Test 2 for Calculus III for CS Majors, Math 2506 J1-J2, October 23, 2007

Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 50 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$... State your work clearly, otherwise credit cannot be given.

Problem 1: (10 points) a) Diagonalize the matrix $A=\left[\begin{array}{rr}1 & 4 \\ 1 & -2\end{array}\right]$, i.e., find an invertible matrix S and a diagonal matrix D so that $A=S D S^{-1}$.
b) (10 points) Find a Schur factorization for the same matrix A, i.e., find an orthogonal matrix Q and an upper triangular matrix T so that $A=Q T Q^{T}$.

Problem 2: Consider the matrix

$$
A=\left[\begin{array}{lll}
6 & 0 & 4 \\
0 & 3 & 1 \\
4 & 1 & 0
\end{array}\right]
$$

a) (5 points) Compute $\operatorname{Off}(A)$.
b) (10 points) Calculate the Givens matrix G for the first step in the Jacobi iteration for diagonalizing A by picking the 2×2 submatrix with the largest off diagonal elements. (You do not have to calculate $G^{T} A G$.)
c) (10 points) Calculate $\operatorname{Off}\left(G^{T} A G\right)$.

Problem 3: a) (15 points) Calculate the singular value decomposition of the matrix

$$
A=\frac{1}{3 \sqrt{2}}\left[\begin{array}{ll}
6 & 2 \\
3 & 5 \\
0 & 4
\end{array}\right]
$$

b) (10 points) Find the best rank one approximation.

Problem 4: Assume that

$$
V=\frac{1}{3}\left[\begin{array}{rr}
1 & 2 \\
-2 & 2 \\
2 & 1
\end{array}\right], D=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right], U=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]
$$

form the singular decomposition of a matrix B.
a) (10 points) Calculate the generalized inverse B^{+}
b) (5 points) Find the least square solution of the problem $B x=b$ where

$$
b=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]
$$

Problem 5: (15 points) Find the maximum and minimum values of the function $f(x, y)=x^{3}+y^{3}$ in the region consisting of all points (x, y) that satisfy $x^{2}+y^{2}-x y \leq 1$. Find all the points where the maximum is taken and all the points where the minimum is taken. (Hint for the calculation: The identity $x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)$ might be useful.)

Extra Credit: (10 points) Consider the matrix

$$
A=\left[\begin{array}{lcr}
0 & 0.1 & -0.1 \\
0.2 & 1 & 0.1 \\
-0.2 & 0.1 & 2
\end{array}\right]
$$

Find upper and lower bounds on the eigenvalues using the 'Small Gershgorin Disk Theorem'.

