Chapter 5, Section 6:

Problem 1: $Q_{2}=U Q_{1}$ and hence

$$
U=Q_{2} Q_{1}^{t}=\left[\begin{array}{ccc}
-71 / 75 & -22 / 75 & 2 / 15 \\
22 / 75 & -46 / 75 & 11 / 15 \\
-2 / 15 & 11 / 15 & 2 / 3
\end{array}\right]
$$

Further

$$
\cos (\theta)=-71 / 75
$$

or

$$
\theta \approx 2.813524772
$$

The axis of rotation is given by

$$
2 \sin (\theta) \mathbf{u}=\left[\begin{array}{c}
0 \\
4 / 15 \\
44 / 75
\end{array}\right]
$$

and hence

$$
\mathbf{u}=\frac{1}{\sqrt{146}}\left[\begin{array}{c}
0 \\
5 \\
11
\end{array}\right]
$$

The time dependent mrotation is then given by

$$
U(t)=\cos (t \theta) I+(1-\cos (t \theta)) \frac{1}{146}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 25 & 55 \\
0 & 55 & 121
\end{array}\right]+\sin (t \theta) \frac{1}{\sqrt{146}}\left[\begin{array}{ccc}
0 & -11 & 5 \\
11 & 0 & 0 \\
-5 & 0 & 0
\end{array}\right]
$$

Problem 3:

$Q_{1}^{2}=Q_{1} U$ i.e., $U=Q_{1}$.

$$
\begin{gathered}
\cos (\theta)=-8 / 9, \\
2 \sin (\theta) \mathbf{u}=\left[\begin{array}{l}
2 / 3 \\
4 / 9 \\
4 / 9
\end{array}\right],
\end{gathered}
$$

and hence

$$
\mathbf{u}=\frac{1}{\sqrt{17}}\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right]
$$

Thus the time dependent rotation is given by

$$
U(t)=\cos (t \theta) I+(1-\cos (t \theta)) \frac{1}{17}\left[\begin{array}{ccc}
9 & 6 & 6 \\
6 & 4 & 4 \\
6 & 4 & 4
\end{array}\right]+\sin (t \theta) \frac{1}{\sqrt{17}}\left[\begin{array}{ccc}
0 & -2 & 2 \\
2 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right]
$$

Problem 5: Find all B antisymmetric so that

$$
e^{B}=Q_{1}
$$

From problem 3 we know that

$$
B_{\mathbf{u}}=\frac{1}{\sqrt{17}}\left[\begin{array}{ccc}
0 & -2 & 2 \\
2 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right]
$$

works in the sense that

$$
e^{\theta B_{\mathbf{u}}}=Q_{1}
$$

where $\cos (\theta)=-8 / 9$. Thus the matrices

$$
B_{n}=(\theta+2 \pi n) B_{\mathbf{u}}
$$

for any integer n do the job.
Problem 7: Find all B antisymmetric so that

$$
e^{B}=Q_{3}
$$

The angle of rotation for Q_{3} is given by $\cos (\theta)=3 / 5$. Moreover

$$
2 \sin (\theta) B_{\mathbf{u}}=\left[\begin{array}{ccc}
0 & 8 / 15 & 16 / 15 \\
-8 / 15 & 0 & 16 / 15 \\
-16 / 15 & -16 / 15 & 0
\end{array}\right]
$$

Since $\sin (\theta)=4 / 5$ we get that

$$
B_{\mathbf{u}}=\frac{1}{3}\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 2 \\
-2 & -2 & 0
\end{array}\right]
$$

Again

$$
(\theta+2 \pi n) B_{\mathbf{u}}
$$

does the job.
Problem 9: Note that

$$
B_{\mathbf{u}} \mathbf{x}=\mathbf{u} \times \mathbf{x}
$$

Now

$$
Q B_{\mathbf{u}} Q^{t} \mathbf{x}=Q\left(\mathbf{u} \times Q^{t} \mathbf{x}\right)=Q \mathbf{u} \times Q Q^{t} \mathbf{x}=Q \mathbf{u} \times \mathbf{x}=B_{Q \mathbf{u}} \mathbf{x}
$$

Hence

$$
Q B_{\mathbf{u}} Q^{t}=B_{Q \mathbf{u}}
$$

