal. 9
(1999), 518–567.

[Mar] J. Marche, The skein module of torus knots, Quantum Topol. 1 (2010), no. 4, 413–421.

[Mas] G. Masbaum, Skein-theoretical derivation of some formulas of Habiro, Algebr. Geom. Topol. 3 (2003),
537–556.

[Mat] T. Mattman, The Culler-Shalen seminorms of the (−2, 3, n)-pretzel knot, J. Knot Theory Ramifications
11 (2002), no. 8, 1251–1289.

[MPL] M. Macasieb, K. Petersen and R. van Luijk, On character varieties of two-bridge knot groups, Proc.
Lond. Math. Soc. (3) 103 (2011), no. 3, 473–507.

[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Comm. Math. Phys. 169 (1995), no. 3,
501–520.

[MuM] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot,
Acta Math. 186 (2001), no. 1, 85–104.

[Muk] H. Murakami, An introduction to the volume conjecture and its generalizations, Acta Math. Vietnam.
33 (2008), no. 3, 219–253.

[Mur] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187–194.

[Oh] T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and
Everything 29, World Scientific 2002.

[Po] J. Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997),
no. 612, x+139 pp.

[Pr] J. Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math. 16 (1999) 45–66.

[PS] J. Przytycki and A. Sikora, On the skein algebras and Sl2(C)-character varieties, Topology 39 (2000),
115–148.

[RT] N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Com-
mun. Math. Phys., 127 (1990), 1–26.
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