Prepfinal A for Calculus III for CS-Majors, Math 2605A1-2
 April 24, 2003

Name:

This test is to be taken without calculators and notes of any sorts. The allowed time is 2 hours and 50 minutes. You may use a 'cheat sheet' of 1 page, single sided, letter format. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$..

Block 1:

I: Two surfaces are given by the equations $z=x^{3}+2 y$ and $z=4 x^{2}-y^{2}$. Find the line tangent to the intersection of the two surfaces at the point $(1,1,3)$. Give this line in parametrized form.

II: Find all the points in the domain $(x-2)^{2}+y^{2} \leq 1$ where the maxima and minima of the function $f(x, y)=\log \left(x^{2}+y^{2}\right)$. To do this, find all the critical points in the interior of the unit disk and analyze the Hessian. Then maximize this function on the boundary of the unit disk. Sketch a few level curves of this function.

III: Find all the critical points of the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

and discuss them by analyzing the Hessian. Draw a few level curves of this function.

IV: Find a solution of the system of nonlinear equations

$$
x+y^{3}=3, x^{2}+2 y^{2}=4,
$$

using Newton's method, starting from the point $(1,1)$. Run two steps of the iteration and plug the approximate solution into the original equation to see how precise it is.

Block 2:

V: Diagonalize, as well as find the Schur decomposition of the matrix

$$
\left[\begin{array}{cc}
-2 & 2 \\
8 & 4
\end{array}\right]
$$

VI: a) Using Householder reflections, find the $Q R$ factorization of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 2 & 0 \\
1 & 2 & -1
\end{array}\right]
$$

b) Find a least square solution for the equation $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
3 \\
-2 \\
3
\end{array}\right]
$$

VII: a) Find the singular value decomposition of the matrix

$$
A=\left[\begin{array}{cc}
0 & \sqrt{3} \\
1 & 2 \\
\sqrt{2} & \sqrt{2}
\end{array}\right]
$$

b) Use this to find the least square approximation of smallest length of the equation $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
-\sqrt{3} \\
3 \\
0
\end{array}\right]
$$

c) Find the best rank one approximation $A_{(1)}$ for the matrix A.

VIII: Find the Housholder reflection that maps the vector

$$
\left[\begin{array}{c}
i \\
1 \\
1+i
\end{array}\right]
$$

to a multiple of \vec{e}_{1}.

Block 3:

IX: a) Consider the function $f(x, y)=1-\left((x / \sqrt{2})^{2}+y^{2}\right)$. Consider the surface $z=f(x, y)$ as a mountain. Suppose you start at the foot of the mountain, at the point $(1 / \sqrt{2}, \sqrt{3} / 2)$ and walk up the mountain on a path that points always in the direction of steepest ascent.
a) Give this path in parametrized form.
b) Find an equation for this path.
c) Sketch this path.
$\mathbf{X}:$ a) Find the axis \vec{e} and the angle of rotation $0 \leq \phi<\pi$ of the rotation
$\left[\begin{array}{ccc}1 / 3 & 2 / 3 & -2 / 3 \\ 2 / 3 & 1 / 3 & 2 / 3 \\ 2 / 3 & -2 / 3 & -1 / 3\end{array}\right]$.
b) Find the matrix $e^{B_{\vec{e}} \theta}$ for all $0 \leq \theta \leq 2 \pi$.

XI: Let Ω be the parallelogram bounded by $x+y=0, x+y=1, x-y=0, x-y=2$. Evaluate

$$
\int_{\Omega}\left(x^{2}+y^{2}\right) d x d y
$$

XII: Compute the volume of the set that is bounded above by the plane $z=2 x$ and below by the disk $(x-1)^{2}+y^{2} \leq 1$.

