Solutions of Quiz 2b for Calculus ++ , Math 2605 J1-2, September 11, 2007

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$.

Consider the function $f(x, y)=x y+x^{3}$.
I: (3 points) Find the equation of the plane that is tangent to the graph of f at the point $(1,2)$.

$$
\begin{gathered}
\nabla f(x, y)=\left[\begin{array}{c}
y+3 x^{2} \\
x
\end{array}\right] \nabla f(1,2)=\left[\begin{array}{l}
5 \\
1
\end{array}\right] \\
z=3+5(x-1)+(y-2)
\end{gathered}
$$

II: (3 points) Find the line that is tangent to the level curve of the function f at the point $(1,2)$. Give the line in parametrized form.

Direction vector is

$$
\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

which is perpendicular to $\nabla f(1,2)$. The line is therefore given by

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

III: (2 points) Find the rate of change of the function $f(x, y)$ at the point $(1,2)$ in the direction $(2,2)$.

$$
\left[\begin{array}{l}
5 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
2
\end{array}\right]=12 .
$$

IV: (2 points) Find all the critical points of the function $f(x, y)$.

$$
\begin{gathered}
\nabla f(x, y)=\left[\begin{array}{c}
y+3 x^{2} \\
x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
y+3 x^{2}=0, x=0
\end{gathered}
$$

$(0,0)$ is the only solution.
Extra credit: (3 points) Find the curvature of the function f, i.e., the second derivative at $t=0$ of the function $g(t)=f\left(\mathbf{x}_{\mathbf{0}}+t \mathbf{v}\right)$ where $\mathbf{x}_{\mathbf{0}}=(1,2)$ and $\mathbf{v}=(2,1)$.

The Hessian is

$$
\begin{aligned}
H_{f}(x, y) & =\left[\begin{array}{cc}
6 x & 1 \\
1 & 0
\end{array}\right] \\
H_{f}(1,2) & =\left[\begin{array}{ll}
6 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
g^{\prime \prime}(0)=28
$$

