Quiz 3 for Calculus ++ , Math 2605 J1-2, October 11, 2007

Name:

This quiz is to be taken without calculators and notes of any sorts. The allowed time is 20 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$
I: (3 points) Using Lagrange multipliers, maximize the function $f(x, y)=x+y$ under the constraint that $x^{2}+2 y^{2}=1$.

II: (4 points) Calculate the Givens matrix G for the first step in the Jacobi Algorithm for the matrix $A=\left[\begin{array}{ccc}3 & 4 & 2 \\ 4 & -3 & 1 \\ 2 & 1 & 7\end{array}\right]$ You do not have to calculate $G A G^{T}$.

III: (3 points) Let A be a symmetric matrix and denote by $A^{(k)}$ the k-th Jacobi iterate. If $\operatorname{Off}(A)=1$ and $\operatorname{Off}\left(A^{(k)}\right) \leq\left(\frac{2}{3}\right) \operatorname{Off}\left(A^{(k-1)}\right), k=1,2, \ldots$, estimate how many iterations it takes until $\operatorname{Off}\left(A^{(k)}\right) \leq 10^{-5}$?

Extra credit: (4 points) Consider the matrix $\left[\begin{array}{lll}2 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]+t\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right]$ Calculate the eigenvalues $\mu_{i}(t), i=1,2,3$ for small values of t, i.e. calculate $\mu_{i}(0)+\mu_{i}^{\prime}(0) t$.

