Solutions of selected problems of chapter 5

Section 4:

Problem 1: a) Critical points: $(0,0),(4 / 3,4 / 3)$. The Hessian at $(0,0)$ has the eigenvalues 4 and -4 and hence $(0,0)$ is unstable. At $(4 / 3,4 / 3)$ the Hessian has the eigenvalues 12 and 4 . Since the gradient flow is given by

$$
\mathbf{x}^{\prime}(t)=-\nabla f(\mathbf{x}(t))
$$

Hence the critical point $(4 / 3,4 / 3)$ is stable.
b) Forward Euler, $0 \leq t \leq 1$, stepsize 0.0001. Maple command: phaseportrait $([D(x)(t)=$ $\left.3 *(y(t))^{2}-4 * x(t), D(y)(t)=-3 *(x(t))^{2}+4 * y(t)\right],[x(t), y(t)], t=0 . .1,[[x(0)=2, y(0)=$ 2]], stepsize $=0.0001$, method $=$ classical[foreuler] $) ;$

c) Calculating

$$
\left|\nabla \cdot \frac{\nabla f}{|\nabla f|}\right|=\left|\partial_{x}\left(\frac{f_{x}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}\right)+\partial_{y}\left(\frac{f_{y}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}\right)\right|
$$

at the point $(2,2)$ yields $4 / \sqrt{2}$ for the curvature.
Problem 4: The stability of the perpendicular gradient flow depends on the eigenvalues of the matrix

$$
\left[\begin{array}{cc}
-f_{x y} & f_{y y} \\
f_{x x} & f_{x y}
\end{array}\right]
$$

Since the trace vanishes, the eigenvalues must be of opposite sign and hence the equilibrium points of the flow are not stable.

Section 5:

Problem 1: Using

$$
\cos (\theta)=\frac{\operatorname{Tr} Q-1}{2}
$$

one finds $\cos \left(\theta_{1}\right)=-8 / 9$ and hence $\theta_{1} \approx 2.6657$. Rotation axis is along the vector $(3,2,2)$ and hence the plane of rotation is $3 x+2 y+2 z=0$.

Problem 3: $\cos \left(\theta_{2}\right)=22 / 45 . \quad \theta_{2} \approx 1.05998$, i.e., close to $\pi / 3$. Axis of rotation: $(-2,2,-1)$. Plane of rotation: $-2 x+2 y-z=0$.

Problem 5: Denote the rows of $Q-I$ by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. If \mathbf{e} denotes the axis of rotation we have that

$$
\mathbf{a}_{1} \cdot \mathbf{e}=0, \mathbf{a}_{2} \cdot \mathbf{e}=0, \mathbf{a}_{3} \cdot \mathbf{e}=0
$$

Hence the three vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are in the plane of rotation and the cross product of any two non proportional of these vectors yields a multiple of the axis of rotation.

Problem 7: $Q(-\mathbf{u}, \theta)=Q(\mathbf{u}, 2 \pi-\theta)$. We know that

$$
Q(\mathbf{u}, \theta)=U\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] U^{t}
$$

where U is a rotation independent of θ. From this it follows that $Q(\mathbf{u}, \theta) Q(\mathbf{u}, 2 \pi-\theta)=$ $Q(\mathbf{u}, 2 \pi)=I$.

Problem 9:Again, we know that

$$
Q(\mathbf{u}, \theta)=U\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] U^{t}
$$

and hence

$$
Q(\mathbf{u}, \theta / 2)=U\left[\begin{array}{ccc}
\cos (\theta / 2) & -\sin (\theta / 2) & 0 \\
\sin (\theta / 2) & \cos (\theta / 2) & 0 \\
0 & 0 & 1
\end{array}\right] U^{t}
$$

has the property that $Q(\mathbf{u}, \theta / 2)^{2}=Q(\mathbf{u}, \theta)$.
Problem 11: By a reflection we mean an orthogonal matrix P that has the property that $P^{2}=I$. If the determinant of a 2×2 orthogonal matricx is -1 , it is a reflection. This is not the case for 3×3 orthogonal matrices. Here is a counterexample. If Q is an orthogonal matrix with determinant +1 , it can be written in the form

$$
Q=U\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] U^{t}
$$

for some angle θ. Now, $(-I) Q$ is an orthogonal matrix with determinant -1 and its square is

$$
Q^{2}=U\left[\begin{array}{ccc}
\cos (2 \theta) & -\sin (2 \theta) & 0 \\
\sin (2 \theta) & \cos (2 \theta) & 0 \\
0 & 0 & 1
\end{array}\right] U^{t}
$$

which in general is not the identity matrix.
Section 6: COMING SOON!

