A good source for this material is the book by Reed and Simon, Methods of Modern Mathematical Physics, Vol. I on Functional Analysis, which we follow.

1 The Diagonal Argument

1.1 DEFINITION (Subsequence). A subsequence of a given sequence is a function \(m : \mathbb{N} \to \mathbb{N} \) which is strictly increasing.

1.2 THEOREM. Consider a sequence of functions \(\{ f_n(x) \}_{N}^{\infty} \) defined on the positive integers that take values in the reals. Assume that this sequence is uniformly bounded, i.e., there is a positive constant such that

\[
|f_n(x)| \leq C
\]

for all \(n = 1, 2, \ldots \) and all \(x \in \mathbb{N} \). Then there exists a subsequence \(m(j) \) such that \(f_{m(j)} \) converges for all \(x \in \mathbb{N} \).

Proof. Since \(f_n(1) \) is a bounded sequence, there exists a subsequence \(f_{n_1(j)} \) of functions such that \(f_{n_1(j)}(1) \) converges as \(j \to \infty \). Now we pick a subsequence of \(n_1(j) \) which we call \(n_2(j) \) such that the sequence of functions \(f_{n_2(j)}(x) \) converges for \(x = 2 \). Proceeding in an inductive fashion we obtain a subsequence \(n_k(j) \) of the sequence \(n_{k-1}(j) \) such that the for the sequence of functions \(f_{n_k(j)}(x), f_{n_k(j)}(k) \) is convergent. Note, that this construction guarantees that \(f_{n_k(j)}(r) \) converges for all \(r \leq k \). Now we set

\[
m(j) = n_j(j),
\]

i.e., we pick the ‘diagonal sequence’. Note that \(f_{m(j)}(k) \) converges for every \(k \), since the sequence

\[
f_{m(k)}(k), f_{m(k+1)}(k), f_{m(k+2)}(k), f_{m(k+3)}(k) \ldots
\]

is a subsequence of the sequence \(f_{n_k(j)}(k) \), which converges. Hence \(f_{m(j)}(k) \) converges for all \(k = 1, 2, 3, \ldots \). For every \(k \), there are finitely many terms that are not part of the subsequence \(f_{n_k(j)}(k) \), namely

\[
f_{m(1)}(k), f_{m(2)}(k), f_{m(3)}(k) \ldots f_{m(k-1)}(k),
\]

but they are immaterial for the convergence of the sequence.
2 The \(\varepsilon/3 \) argument

2.1 THEOREM. The space \(C([0, 1]) \) consisting of continuous functions \(f : [0, 1] \to \mathbb{R} \) with metric

\[
D(f, g) = \max_{0 \leq x \leq 1} |f(x) - g(x)|
\]

is a complete metric space.

Proof. We have learned before that \(C([0, 1]) \) is a metric space. We have to worry about completeness. Let \(f_n(x) \in C([0, 1]) \) be a Cauchy Sequence. Thus, for every \(\varepsilon > 0 \) there exists \(N \) such that for all \(n, m > N \)

\[
\max_{0 \leq x \leq 1} |f_n(x) - f_m(x)| < \varepsilon/2 .
\]

In particular, for every fixed \(x \in [0, 1] \), \(f_n(x) \) is a Cauchy Sequence of real numbers and since the reals are complete, this sequence has a limit which we denote by \(f(x) \). Since for any \(m \)

\[
|f(x) - f_m(x)| = \lim_{n \to \infty} |f_n(x) - f_m(x)| \leq \text{l.u.b.}\{ |f_n(x) - f_m(x)| : n > N \} ,
\]

we have that for all \(m > N \)

\[
|f(x) - f_m(x)| \leq \varepsilon/2 < \varepsilon . \tag{2.1}
\]

Note that \(x \) is arbitrary and that \(\varepsilon \) is independent of \(x \), i.e., the convergence is uniform. Although we know from previous arguments that the limit must be continuous, let us prove this, because this uses a typical \(\varepsilon/3 \) argument. \(\varepsilon > 0 \). We have seen that there exists \(N \) so that for all \(n > N \) and all \(x \in [0, 1] \),

\[
|f(x) - f_n(x)| < \varepsilon/3
\]

