Solutions of selected problems of chapter 5

Section 1:

Problem 1: a)

$$
\mathbf{v}(t)=r\left[\begin{array}{c}
-\sin (t) \\
\cos (t)
\end{array}\right], \mathbf{a}(t)=-r\left[\begin{array}{c}
\cos (t) \\
\sin (t)
\end{array}\right]
$$

b) $v(t)=r, \mathbf{T}(t)=\left[\begin{array}{c}-\sin (t) \\ \cos (t)\end{array}\right]$.
c) $s(t)=r t, t(s)=s / r$.
d) The tangential component of the acceleration is zero. The normal component is r.
e) The curvature is $1 / r$.

Problem 3: a)

$$
\mathbf{v}(t)=\left[\begin{array}{c}
1 \\
1 / \sqrt{t} \\
-1 / t^{2}
\end{array}\right], \mathbf{a}(t)=\left[\begin{array}{c}
0 \\
-1 /\left(2 t^{3 / 2}\right) \\
2 / t^{3}
\end{array}\right]
$$

b) $v(t)=\sqrt{1+1 / t+1 / t^{4}}$ and

$$
\mathbf{T}(t)=\frac{1}{\sqrt{1+1 / t+1 / t^{4}}}\left[\begin{array}{c}
1 \\
1 / \sqrt{t} \\
-1 / t^{2}
\end{array}\right]
$$

c) $s(t)=\int \sqrt{1+1 / t+1 / t^{4}} d t$
d)

$$
\mathbf{a}(t)=\mathbf{a}(t) \cdot \mathbf{T}(t) \mathbf{T}(t)+[\mathbf{a}(t)-\mathbf{a}(t) \cdot \mathbf{T}(t) \mathbf{T}(t)],
$$

The first term yields the tangential component and the econd term the normal component. The tangential component is given by

$$
-\frac{t^{3} / 2+2}{t^{5}+t^{4}+t}\left[\begin{array}{c}
1 \\
1 / \sqrt{t} \\
-1 / t^{2}
\end{array}\right]
$$

e)

$$
\kappa(t)=
$$

Section 2:

Problem 1:

$$
x^{\prime \prime}=-x^{2}+2 x x^{\prime}-2 x,
$$

yields

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{c}
y \\
-x^{2}+2 x y-2 x
\end{array}\right]
$$

Problem 3:

With $x^{\prime}=y, y^{\prime}=\frac{\left(m^{2}-t^{2}\right) x-t y}{t^{2}}$ and hence

$$
\mathbf{F}(x, t)=\left[\begin{array}{c}
y \\
\frac{\left(m^{2}-t^{2}\right) x-t y}{t^{2}}
\end{array}\right] .
$$

Problem 5:

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 0 \\
0 & -2
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

and hence

$$
\begin{aligned}
e^{A t}= & \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{4 t} & 0 \\
0 & e^{-2 t}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
e^{4 t}+e^{-2 t} & e^{4 t}-e^{-2 t} \\
e^{4 t}-e^{-2 t} & e^{4 t}+e^{-2 t}
\end{array}\right]
\end{aligned}
$$

Finally, the solution for the initial value problem is given by

$$
\mathbf{x}(t)=e^{A t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
3 e^{4 t}-e^{-2 t} \\
3 e^{4 t}+e^{-2 t}
\end{array}\right]
$$

Problem 7:

This problem can, in principle, be solved exactly by working out integrals. Noting that the variable $x(t)$ stays equal to one for all times, i.e., $x(t)=1$, we have to solve $y^{\prime}=-y^{3}-1$ which can be done by separation of variables.

Problem 9: a)

b) The Euler scheme leads to

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}+h \mathbf{x}_{n}^{\perp}
$$

and hence

$$
\left|\mathbf{x}_{n+1}\right|^{2}=\left|\mathbf{x}_{n}+h \mathbf{x}_{n}^{\perp}\right|^{2}=\left|\mathbf{x}_{n}\right|^{2}\left(1+h^{2}\right) .
$$

In the case at hand

$$
\left|\mathbf{x}_{20}\right|=\left|\mathbf{x}_{0}\right|^{10}(1+0.04)^{10} \approx 7.4
$$

c) Since $N h \approx 2 \pi$ and apparent closure requires that

$$
\left(1+h^{2}\right)^{N} \approx 1.05
$$

we must have that

$$
\left(1+\left(\frac{2 \pi}{N}\right)^{2}\right)^{N} \approx 1.05
$$

Calculate, e.g.,

$$
5 *\left(1+(6.28 / 4000)^{2}\right)^{4000} \approx 5.049543790
$$

Thus we need N to be about 4000 , or h to be about $2 \pi / 4000$.

Section 3:

Problem 1: Equilibrium points:

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

The Jacobi matrices are: at $(0,0)$

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]
$$

at $(1,-1)$ and $(-1,1)$

$$
\left[\begin{array}{cc}
-4 & 0 \\
-1 & -3
\end{array}\right]
$$

The determinant of the first is -1 and hence there is a positive and negative eigenvalue and the equilibrium point is unstable. For the others, the eigenvalues are -4 and -3 and hence these two equilibrium points are stable.

Problem 3: The equilibrium points are

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

The Jacobi matrices are: at $(0,0)$

$$
\left[\begin{array}{cc}
0 & 0 \\
1 & -3
\end{array}\right],
$$

at $(1,1)$

$$
\left[\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right]
$$

and at (1, 1/2)

$$
\left[\begin{array}{cc}
-1 / 2 & 1 \\
1 / 2 & 0
\end{array}\right] .
$$

In the first case, nothing can be said about the stability or instability, because one of the eigenvalues vanishes. I n the second case the eigenvalues are $1 / 2 \pm i \sqrt{7} / 2$ and the equilibrium point is unstable. The last has the eigenvalue -1 and $1 / 2$ and, again, is unstable.

