Test 1 for Calculus III for CS Majors, Math 2506 J1-J2, September 25, 2007

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$... State your work clearly, otherwise credit cannot be given.

Problem 1: Consider the function

$$
f(x, y)=x^{3}+y^{3}-3 x y
$$

a) (5 points) Calculate the gradient at the point $(1,-1)$.

Answer:

$$
\nabla f(x, y)=3\left[\begin{array}{l}
x^{2}-y \\
y^{2}-x
\end{array}\right]
$$

and

$$
\nabla f(1,-1)=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

b) (5 points) Find the line (in parametrized form) that is tangent to the curve $f(x, y)=$ $f(1,-1)$ at the point $(1,-1)$.

Answer: The tangent vector is given by

$$
\left[\begin{array}{l}
0 \\
6
\end{array}\right]
$$

and hence the tangent line is given by

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+s\left[\begin{array}{l}
0 \\
6
\end{array}\right]
$$

c) (5 points) Find the best linear approximation of the function $f(x, y)$ at the point $(1,-1)$.

Answer:

$$
h(x, y)=3+6(x-1)
$$

d) (10 points) Find the points on the curve $f(x, y)=f(1,-1)$ where the tangent line is horizontal.

Answer: Tangent line horizontal means that the second component of the tangent vector vanishes, which in turn means that the first component of the gradient vanishes. Thus

$$
x^{2}=y, x^{3}+y^{3}-3 x y=3
$$

which means that

$$
x^{6}-2 x^{3}=3
$$

Setting $s=x^{3}$ we have $s^{2}-2 s-3=0$ or $(s-1)^{2}-4=0$ or $s_{1}=3 s_{2}=-1 . x=3^{1 / 3},-1$ and we have the points

$$
\left(3^{1 / 3}, 3^{2 / 3}\right),(-1,1)
$$

Problem 2: a) (10 points) Calculate the critical points of the function

$$
f(x, y)=x^{3}+y x^{2}-\frac{1}{2} x^{2}-y
$$

Answer:

$$
\nabla f(x, y)=\left[\begin{array}{c}
3 x^{2}+2 x y-x \\
x^{2}-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Which yields the critical points

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

b) (10 points) Calculate the Hessian at these critical points.

Answer:

$$
H_{f}(x, y)=\left[\begin{array}{ll}
6 x+2 y-1 & 2 x \\
2 x & 0
\end{array}\right]
$$

which yields

$$
\left[\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{rr}
-3 & -2 \\
-2 & 0
\end{array}\right]
$$

c) (10 points) What are the type of these critical points, are they a max a min or a saddle?

Answer: The determinant is negative in both cases and hence the critical points are saddles.

Problem 3: A function $g(x, y)$ has $(0,0)$ as a critical point and the Hessian at this point is given by

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right] .
$$

a) (5 points) Write the quadratic approximation $q(x, y)$ for the function $g(x, y)$ in the vicinity of this critical point.

Answer:

$$
x^{2}+3 x y+y^{2}
$$

b) (10 points) Find the eigenvalues and the eigenvectors of the Hessian.

Eigenvalue 5 with eigenvector

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and eigenvalue -1 with eigenvector

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

c) (10 points) Draw in a qualitative fashion a few of the level curves of $q(x, y)$.

Problem 4: (10 points) a) Set up Newton's scheme for solving the equation $x^{2}-y=1$ and $x y=1$.

Answer:

$$
\mathbf{x}_{\mathbf{1}}=\mathbf{x}_{\mathbf{0}}-J_{F}^{-1}\left(\mathbf{x}_{\mathbf{0}}\right) F\left(\mathbf{x}_{\mathbf{0}}\right)
$$

where

$$
F\left(\mathbf{x}_{=}=\left[\begin{array}{c}
x^{2}-y-1 \\
x y-1
\end{array}\right]\right.
$$

and

$$
J_{F}(\mathbf{x})=\left[\begin{array}{cc}
2 x & -1 \\
y & x
\end{array}\right]
$$

b) (10 points) Use as an initial guess the point $\mathbf{x}_{\mathbf{0}}=(1,1)$ and calculate the next approximation $\mathbf{x}_{\mathbf{1}}$. Check whether this leads to an improvement.

Answer: We have to calculate

$$
\begin{gathered}
\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
=\frac{1}{3}\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
\left|F\left(\mathbf{x}_{\mathbf{1}}\right)\right|=\sqrt{2} / 9
\end{gathered}
$$

which is an improvement.

Extra Credit: (15 points) Given the function $f(x, y)=x^{3}-3 x y^{2}$ and $g(x, y)=3 x^{2} y-y^{3}$. What can you say about the angles between lines tangent to the level curves of f resp. g at any point (x, y) ?

Answer:

$$
\begin{gathered}
\nabla f=\left[\begin{array}{c}
3\left(x^{2}-y^{2}\right) \\
-6 x y
\end{array}\right], \nabla g=\left[\begin{array}{c}
6 x y \\
3\left(x^{2}-y^{2}\right)
\end{array}\right] . \\
\nabla f \cdot \nabla g=0
\end{gathered}
$$

The level curves intersect in a right angle.