Fix such a value for \(n \) and fix \(x \). Since \(f_n \) is continuous, for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for all \(y \in [0, 1] \) with \(|x - y| < \delta \) we have that

\[
|f_n(x) - f_n(y)| < \varepsilon/3 .
\]

Since we also have that

\[
|f_n(x) - f_n(y)| < \varepsilon/3 ,
\]

we may use the triangle inequality

\[
|f(x) - f(y)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(x) - f_n(y)| < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon
\]
Thus, for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that whenever \(y \) is such that \(|x - y| < \delta \), then \(|f(x) - f(y)| < \varepsilon \). Thus, the limit \(f \) is continuous. Note, that from (2.1) we know that for any \(\varepsilon > 0 \) there exists \(N \) such that for all \(n > N \)

\[
|f(x) - f_n(x)| \leq \varepsilon/2
\]

and hence

\[
D(f, f_n) = \max_{0 \leq x \leq 1} |f(x) - f_n(x)| \leq \varepsilon/2 < \varepsilon ,
\]

and hence the sequence \(f_n \) converges to \(f \) in the metric \(D(f, g) \). \(\square \)

3 Equicontinuity and the Theorem of Arzela-Ascoli

We have seen various notions of continuity but they all were statements about a single function. In this section we shall talk about the continuity properties of a family of functions. In what follows we shall always consider two metric spaces \(E, E' \) and \(\mathcal{F} \) a family of continuous functions from \(E \) to \(E' \).

3.1 DEFINITION. A family \(\mathcal{F} \) of functions from \(E \) to \(E' \) is equicontinuous if for every \(\varepsilon > 0 \) and for every \(p \in E \) there exists \(\delta > 0 \) such that for all \(f \in \mathcal{F} \)

\[
d'(f(p), f(q)) < \varepsilon
\]

whenever \(d(p, q) < \delta \).

Note that the point here is that \(\delta \) depends only on \(p \) and \(\varepsilon \) but not on the function under consideration. Here is a simple result that gives you a bit of a feeling what this notion accomplishes.

3.2 THEOREM. Let \(f_n, n=1,2,3 \ldots \) be a sequence of functions from \(E \) to \(E' \) with the property that \(f_n(p) \) converges to \(f(p) \) for every \(p \in E \). Suppose further that the family \(\{f_n\}_{n=1}^\infty \) is equicontinuous. Then \(f \) is continuous, and moreover, the family \(\{f, f_1, f_2, \ldots \} \) is also equicontinuous.

Proof. Fix any \(\varepsilon \) and fix any \(p \in E \). Then there exists \(\delta > 0 \) such that whenever \(d(p, q) < \delta \), \(d'(f_n(p), f_n(q)) < \varepsilon/3 \) for all \(n = 1, 2, 3, \ldots \). Further there exists \(N \) such that both, \(d'(f(p), f_n(p)) < \varepsilon/3 \) and \(d'(f(q), f_n(q)) < \varepsilon/3 \) for all \(n > N \). Fix such a value for \(n \). Then for all \(q \) with \(d(p, q) < \delta \) we have that

\[
d'(f(p), f(q)) \leq d'(f(p), f_n(p)) + d'(f_n(p), f_n(q)) + d'(f_n(q), f(q)) < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon .
\]
Note that since we know that whenever \(d(p, q) < \delta \), then \(d'(f_n(p), f_n(q)) < \varepsilon/3 < \varepsilon \) we know that the family \(\{f, f_1, f_2, \ldots\} \) is also an equicontinuous family.

Another simple consequence is the following

3.3 THEOREM. Let \(\{f_n\}_{n=1}^{\infty} \) be an equicontinuous family of functions from \(E \) to \(E' \). Assume that \(E' \) is complete and that \(f_n(p) \) converges for all \(p \in D \) where \(D \subset E \) is dense. Then \(f_n(p) \) converges for all \(p \in E \).

