Solution for selected problems from chapter 4

Section 1:

Problem 1

$$
\left[\begin{array}{ll}
-3 & 4 \\
-6 & 7
\end{array}\right]=\frac{1}{\sqrt{13}}\left[\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 10 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{13}}\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Problem 3

$$
[]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 7 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Section 2:

Problem 1

$$
|\mathbf{z}|=4 \sqrt{2}
$$

Problem 3

$$
\begin{gathered}
\mathbf{z}=\left[\begin{array}{c}
z_{1} \\
z_{2}
\end{array}\right], \mathbf{z}^{\perp}=\left[\begin{array}{c}
-z_{2}^{*} \\
z_{1}^{*}
\end{array}\right] \\
|\mathbf{z}|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\left|\mathbf{z}^{\perp}\right|^{2} . \\
\left\langle\mathbf{z}, \mathbf{z}^{\perp}\right\rangle=z_{1}^{*}\left(-z_{2}^{*}\right)+z_{2}^{*}\left(z_{1}^{*}\right)=0 .
\end{gathered}
$$

Problem 5

$$
\langle\mathbf{w}, \mathbf{z}\rangle=9-29 i
$$

Problem 7

$$
w=\left[\begin{array}{c}
4 i \\
2-4 i
\end{array}\right]
$$

The unitary matrix is

$$
\frac{1}{6}\left[\begin{array}{cc}
2+4 i & 4 i \\
4 i & 2-4 i
\end{array}\right] .
$$

Problem 9: The adjoint is

$$
A^{*}=\left[\begin{array}{cc}
3-2 i & 1+7 i \\
5-2 i & 2+i
\end{array}\right]
$$

Section 3:

Problem 1

The reflection matrix that sends \mathbf{x} to $5 \sqrt{5} \mathbf{e}_{\mathbf{1}}: M=I-2 \mathbf{u u}^{t}$ where

$$
\mathbf{u}=\frac{1}{\sqrt{250-110 \sqrt{5}}}\left[\begin{array}{c}
11-5 \sqrt{5} \\
2
\end{array}\right]
$$

The vector \mathbf{u} for the reflection that sends \mathbf{x} to $-5 \sqrt{5} \mathbf{e}_{\mathbf{1}}$ is given by

$$
\frac{1}{\sqrt{250+110 \sqrt{5}}}\left[\begin{array}{c}
11+5 \sqrt{5} \\
2
\end{array}\right]
$$

Problem 3

The reflection matrix that send \mathbf{x} to $8 \mathbf{e}_{\mathbf{1}}$: The vector \mathbf{u} is given by

$$
\mathbf{u}=\frac{1}{4 \sqrt{3}}\left[\begin{array}{c}
-3 \\
1 \\
2 \\
3 \\
5
\end{array}\right]
$$

and $M=I-2 \mathbf{u u}^{t}$ which, in more detail is given by

$$
I-\frac{1}{24}\left[\begin{array}{ccccc}
9 & -3 & -6 & -9 & -15 \\
-3 & 1 & 2 & 3 & 5 \\
-6 & 2 & 4 & 6 & 10 \\
-9 & 3 & 6 & 9 & 15 \\
-15 & 5 & 10 & 15 & 25
\end{array}\right]
$$

The reflection that maps \mathbf{x} to $-8 \mathbf{e}_{\mathbf{1}}$: The vector \mathbf{u} is given by

$$
\mathbf{u}=\frac{1}{4 \sqrt{13}}\left[\begin{array}{c}
13 \\
1 \\
2 \\
3 \\
5
\end{array}\right]
$$

and $M=I-2 \mathbf{u u}^{t}$.
Problem 5 The reflection

$$
M_{1}=\frac{1}{10}\left[\begin{array}{ccc}
6 & 0 & 8 \\
0 & 10 & 0 \\
8 & 0 & -6
\end{array}\right]
$$

yields

$$
M_{1} A=\frac{1}{10}\left[\begin{array}{ccc}
50 & 50 & 26 \\
0 & 10 & 10 \\
0 & 0 & 18
\end{array}\right]
$$

hence the QR factorization is

$$
A=\frac{1}{10}\left[\begin{array}{ccc}
6 & 0 & 8 \\
0 & 10 & 0 \\
8 & 0 & -6
\end{array}\right] \frac{1}{10}\left[\begin{array}{ccc}
50 & 50 & 26 \\
0 & 10 & 10 \\
0 & 0 & 18
\end{array}\right]
$$

Problem 7 The length of the vector \mathbf{z} is $4 \sqrt{2}$. Further, the vector

$$
\mathbf{w}=-4(1+i) \mathbf{e}_{\mathbf{1}}
$$

has the same length as \mathbf{z} and the inner product of $\langle\mathbf{w}, \mathbf{z}\rangle=-8$ which is real. The vector \mathbf{u} is now

$$
\mathbf{u}=\frac{1}{4 \sqrt{5}}\left[\begin{array}{c}
5(1+i) \\
-3+2 i \\
1-4 i
\end{array}\right]
$$

and

$$
M=I-\frac{1}{40}\left[\begin{array}{c}
5(1+i) \\
-3+2 i \\
1-4 i
\end{array}\right]\left[\begin{array}{lll}
5(1-i), & -3-2 i, & 1+4 i
\end{array}\right]
$$

