Prepfinal A for Calculus III for CS-Majors, Math 2605A1-2 April 24, 2003

Name:

This test is to be taken without calculators and notes of any sorts. The allowed time is 2 hours and 50 minutes. You may use a 'cheat sheet' of 1 page, single sided, letter format. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write 1.414....

Block 1:

I: Two surfaces are given by the equations $z = x^3 + 2y$ and $z = 4x^2 - y^2$. Find the line tangent to the intersection of the two surfaces at the point (1, 1, 3). Give this line in parametrized form.

II: Find all the points in the domain $(x - 2)^2 + y^2 \leq 1$ where the maxima and minima of the function $f(x, y) = \log(x^2 + y^2)$. To do this, find all the critical points in the interior of the unit disk and analyze the Hessian. Then maximize this function on the boundary of the unit disk. Sketch a few level curves of this function.

III: Find all the critical points of the function

$$f(x,y) = \frac{x^2 - y^2}{(1 + x^2 + y^2)^2}$$

and discuss them by analyzing the Hessian. Draw a few level curves of this function.

IV: Find a solution of the system of nonlinear equations

$$x + y^3 = 3$$
, $x^2 + 2y^2 = 4$,

using Newton's method, starting from the point (1, 1). Run two steps of the iteration and plug the approximate solution into the original equation to see how precise it is.

Block 2:

V: Diagonalize, as well as find the Schur decomposition of the matrix

$$\begin{bmatrix} -2 & 2 \\ 8 & 4 \end{bmatrix} \cdot$$

VI: a) Using Householder reflections, find the QR factorization of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$

b) Find a least square solution for the equation $A\vec{x} = \vec{b}$ where

$$\vec{b} = \begin{bmatrix} 3\\-2\\3 \end{bmatrix} .$$

VII: a) Find the singular value decomposition of the matrix

$$A = \begin{bmatrix} 0 & \sqrt{3} \\ 1 & 2 \\ \sqrt{2} & \sqrt{2} \end{bmatrix} .$$

b) Use this to find the least square approximation of smallest length of the equation $A\vec{x} = \vec{b}$ where

$$\vec{b} = \begin{bmatrix} -\sqrt{3} \\ 3 \\ 0 \end{bmatrix}$$

c) Find the best rank one approximation $A_{(1)}$ for the matrix A.

VIII: Find the Housholder reflection that maps the vector

$$\begin{bmatrix} i \\ 1 \\ 1+i \end{bmatrix}$$

to a multiple of \vec{e}_1 .

Block 3:

IX: a) Consider the function $f(x, y) = 1 - ((x/\sqrt{2})^2 + y^2)$. Consider the surface z = f(x, y) as a mountain. Suppose you start at the foot of the mountain, at the point $(1/\sqrt{2}, \sqrt{3}/2)$ and walk up the mountain on a path that points always in the direction of steepest ascent.

- a) Give this path in parametrized form.
- b) Find an equation for this path.

c) Sketch this path.

X: a) Find the axis \vec{e} and the angle of rotation $0 \le \phi < \pi$ of the rotation

$$\begin{bmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ 2/3 & -2/3 & -1/3 \end{bmatrix} .$$

b) Find the matrix $e^{B_{\vec{e}}\theta}$ for all $0 \le \theta \le 2\pi$.

XI: Let Ω be the parallelogram bounded by x + y = 0, x + y = 1, x - y = 0, x - y = 2. Evaluate

$$\int_{\Omega} (x^2 + y^2) dx dy \; .$$

XII: Compute the volume of the set that is bounded above by the plane z = 2x and below by the disk $(x - 1)^2 + y^2 \le 1$.