Section 5:

Problem 1 Think of the problem in the following way. A three by three unitary matrix that has the vector \mathbf{u} as its first column maps the vector $\mathbf{e}_{\mathbf{1}}$ to the vector \mathbf{u}. Thus it suffices to find a Householder reflection that maps the vector \mathbf{u} to $\mathbf{e}_{\mathbf{1}}$. This Householder reflection is given by

$$
M=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{1} \\
1 & \frac{\sqrt{3}-1}{2} & -\frac{\sqrt{3}+1}{2} \\
1 & -\frac{\sqrt{3}+1}{2} & \frac{\sqrt{3}-1}{2}
\end{array}\right]
$$

Thus, the second and third column vectors form a basis for the plane given by the equation $x+y+z=0$.

Problem 3 This is the same as problem 1 in section 1.
Problem 5 The matrix A is symmetric and hence can be diagonalized. It has the obvious eigenvalue 6 with the normalized eigenvector

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The characteristic polynomial of the matrix A is given by

$$
t^{3}-4 t^{2}-12 t
$$

and has the roots $6,0,-2$. The normalized eigenvector associated with the eigenvalue 0 is

$$
\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

The normalized eigenvector associated with the eigenvalue -4 is given by

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the Schur factorization is given by $A=Q D Q^{t}$ where

$$
D=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

and

$$
Q=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Section 6:

Problem 1

$$
e^{t} T=\left[\begin{array}{cc}
e^{3 t} & 2\left(e^{3 t}-e^{2 t}\right) \\
0 & e^{2 t}
\end{array}\right]
$$

Problem 3 Quite generally, consider a matrix of the form

$$
T=\mu I+U
$$

where N has the property that $U^{2}=0$. An example for such a matrix is

$$
U=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

One calculates easily that

$$
T^{2}=\mu^{2} I+2 \mu U+U^{2}=\mu^{2} I+2 \mu U
$$

since $U^{2}=0$. Assume now that

$$
T^{k-1}=\mu^{k-1} I+(k-1) \mu^{k-2} U
$$

and calculate

$$
\begin{gathered}
T^{k}=T T^{k-1}=[\mu I+U]\left[\mu^{k-1} I+(k-1) \mu^{k-2} U\right] \\
=\mu^{k} I+(k-1) \mu^{k-1} U+\mu^{k-1} U+\mu^{k-2} U^{2}=\mu^{k} I+k \mu^{k-1} U,
\end{gathered}
$$

since $U^{2}=0$. Hence, by mathematical induction we have proved that

$$
T^{k}=\mu^{k} I+k \mu^{k-1} U,
$$

for all $k=0,1,2, \ldots$.
Next,

$$
\begin{gathered}
e^{t T}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} T^{k}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mu^{k} I+\sum_{k=0}^{\infty} \frac{t^{k}}{k!} k \mu^{k-1} U \\
=e^{\mu t} I+\left[\sum_{k=0}^{\infty} \frac{t^{k}}{(k-1)!} \mu^{k-1}\right] U
\end{gathered}
$$

The term in parenthesis equals

$$
t\left[\sum_{k=0}^{\infty} \frac{t^{k-1}}{(k-1)!} \mu^{k-1}\right]=t e^{\mu t} .
$$

hence we learn that

$$
e^{t T}=e^{\mu t}[I+t U]
$$

For the problem at hand we get

$$
e^{t T}=e^{2 t}\left[\begin{array}{cc}
1 & 2 t \\
0 & 1
\end{array}\right]
$$

Problem 5

a) The eigenvalues of the matrix A are

$$
\mu_{1}=5+4 i, \mu_{2}=5-4 i
$$

The normalized eigenvector associated with the eigenvalue μ_{1} is given by

$$
\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 i \\
1
\end{array}\right]
$$

and unitary matrix Q that will effect the Schur factorization is

$$
Q=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 i & 1 \\
1 & 2 i
\end{array}\right]
$$

Clearly

$$
Q^{*} A Q=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-2 i & 1 \\
1 & -2 i
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-8+10 i & 5-16 i \\
5+4 i & 2+10 i
\end{array}\right]=\left[\begin{array}{cc}
5+4 i & -6 \\
0 & 5-4 i
\end{array}\right] .
$$

b) Next we compute

$$
e^{t T}=\left[\begin{array}{cc}
e^{(5+4 i) t} & a \\
0 & e^{(5-4 i) t}
\end{array}\right]
$$

where a is unknown. Since

$$
T e^{t T}=e^{t T} T
$$

we get for a the equation

$$
(5+4 i) a-6 e^{(5-4 i) t}=-6 e^{(5+4 i) t}+a(5-4 i)
$$

and hence

$$
a=\frac{3\left(e^{(5-4 i) t}-e^{(5+4 i) t}\right)}{4 i}
$$

Thus

$$
e^{t T}=\left[\begin{array}{cc}
e^{(5+4 i) t} & \frac{3\left(e^{(5-4 i) t}-e^{(5+4 i) t}\right)}{4 i} \\
0 & e^{(5-4 i) t}
\end{array}\right]
$$

c) Finally,

$$
\begin{gathered}
e^{A t}=Q e^{t T} Q^{*}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 i & 1 \\
1 & 2 i
\end{array}\right]\left[\begin{array}{cc}
e^{(5+4 i) t} & \frac{3\left(e^{(5-4 i) t}-e^{(5+4 i) t}\right)}{4 i} \\
0 & e^{(5-4 i) t}
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{cc}
-2 i & 1 \\
1 & -2 i
\end{array}\right] \\
=\left[\begin{array}{cc}
\frac{A+B}{2} & i(A-B) \\
-i \frac{A-B}{4} & \frac{A+B}{2}
\end{array}\right]
\end{gathered}
$$

where $A=e^{(5+4 i) t}$ and $B=e^{(5-4 i) t}$. Using Euler's fromula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ this can be simplified and yields

$$
e^{t A}=\left[\begin{array}{cc}
e^{5 t} \cos (4 t) & -2 e^{5 t} \sin (4 t) \\
\frac{1}{2} e^{5 t} \sin (4 t) & e^{5 t} \cos (4 t)
\end{array}\right]
$$

