Test 1 for Calculus III for CS Majors, Math 2506 J1-J2, September 25, 2007

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given.

Problem 1: Consider the function

$$
f(x, y)=x^{3}+y^{3}-3 x y
$$

a) (5 points) Calculate the gradient at the point $(1,-1)$.
b) (5 points) Find the line (in parametrized form) that is tangent to the curve $f(x, y)=$ $f(1,-1)$ at the point $(1,-1)$.
c) (5 points) Find the best linear approximation of the function $f(x, y)$ at the point $(1,-1)$.
d) (10 points) Find the points on the curve $f(x, y)=f(1,-1)$ where the tangent line is horizontal.

Problem 2: a) (10 points) Calculate the critical points of the function

$$
f(x, y)=x^{3}+y x^{2}-\frac{1}{2} x^{2}-y
$$

b) (10 points) Calculate the Hessian at these critical points.
c) (10 points) What are the type of these critical points, are they a max a min or a saddle?

Problem 3: A function $g(x, y)$ has $(0,0)$ as a critical point and the Hessian at this point is given by

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right] .
$$

a) (5 points)Write the quadratic approximation $q(x, y)$ for the function $g(x, y)$ in the vicinity of this critical point.
b) (10 points) Find the eigenvalues and the eigenvectors of the Hessian.
c) (10 points) Draw in a qualitative fashion a few of the level curves of $q(x, y)$.

Problem 4: (10 points) a) Set up Newton's scheme for solving the equation $x^{2}-y=1$ and $x y=1$.
b) (10 points) Use as an initial guess the point $\mathbf{x}_{\mathbf{0}}=(1,1)$ and calculate the next approximation $\mathbf{x}_{\mathbf{1}}$. Check whether this leads to an improvement.

Extra Credit: (15 points) Given the function $f(x, y)=x^{3}-3 x y^{2}$ and $g(x, y)=3 x^{2} y-y^{3}$. What can you say about the angles between lines tangent to the level curves of f resp. g at any point (x, y) ?