Proof. Recall that \(D \subset E \) dense means that for every \(p \in E \) and every \(\varepsilon > 0 \) there exists \(q \in D \) such that \(d(p, q) < \varepsilon \). Now pick \(p \in E \) arbitrary and pick an \(\varepsilon > 0 \). There exists \(\delta > 0 \) such that for all \(q \in E \) with \(d(p, q) < \delta \) we have for all \(n = 1, 2, 3, \ldots \) \(d'(f_n(p), f_n(q)) < \varepsilon/3 \). In particular there exists \(q \in D \) with \(d(p, q) < \delta \). Since \(f_n(q) \) converges for \(q \in D \) there exists \(N \) so that for all \(n, m > N \), \(d'(f_n(q), f_m(q)) < \varepsilon/3 \) and hence

\[
d'(f_n(p), f_m(p)) \leq d'(f_n(p), f_n(q)) + d'(f_n(q), f_m(q)) + d'(f_m(q), f_m(p)) < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.
\]

Thus, \(f_n(p) \) is a Cauchy sequence in \(E' \) and since \(E' \) is complete it converges. Thus \(f_n(p) \) converges for all \(p \in E \).

If in the definition of equicontinuity, \(\delta \) does only depend on \(\varepsilon \) and not on the point \(p \in E \), then we call the family \(F \) uniformly equicontinuous. More precisely we have

3.4 DEFINITION. A family \(F \) of functions from \(E \) to \(E' \) is uniformly equicontinuous if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for all \(f \in F \) and all \(p, q \) with \(d(p, q) < \delta \) it follows that

\[
d'(f(p), f(q)) < \varepsilon.
\]

Here is a first interesting theorem concerning uniform equicontinuity.

3.5 THEOREM. Let \(\{f_n\}_{n=1}^{\infty} \) be a uniformly equicontinuous family of real valued functions on the interval \([0, 1]\). Assume further that \(f_n(x) \) converges to \(f(x) \) for all \(x \in [0, 1] \). Then the convergence is uniform.

Proof. Pick \(\varepsilon > 0 \). By Theorem 3.2 we know that the limiting function is continuous and that the family \(\{f, f_1, f_2, \ldots\} \) is equicontinuous. There exists \(\delta > 0 \) such that \(|f(x) - f(y)| < \varepsilon/3 \) and \(|f_n(x) - f_n(y)| < \varepsilon/3 \) for all \(n \), whenever \(|x - y| < \delta \). Now consider the points \(x_1, \ldots, x_M \) so that no point \(x \in [0, 1] \) is farther away from \(x_j \) for some \(j = 1, 2, \ldots, M \). This is a finite
set of points and hence there exists N, depending only on ε such that for all $n > N$ and all $j = 1, \ldots, M$,

$$|f(x_j) - f_n(x_j)| < \varepsilon/3.$$

For any $x \in [0, 1]$ we have therefore for some x_j with $|x - x_j| < \delta$ that

$$|f(x) - f_n(x)| \leq |f(x) - f(x_j)| + |f(x_j) - f_n(x_j)| + |f_n(x_j) - f_n(x)|$$

and since each term is strictly less than $\varepsilon/3$ the result follows. \hfill \Box

We are now ready to formulate and prove a central result.

3.6 THEOREM (Arzela-Ascoli Theorem). Let $\{f_n\}_{n=1}^\infty$ be a uniformly equicontinuous family of uniformly bounded functions on $[0, 1]$. Then there exists a subsequence $f_n(i)$ which converges uniformly on $[0, 1]$.

Proof. The rational numbers in $r_m \in [0, 1]$ are countable and dense. Since the functions f_n are uniformly bounded we also know that $|f_n(r_m)| \leq C$ for some constant $C > 0$. From the ‘Diagonal argument’ we know that there exists a subsequence $n(i)$ such that $f_{n(i)}(r_m)$ converges for all r_m. By Theorem 3.3 we know that the sequence $f_{n(i)}(x), i = 1, 2, 3 \ldots$ converges for all $x \in [0, 1]$ to some function $f(x)$. By Theorem 3.2 we know that this function is continuous and by Theorem 3.5 we know that the convergence is uniform. \hfill \Box